Advanced classification methods

Ensemble Methods

* Construct a set of classifiers from the training
data

* Predict class label of previously unseen
records by aggregating predictions made by
multiple classifiers

General Idea

Original
D Training data

:

Step 1: * * * *
Create Multiple D, D D D
Data Sets i t
Step 2:
Build Multiple C C
Classifiers L 2 Cu X
Step 3:
Combine

Classifiers

Why does it work?

e Suppose there are 25 base classifiers
— Each classifier has error rate, € =0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes a
wrong prediction:

=3\ !

(25 i 25-i
E “lef1-6)P7 =0.06

Examples of Ensemble Methods

* How to generate an ensemble of classifiers?
— Bagging

— Boosting

Bagging

 Sampling with replacement

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

* Build classifier on each bootstrap sample

* Each sample has probability (1 — 1/n)" of being
selected

Boosting

* An iterative procedure to adaptively change
distribution of training data by focusing more
on previously misclassified records
— Initially, all N records are assigned equal weights

— Unlike bagging, weights may change at the end of
boosting round

Boosting

* Records that are wrongly classified will have
their weights increased

* Records that are classified correctly will have
' ights decreased

Original Data 10

2 4 5
Boosting (Round 1) 7 3 8 7 3

oocomoog
N

|| O|O

@
(@))

—_—
o
W|h|O|©

Boosting (Round 2) 4
Boosting (Round 3) éé 10

e Example 4 is hard to classify

e |ts weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Example: AdaBoost

* Base classifiers: C,, C,, ..., C;

e Error rate:

1 1
5,-=N;Wj(5(ci(xj)¢yj) 3

5 z
* Importance of a classifier: to ;
c :
1, (1-¢ o |
_c . 5
o, = —In l g
-4 .
2 8l. ;
5 | I | I
0 0.2 04 06 0.8 1

Example: AdaBoost

e Weight upd ter o .
g(]+1) P ? exp ' 1 C,(x,) =y,
W.

a .

! Z, lexp™ ifC,(x)=y,

J

where Z ; 1s the normalization factor

* If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back

to 1/n and the resampling procedure is repeated

. CIassnﬁcahon
C*(x) = argmaxza (5(C (x) = y)

y

Original
Data

Boosting
Round 1

lllustrating AdaBoost

Initial weights for each data point Data points
AL for training

- N

0.1 0.1 0.1
+ +|+ -|=- + |+
e
B1
0.0094 0.0094 0.4623

_ o= 1.9459

IIIus’gating AdaBoost

0.0094 0.0094 0.4623

Boosting | E E
Round 1 H+ === 95= 1.9459
l
B2
Boosting 0.3037 0.0009 : 0.0422
Round2 | -|=| - 'E|' - : o5= 2.9323
|
|
B3
0.0276 0.1819 0.0038

Boosting |

Round3 _+* ++ ++++ + ++, _ =38744

Overall +++ == == = ++

Rule-Based Classifier

* Classify records by using a collection of “if...
then...” rules

 Rule: (Condition) —vy
— where

* Condition is a conjunctions of attributes
e yistheclass label

— LHS: rule antecedent or condition
— RHS: rule consequent

— Examples of classification rules:
* (Blood Type=Warm) A (Lay Eggs=Yes) — Birds
* (Taxable Income < 50K) A (Refund=Yes) — Evade=No

Rl

1le-based

Cla

ssifier (

Fxam

Name Blood Type Give Birth Can Fly Live in Water Class
human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes |amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark |cold yes no yes fishes
turtle cold no no sometimes |reptiles
penguin warm no no sometimes |birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes [amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds

R1: (Give Birth = no) A (Can Fly = yes) — Birds
R2: (Give Birth = no) A (Live in Water = yes) — Fishes

R3: (Give Birth = yes) A (Blood Type = warm) — Mammals
R4: (Give Birth = no) A (Can Fly = no) — Reptiles

R5: (Live in Water = sometimes) — Amphibians

ple)

Application of Rule-Based Classifier

 Arulercovers aninstance x if the attributes
af the instance satisfy. the condition of the

A tE/e Birth = no) A (Live in Water = yes) — Fishes

(
R3: (Give Birth = yes) A (Blood Type = warm) — Mammals
R4: (Give Birth = no) A (Can Fly = no) — Reptiles
R5: (Live in Water = sometimes) — Amphibians
Name Blood Type Give Birth Can Fly Live in Water Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

Tid Refund Marital Taxable

* Coverage of a rule: Status Income Class
— Fraction of records 1 [Yes |Single 125K No
. 2 No Married |100K No
that satisfy the -
3 |No Single 70K No
antecedent Of d rU|e 4 Yes Married 120K No
PY ACCU racy Of 3 rUIe: 5 No Divorced |95K Yes
6 No Married |60K No
— Fraction of records 7 |Yes |Divorced |220k |No
that satisfy both the 8 |No |Single |85K |Yes
antecedent and 9 No Married |75K No
10 |No Single |90K Yes

consequent of a rule
(Status=Single) — No

Coverage = 40%, Accuracy =50%

How does Rule-based Classifier Work?

R1: (Give Birth = no) A (Can Fly = yes) — Birds

: (Give Birth = no) A (Live in Water = yes) — Fishes

R2: (

R3: (Give Birth = yes) A (Blood Type = warm) — Mammals
R4: (Give Birth = no) A (Can Fly = no) — Reptiles
R5: (

: (Live in Water = sometimes) — Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class
lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark |cold yes no yes ?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Characteristics of Rule-Based Classifier

Mutually exclusive rules

— Classifier contains mutually exclusive rules if the
rules are independent of each other

— Every record is covered by at most one rule

* Exhaustive rules

— Classifier has exhaustive coverage if it accounts
for every possible combination of attribute values

— Each record is covered by at least one rule

From Decision Trees To Rules

Refund

Y‘e\y NAO
e
NO

Marital
Divorced}}/ \{E/Iarrled}
Taxable NO
Income

< 805/

NO

\: 80K

YES

Classification Rules
(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the tree

Rules Can Be Simplified

Tid Refund Marital Taxable

Status Income

Refund
Y‘e\y NAO 1 Yes Single 125K No
2 No Married | 100K No
NO Marital 3 No Single 70K No
[
Divorced) {Married} 4 |Yes Married | 120K No
5 No Divorced | 95K Yes
Taxable
Income 6 No Married |60K No
< 80K/ \: 80K 7 |Yes Divorced |[220K |No
8 [No Single 85K Yes
NO YES
9 No Married |75K No
10 |No Single 90K Yes
Initial Rule: (Refund=No) A (Status=Married) — No

Simplified Rule: (Status=Married) — No

Effect of Rule Simplification

* Rules are no longer mutually exclusive

— A record may trigger more than one rule
— Solution?

* Ordered rule set
* Unordered rule set — use voting schemes

* Rules are no longer exhaustive
— A record may not trigger any rules

— Solution?
e Use a default class

Ordered Rule Set

Rules are rank ordered according to their
priority

— An ordered rule set is known as a decision list

* When a test record is presented to the

classiﬁer
(Give Birth = no) A (Can FIy yes) — Birds
tﬁsza(%@nﬁwtgo the cI 5 label a1;the hlg)hesﬁgﬁnked rule it h:

= ﬂO IVE N er =ye
rigg ere

R3: le Birth = yes) A (Blood Type = warm) — mals
fnone the rules?'lre(d itis aS%I ned to thel\éle?;,\ult class

R4: (G|ve Birth = no) A (Can Fly = noj — Reptiles

MJ

S

,-|-

R5: (Live in Water = sometimes) — Amphibians

\ A 4

Name Blood Type Give Birth Can Fly |Live in Water Class

turtle cold no no sometimes ?

Rule Ordering Schemes

* Rule-based ordering

— Individual rules are ranked based on their quality

* Class-based ordering

RBulac +hAn
noarco—tora

Rule-based Ordering

+ holanaog +tantho cn
CoCTOT co—trrc—oSa

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

me classappeartogether——

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

Building Classification Rules

e Direct Method:

e Extract rules directly from data
* e.g.: RIPPER, CN2, Holte’ s 1R

* Indirect Method:

e Extract rules from other classification models (e.g.
decision trees, neural networks, etc).

e e.g: C4.5rules

Direct Method: Sequential Covering

1. Start from an empty rule

. Grow a rule using the Learn-One-Rule
function

. Remove training records covered by the rule

4. Repeat Step (2) and (3) until stopping

criterion Is met

Example of Sequential Covering

Tyt o+

(i) Original Data

(i) Step 1

Example of Sequential Covering...

(iii) Step 2

R1 —
_+ T T R2
+ =
(iv) Step 3

Aspects of Sequential Covering
Rule Growing

Instance Elimination
Rule Evaluation
Stopping Criterion

Rule Pruning

* Two common strategies

Refund=
No

Yes: 3
No: 4

Rule Growing

Yes: 2 Yes: 1 Yes: 0
No: 1 No: 0 No: 3

(a) General-to-specific

Income
> 80K

Yes: 3
No: 1

Refund=No, Refund=No,
Status=Single, Status=Single,
Income=85K Income=90K
(Class=Yes) (Class=Yes)

Refund=No,
Status = Single
(Class = Yes)

(b) Specific-to-general

Rule Growing (Examples)

* CN2 Algorithm:

— Start from an empty conjunct: {}
— Add conjuncts that minimizes the entropy measure: {A}, {A,B}, ...

— Determine the rule consequent by taking majority class of instances covered
by the rule

* RIPPER Algorithm:

— Start from an empty rule: {} => class

— Add conjuncts that maximizes FOIL’ s information gain measure:
 RO: {} =>class (initial rule)
 R1: {A}=>class (rule after adding conjunct)
* Gain(RO, R1) =t[log (p1/(p1+nl))—log (pO/(pO + n0O))]
 where t: number of positive instances covered by both RO and R1
pO: number of positive instances covered by RO
n0: number of negative instances covered by RO
pl: number of positive instances covered by R1
nl: number of negative instances covered by R1

Instance Elimination

Why do we need to
eliminate instances?

— Otherwise, the next rule is
identical to previous rule
Why do we remove positive
instances?
— Ensure that the next rule is
different
Why do we remove negative
instances?

— Prevent underestimating
accuracy of rule

— Compare rules R2 and R3 in
the diagram

class = +

R2

L

class = -

— e e— — et

1
I_________
+

o+

Rule Evaluation

, n
* Metrics: = ¢

— Accuracy n
n,+1

— Laplace n+k

n : Number of instances
covered by rule

n.: Number of instances
covered by rule

n _|_]q? k : Number of classes
C
- p : Prior probability

— M-estimate n + k

Stopping Criterion and Rule Pruning

* Stopping criterion
— Compute the gain
— If gain is not significant, discard the new rule

* Rule Pruning
— Similar to post-pruning of decision trees

— Reduced Error Pruning:

« Remove one of the conjuncts in the rule

 Compare error rate on validation set before and after
pruning

* If error improves, prune the conjunct

Summary of Direct Method

Grow a single rule

Remove Instances from rule
Prune the rule (if necessary)
Add rule to Current Rule Set

Repeat

Direct Method: RIPPER

* For 2-class problem, choose one of the classes as positive
class, and the other as negative class

— Learn rules for positive class
— Negative class will be default class
* For multi-class problem

— Order the classes according to increasing class prevalence
(fraction of instances that belong to a particular class)

— Learn the rule set for smallest class first, treat the rest as
negative class

— Repeat with next smallest class as positive class

Direct Method: RIPPER

* Growing arule:
— Start from empty rule
— Add conjuncts as long as they improve FOIL’ s information gain
— Stop when rule no longer covers negative examples
— Prune the rule immediately using incremental reduced error
pruning
— Measure for pruning: v = (p-n)/(p+n)

* p: number of positive examples covered by the rule in
the validation set

* n: number of negative examples covered by the rule in
the validation set

— Pruning method: delete any final sequence of conditions that
maximizes v

Direct Method: RIPPER

* Building a Rule Set:

— Use sequential covering algorithm

* Finds the best rule that covers the current set of
positive examples

* Eliminate both positive and negative examples covered
by the rule
— Each time a rule is added to the rule set, compute
the new description length
* stop adding new rules when the new description

length is d bits longer than the smallest description
length obtained so far

Direct Method: RIPPER

* Optimize the rule set:

— For each rule rin the rule set R
e Consider 2 alternative rules:

— Replacement rule (r*): grow new rule from scratch

— Revised rule(r’): add conjuncts to extend the rule r

 Compare the rule set for r against the rule set for r*
and r’

* Choose rule set that minimizes MDL principle

— Repeat rule generation and rule optimization for
the remaining positive examples

Indirect Methods

Rule Set

r1: (P=NO,Q=NO) ==> -
r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4. (P=Yes,R=Yes,Q=No) ==> -
r5: (P=Yes,R=Yes,Q=Yes) ==> +

Indirect Method: C4.5rules

e Extract rules from an unpruned decision tree

* Foreachrule, r: A—y,

— consider an alternative ruler’ : A” — y where A’
is obtained by removing one of the conjuncts in A

— Compare the pessimistic error rate for r against all
r's

— Prune if one of the r’ s has lower pessimistic error
rate

— Repeat until we can no longer improve
generalization error

Indirect Method: C4.5rules

* |nstead of ordering the rules, order subsets of
rules (class ordering)
— Each subset is a collection of rules with the same
rule consequent (class)
— Compute description length of each subset
e Description length = L(error) + g L(model)
e gisa parameter that takes into account the presence

of redundant attributes in a rule set
(default value = 0.5)

Examp

le

Name
human
python
salmon
whale
frog
komodo
bat
pigeon
cat
leopard shark
turtle
penguin
porcupine
eel
salamander
gila monster
platypus
owl
dolphin
eagle

Give Birth
yes
no
no
yes
no
no
yes
no
yes
yes
no
no
yes
no
no
no
no
no
yes
no

Lay Eggs
no
yes
yes
no
yes
yes
no
yes
no
no
yes
yes
no
yes
yes
yes
yes
yes
no
yes

Can Fly
no
no
no
no
no
no
yes
yes
no
no
no
no
no
no
no
no
no
yes
no
yes

Live in Water
no

no

yes

yes
sometimes
no

no

no

no

yes
sometimes
sometimes
no

yes
sometimes
no

no

no

yes

no

Have Legs
yes
no
no
no
yes
yes
yes
yes
yes
no
yes
yes
yes
no
yes
yes
yes
yes
no
yes

Class
mammals
reptiles
fishes
mammals
amphibians
reptiles
mammals
birds
mammals
fishes
reptiles
birds
mammals
fishes
amphibians
reptiles
mammals
birds
mammals
birds

C4.5 versus C4.5rules versus RIPPER

Yes

Mammals

C4.5rules:
(Give Birth=No, Can Fly=Yes) — Birds

No (Give Birth=No, Live in Water=Yes) — Fishes

Live In
Water?
Sometlmes

Amphibians

(Give Birth=Yes) — Mammals

(Give Birth=No, Can Fly=No, Live in Water=No) —
Reptiles

RIPPER:
() = Amphibians

(Live in Water=Yes) — Fishes

(Have Legs=No) — Reptiles

(Give Birth=No, Can Fly=No, Live In
Water=No)

—> Reptiles
(Can Fly=Yes,Give Birth=No) — Birds

Reptiles | () - Mammals

C4.5 versus C4.5rules versus RIPPER

C4.5 and C4.5rules:

PREDICTED CLASS
Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 2 0 0 0 0
CLASS Fishes 0 2 0 0 1
Reptiles 1 0 3 0 0
Birds 1 0 0 3 0
Mammals 0 0 1 0 6

RIPPER:

PREDICTED CLASS
Amphibians Fishes Reptiles Birds Mammals
ACTUAL Amphibians 0 0 0 0 2
CLASS Fishes 0 3 0 0 0
Reptiles 0 0 3 0 1
Birds 0 0 1 2 1
Mammals 0 2 1 0 4

Advantages of Rule-Based Classifiers

As highly expressive as decision trees

Easy to interpret

Easy to generate

Can classify new instances rapidly
Performance comparable to decision trees

