
Advanced	classifica-on	methods	

Ensemble	Methods	

•  Construct	a	set	of	classifiers	from	the	training	
data	

•  Predict	class	label	of	previously	unseen	
records	by	aggrega-ng	predic-ons	made	by	
mul-ple	classifiers	

General	Idea	
Original

Training data

....D1 D2 Dt-1 Dt

D

Step 1:
Create Multiple

Data Sets

C1 C2 Ct -1 Ct

Step 2:
Build Multiple

Classifiers

C*
Step 3:

Combine
Classifiers

Why	does	it	work?	

•  Suppose	there	are	25	base	classifiers	
– Each	classifier	has	error	rate,	ε	=	0.35	
– Assume	classifiers	are	independent	
– Probability	that	the	ensemble	classifier	makes	a	
wrong	predic-on:	

∑
=

− =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛25

13

25 06.0)1(
25

i

ii

i
εε

Examples	of	Ensemble	Methods	

•  How	to	generate	an	ensemble	of	classifiers?	
– Bagging	

– Boos-ng	
	

Bagging	

•  Sampling	with	replacement	

•  Build	classifier	on	each	bootstrap	sample	

•  Each	sample	has	probability	(1	–	1/n)n	of	being	
selected	

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Boos-ng	

•  An	itera-ve	procedure	to	adap-vely	change	
distribu-on	of	training	data	by	focusing	more	
on	previously	misclassified	records	
–  Ini-ally,	all	N	records	are	assigned	equal	weights	
– Unlike	bagging,	weights	may	change	at	the	end	of	
boos-ng	round	

Boos-ng	

•  Records	that	are	wrongly	classified	will	have	
their	weights	increased	

•  Records	that	are	classified	correctly	will	have	
their	weights	decreased	

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• 	Example	4	is	hard	to	classify	

• 	Its	weight	is	increased,	therefore	it	is	more	likely	
to	be	chosen	again	in	subsequent	rounds	

Example:	AdaBoost	

•  Base	classifiers:	C1,	C2,	…,	CT	

•  Error	rate:	

•  Importance	of	a	classifier:		

()∑
=

≠=
N

j
jjiji yxCw

N 1

)(1
δε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i

i
i ε

ε
α

1ln
2
1

Example:	AdaBoost	

•  Weight	update:	

•  If	any	intermediate	rounds	produce	error	rate	
higher	than	50%,	the	weights	are	reverted	back	
to	1/n	and	the	resampling	procedure	is	repeated	

•  Classifica-on:	

factor ionnormalizat theis where

)(ifexp
)(ifexp)(

)1(

j

iij

iij

j

j
ij

i

Z

yxC
yxC

Z
ww

j

j

⎪⎩

⎪
⎨
⎧

≠

=
=

−
+

α

α

()∑
=

==
T

j
jj

y
yxCxC

1

)(maxarg)(* δα

Boosting
Round 1 + + + -- - - - - -

0.0094 0.0094 0.4623
B1

a = 1.9459

Illustra-ng	AdaBoost	
Data	points	
for	training	

Ini-al	weights	for	each	data	point	

Original
Data + + + -- - - - + +

0.1 0.1 0.1

Illustra-ng	AdaBoost	
Boosting
Round 1 + + + -- - - - - -

Boosting
Round 2 - - - -- - - - + +

Boosting
Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

a = 1.9459

a = 2.9323

a = 3.8744

Rule-Based	Classifier	

•  Classify	records	by	using	a	collec-on	of	“if…
then…”	rules	

•  Rule:				(Condi&on)	→	y	
–  where		

•  	Condi&on	is	a	conjunc-ons	of	a`ributes		
•  	y	is	the	class	label	

–  LHS:	rule	antecedent	or	condi-on	
–  RHS:	rule	consequent	
–  Examples	of	classifica-on	rules:	

•  	(Blood	Type=Warm)	∧	(Lay	Eggs=Yes)	→	Birds	
•  	(Taxable	Income	<	50K)	∧	(Refund=Yes)	→	Evade=No	

Rule-based	Classifier	(Example)	

R1:	(Give	Birth	=	no)	∧	(Can	Fly	=	yes)	→	Birds	
R2:	(Give	Birth	=	no)	∧	(Live	in	Water	=	yes)	→	Fishes	
R3:	(Give	Birth	=	yes)	∧	(Blood	Type	=	warm)	→	Mammals	
R4:	(Give	Birth	=	no)	∧	(Can	Fly	=	no)	→	Rep-les	
R5:	(Live	in	Water	=	some-mes)	→	Amphibians	

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

Applica-on	of	Rule-Based	Classifier	

•  A	rule	r	covers	an	instance	x	if	the	a`ributes	
of	the	instance	sa-sfy	the	condi-on	of	the	
rule	
R1:	(Give	Birth	=	no)	∧	(Can	Fly	=	yes)	→	Birds	
R2:	(Give	Birth	=	no)	∧	(Live	in	Water	=	yes)	→	Fishes	
R3:	(Give	Birth	=	yes)	∧	(Blood	Type	=	warm)	→	Mammals	
R4:	(Give	Birth	=	no)	∧	(Can	Fly	=	no)	→	Rep-les	
R5:	(Live	in	Water	=	some-mes)	→	Amphibians		

The	rule	R1	covers	a	hawk	=>	Bird	
The	rule	R3	covers	the	grizzly	bear	=>	Mammal	

Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

Rule	Coverage	and	Accuracy	
•  Coverage	of	a	rule:	
– Frac-on	of	records	
that	sa-sfy	the	
antecedent	of	a	rule	

•  Accuracy	of	a	rule:	
– Frac-on	of	records	
that	sa-sfy	both	the	
antecedent	and	
consequent	of	a	rule	

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

(Status=Single)	→	No	

				Coverage	=	40%,		Accuracy	=	50%	

How	does	Rule-based	Classifier	Work?	
R1:	(Give	Birth	=	no)	∧	(Can	Fly	=	yes)	→	Birds	
R2:	(Give	Birth	=	no)	∧	(Live	in	Water	=	yes)	→	Fishes	
R3:	(Give	Birth	=	yes)	∧	(Blood	Type	=	warm)	→	Mammals	
R4:	(Give	Birth	=	no)	∧	(Can	Fly	=	no)	→	Rep-les	
R5:	(Live	in	Water	=	some-mes)	→	Amphibians		

A	lemur	triggers	rule	R3,	so	it	is	classified	as	a	mammal	
A	turtle	triggers	both	R4	and	R5	
A	dogfish	shark	triggers	none	of	the	rules	

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?

Characteris-cs	of	Rule-Based	Classifier	

•  Mutually	exclusive	rules	
– Classifier	contains	mutually	exclusive	rules	if	the	
rules	are	independent	of	each	other	

– Every	record	is	covered	by	at	most	one	rule	

•  Exhaus-ve	rules	
– Classifier	has	exhaus-ve	coverage	if	it	accounts	
for	every	possible	combina-on	of	a`ribute	values	

– Each	record	is	covered	by	at	least	one	rule	

From	Decision	Trees	To	Rules	

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules	are	mutually	exclusive	and	exhaus-ve	

Rule	set	contains	as	much	informa-on	as	the	tree	

Rules	Can	Be	Simplified	

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Ini-al	Rule:											(Refund=No)	∧	(Status=Married)	→	No	

Simplified	Rule:			(Status=Married)	→	No	

Effect	of	Rule	Simplifica-on	
•  Rules	are	no	longer	mutually	exclusive	
– A	record	may	trigger	more	than	one	rule		
– Solu-on?	
•  	Ordered	rule	set	
•  	Unordered	rule	set	–	use	vo-ng	schemes	

•  Rules	are	no	longer	exhaus-ve	
– A	record	may	not	trigger	any	rules	
– Solu-on?	
•  	Use	a	default	class	

Ordered	Rule	Set	

•  Rules	are	rank	ordered	according	to	their	
priority	
–  An	ordered	rule	set	is	known	as	a	decision	list	

•  When	a	test	record	is	presented	to	the	
classifier		
–  It	is	assigned	to	the	class	label	of	the	highest	ranked	rule	it	has	

triggered	
–  If	none	of	the	rules	fired,	it	is	assigned	to	the	default	class	

R1:	(Give	Birth	=	no)	∧	(Can	Fly	=	yes)	→	Birds	
R2:	(Give	Birth	=	no)	∧	(Live	in	Water	=	yes)	→	Fishes	
R3:	(Give	Birth	=	yes)	∧	(Blood	Type	=	warm)	→	Mammals	
R4:	(Give	Birth	=	no)	∧	(Can	Fly	=	no)	→	Rep-les	
R5:	(Live	in	Water	=	some-mes)	→	Amphibians		

Name Blood Type Give Birth Can Fly Live in Water Class
turtle cold no no sometimes ?

Rule	Ordering	Schemes	

•  Rule-based	ordering	
–  Individual	rules	are	ranked	based	on	their	quality	

•  Class-based	ordering	
–  Rules	that	belong	to	the	same	class	appear	together	

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

Building	Classifica-on	Rules	

•  Direct	Method:		
•  	Extract	rules	directly	from	data	
•  	e.g.:	RIPPER,	CN2,	Holte’s	1R	

•  Indirect	Method:	
•  	Extract	rules	from	other	classifica-on	models	(e.g.		
			decision	trees,	neural	networks,	etc).	
•  	e.g:	C4.5rules	

Direct	Method:	Sequen-al	Covering	

1.  Start	from	an	empty	rule	
2.  Grow	a	rule	using	the	Learn-One-Rule	

func-on	
3.  Remove	training	records	covered	by	the	rule	
4.  Repeat	Step	(2)	and	(3)	un-l	stopping	

criterion	is	met		

Example	of	Sequen-al	Covering	

(i) Original Data (ii) Step 1

Example	of	Sequen-al	Covering…	

(iii) Step 2

R1

(iv) Step 3

R1

R2

Aspects	of	Sequen-al	Covering	

•  Rule	Growing	

•  Instance	Elimina-on	

•  Rule	Evalua-on	

•  Stopping	Criterion	

•  Rule	Pruning	

Rule	Growing	

•  Two	common	strategies		

Status =
Single

Status =
Divorced

Status =
Married

Income
> 80K...

Yes: 3
No: 4{ }

Yes: 0
No: 3

Refund=
No

Yes: 3
No: 4

Yes: 2
No: 1

Yes: 1
No: 0

Yes: 3
No: 1

(a) General-to-specific

Refund=No,
Status=Single,
Income=85K
(Class=Yes)

Refund=No,
Status=Single,
Income=90K
(Class=Yes)

Refund=No,
Status = Single
(Class = Yes)

(b) Specific-to-general

Rule	Growing	(Examples)	
•  CN2	Algorithm:	

–  Start	from	an	empty	conjunct:		{}	
–  Add	conjuncts	that	minimizes	the	entropy	measure:					{A},	{A,B},	…	
–  Determine	the	rule	consequent	by	taking	majority	class	of	instances	covered	

by	the	rule	

•  RIPPER	Algorithm:	
–  Start	from	an	empty	rule:	{}	=>	class	
–  Add	conjuncts	that	maximizes	FOIL’s	informa-on	gain	measure:	

•  	R0:		{}	=>	class			(ini-al	rule)	
•  	R1:		{A}	=>	class	(rule	aler	adding	conjunct)	
•  	Gain(R0,	R1)	=	t	[log	(p1/(p1+n1))	–	log	(p0/(p0	+	n0))]	
•  	where			t:	number	of	posi-ve	instances	covered	by	both	R0	and	R1	
	p0:	number	of	posi-ve	instances	covered	by	R0	
	n0:	number	of	nega-ve	instances	covered	by	R0	
	p1:	number	of	posi-ve	instances	covered	by	R1	
	n1:	number	of	nega-ve	instances	covered	by	R1	

Instance	Elimina-on	

•  Why	do	we	need	to	
eliminate	instances?	
–  Otherwise,	the	next	rule	is	

iden-cal	to	previous	rule	
•  Why	do	we	remove	posi-ve	

instances?	
–  Ensure	that	the	next	rule	is	

different	
•  Why	do	we	remove	nega-ve	

instances?	
–  Prevent	underes-ma-ng	

accuracy	of	rule	
–  Compare	rules	R2	and	R3	in	

the	diagram	

class = +

class = -

+

+ +

+
+
+

+
+

+
+

+
+

+

+

+

+

++

+

+

-

-

-
-
- -

-

-
-

- -

-

-

-

-

-
-

-

-

-

-

+

+

++

+

+

+

R1
R3 R2

+

+

Rule	Evalua-on	

•  Metrics:	
– Accuracy	

– Laplace	

	
– M-es-mate	

kn
nc
+
+

=
1

kn
kpnc

+
+

=

n	:	Number	of	instances	
covered	by	rule	

nc	:	Number	of	instances	
covered	by	rule	

k	:	Number	of	classes	

p	:	Prior	probability	

n
nc=

Stopping	Criterion	and	Rule	Pruning	

•  Stopping	criterion	
– Compute	the	gain	
–  If	gain	is	not	significant,	discard	the	new	rule	

•  Rule	Pruning	
– Similar	to	post-pruning	of	decision	trees	
– Reduced	Error	Pruning:		

•  	Remove	one	of	the	conjuncts	in	the	rule		
•  	Compare	error	rate	on	valida-on	set	before	and	aler	
pruning	
•  	If	error	improves,	prune	the	conjunct	

Summary	of	Direct	Method	
•  Grow	a	single	rule	

•  Remove	Instances	from	rule	

•  Prune	the	rule	(if	necessary)	

•  Add	rule	to	Current	Rule	Set	

•  Repeat	

Direct	Method:	RIPPER	
•  For	2-class	problem,	choose	one	of	the	classes	as	posi-ve	

class,	and	the	other	as	nega-ve	class	
–  Learn	rules	for	posi-ve	class	
–  Nega-ve	class	will	be	default	class	

•  For	mul--class	problem	
–  Order	the	classes	according	to	increasing	class	prevalence	
(frac-on	of	instances	that	belong	to	a	par-cular	class)	

–  Learn	the	rule	set	for	smallest	class	first,	treat	the	rest	as	
nega-ve	class	

–  Repeat	with	next	smallest	class	as	posi-ve	class	

Direct	Method:	RIPPER	
•  Growing	a	rule:	

–  Start	from	empty	rule	
–  Add	conjuncts	as	long	as	they	improve	FOIL’s	informa-on	gain	
–  Stop	when	rule	no	longer	covers	nega-ve	examples	
–  Prune	the	rule	immediately	using	incremental	reduced	error	
pruning	

–  Measure	for	pruning:			v	=	(p-n)/(p+n)	
•  	p:	number	of	posi-ve	examples	covered	by	the	rule	in	
								the	valida-on	set	

•  	n:	number	of	nega-ve	examples	covered	by	the	rule	in	
								the	valida-on	set	

–  Pruning	method:	delete	any	final	sequence	of	condi-ons	that	
maximizes	v	

Direct	Method:	RIPPER	

•  Building	a	Rule	Set:	
– Use	sequen-al	covering	algorithm	

•  	Finds	the	best	rule	that	covers	the	current	set	of	
posi-ve	examples	
•  	Eliminate	both	posi-ve	and	nega-ve	examples	covered	
by	the	rule	

– Each	-me	a	rule	is	added	to	the	rule	set,	compute	
the	new	descrip-on	length	
•  	stop	adding	new	rules	when	the	new	descrip-on	
length	is	d	bits	longer	than	the	smallest	descrip-on	
length	obtained	so	far	

Direct	Method:	RIPPER	

•  Op-mize	the	rule	set:	
– For	each	rule	r	in	the	rule	set	R	

•  	Consider	2	alterna-ve	rules:	
–  Replacement	rule	(r*):	grow	new	rule	from	scratch	
–  Revised	rule(r’):	add	conjuncts	to	extend	the	rule	r		

•  	Compare	the	rule	set	for	r	against	the	rule	set	for	r*		
				and	r’		
•  	Choose	rule	set	that	minimizes	MDL	principle	

– Repeat	rule	genera-on	and	rule	op-miza-on	for	
the	remaining	posi-ve	examples	

Indirect	Methods	

Rule Set

r1: (P=No,Q=No) ==> -
r2: (P=No,Q=Yes) ==> +
r3: (P=Yes,R=No) ==> +
r4: (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

P

Q R

Q- + +

- +

No No

No

Yes Yes

Yes

No Yes

Indirect	Method:	C4.5rules	

•  Extract	rules	from	an	unpruned	decision	tree	
•  For	each	rule,	r:	A	→	y,		
– consider	an	alterna-ve	rule	r’:	A’ →	y	where	A’	
is	obtained	by	removing	one	of	the	conjuncts	in	A	

– Compare	the	pessimis-c	error	rate	for	r	against	all	
r’s	

– Prune	if	one	of	the	r’s	has	lower	pessimis-c	error	
rate	

– Repeat	un-l	we	can	no	longer	improve	
generaliza-on	error	

Indirect	Method:	C4.5rules	

•  Instead	of	ordering	the	rules,	order	subsets	of	
rules	(class	ordering)	
– Each	subset	is	a	collec-on	of	rules	with	the	same	
rule	consequent	(class)	

– Compute	descrip-on	length	of	each	subset	
•  	Descrip-on	length	=	L(error)	+	g	L(model)	
•  	g	is	a	parameter	that	takes	into	account	the	presence	
of	redundant	a`ributes	in	a	rule	set		
(default	value	=	0.5)	

Example	
Name Give Birth Lay Eggs Can Fly Live in Water Have Legs Class

human yes no no no yes mammals
python no yes no no no reptiles
salmon no yes no yes no fishes
whale yes no no yes no mammals
frog no yes no sometimes yes amphibians
komodo no yes no no yes reptiles
bat yes no yes no yes mammals
pigeon no yes yes no yes birds
cat yes no no no yes mammals
leopard shark yes no no yes no fishes
turtle no yes no sometimes yes reptiles
penguin no yes no sometimes yes birds
porcupine yes no no no yes mammals
eel no yes no yes no fishes
salamander no yes no sometimes yes amphibians
gila monster no yes no no yes reptiles
platypus no yes no no yes mammals
owl no yes yes no yes birds
dolphin yes no no yes no mammals
eagle no yes yes no yes birds

C4.5	versus	C4.5rules	versus	RIPPER	
C4.5rules:	

(Give	Birth=No,	Can	Fly=Yes)	→	Birds	

(Give	Birth=No,	Live	in	Water=Yes)	→	Fishes	

(Give	Birth=Yes)	→	Mammals	

(Give	Birth=No,	Can	Fly=No,	Live	in	Water=No)	→	
Rep-les	

()	→	Amphibians	

	

Give
Birth?

Live In
Water?

Can
Fly?

Mammals

Fishes Amphibians

Birds Reptiles

Yes No

Yes

Sometimes

No

Yes No

RIPPER:	

(Live	in	Water=Yes)	→	Fishes	

(Have	Legs=No)	→	Rep-les	

(Give	Birth=No,	Can	Fly=No,	Live	In	
Water=No)		

	→	Rep-les	

(Can	Fly=Yes,Give	Birth=No)	→	Birds	

()	→	Mammals	

C4.5	versus	C4.5rules	versus	RIPPER	

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 0 0 0 0 2
CLASS Fishes 0 3 0 0 0

Reptiles 0 0 3 0 1
Birds 0 0 1 2 1
Mammals 0 2 1 0 4

PREDICTED CLASS
 Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 2 0 0 0 0
CLASS Fishes 0 2 0 0 1

Reptiles 1 0 3 0 0
Birds 1 0 0 3 0
Mammals 0 0 1 0 6

C4.5	and	C4.5rules:	

RIPPER:	

Advantages	of	Rule-Based	Classifiers	

•  As	highly	expressive	as	decision	trees	
•  Easy	to	interpret	
•  Easy	to	generate	
•  Can	classify	new	instances	rapidly	
•  Performance	comparable	to	decision	trees	

