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ABSTRACT

This paper examines important factors for link prediction in
networks and provides a general, high-performance frame-
work for the prediction task. Link prediction in sparse net-
works presents a significant challenge due to the inherent
disproportion of links that can form to links that do form.
Previous research has typically approached this as an unsu-
pervised problem. While this is not the first work to explore
supervised learning, many factors significant in influencing
and guiding classification remain unexplored. In this pa-
per, we consider these factors by first motivating the use
of a supervised framework through a careful investigation of
issues such as network observational period, generality of ex-
isting methods, variance reduction, topological causes and
degrees of imbalance, and sampling approaches. We also
present an effective flow-based predicting algorithm, offer
formal bounds on imbalance in sparse network link predic-
tion, and employ an evaluation method appropriate for the
observed imbalance. Our careful consideration of the above
issues ultimately leads to a completely general framework
that outperforms unsupervised link prediction methods by
more than 30% AUC.
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1. INTRODUCTION

Link prediction is an important task in network science
that offers unique ways whereby the study of networks can
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benefit researchers and organizations in a variety of fields.
Security agencies can more precisely focus their efforts based
on probable relationships in malicious networks that have
heretofore gone unobserved [10]. In social networks, indi-
viduals can efficiently and effectively find companions, as-
sistants, or colleagues [9]. In medicine and biology, link pre-
diction can be used to find relationships and associations
that exist, but which might otherwise surface only after ar-
duous and expensive research and study on a huge selection
of agents. Finally, researchers can easily adapt link predic-
tion methods to identify links that are surprising given their
surrounding network, or which may not belong at all [15].
Put simply, any environment that naturally maps to a net-
work probably has an equally coherent mapping from link
prediction in that network back to an important question in
the environment.

This broad applicability demands a powerful yet general
framework, and we promote supervised learning. Unsuper-
vised methods, which receive the most attention in link pre-
diction literature, are fundamentally unable to cope with
dynamics, interdependencies, and other properties in net-
works. We recognize that this is not the first paper to apply
supervised learning to the link prediction problem, but there
are important differences versus past work. First, in spite of
the excellent intentions of past researchers, they have fallen
prey to unique pitfalls endemic to problems with highly im-
balanced class distributions. In [2], the holdout test set is
undersampled to balance, and the authors of [17] also con-
tribute only a sample of the negative instances to their test
set. As researchers familiar with high skew are aware, mod-
ifying the data distribution on which testing is performed
generates uninterpretable results. The distribution of the
resulting testing data no longer presents the same challenges
as the real-world distribution, and performance measures in
testing no longer reflect the real capabilities and limitations
of the model. Additionally, both of these works employ se-
mantic and contextual information that pertains almost ex-
clusively to the bibliographic domain. Finally, these works
do not consider the important impact of geodesic distance
and the intricacies of class imbalance specific to the task of
link prediction.

We demonstrate that decomposition by geodesic distance
has important impacts on predictor performance irrespective
of the choice of predictor. We also expand the library of un-
supervised measures with an intuitive flow-based metric that
is over 15% AUC more predictive than baseline methods in
certain networks. After illustrating the benefits of super-
vised learning, we cast link prediction as a problem in class



imbalance. The result of these considerations is a framework
that improves upon the best baseline unsupervised methods
by over 30% AUC in our test networks. Furthermore, the
framework is entirely general, operating over any class of
network whether it be weighted, unweighted, directed, or
undirected. It does not require any node attributes but is
capable of accepting them.

In Section 2 we describe the data sources and evalua-
tion measures. Section 3 explains standard unsupervised
approaches and defines a new metric, PropFlow. Section 4
lays out the rationale for supervised learning. This leads to
a discussion of class imbalance in Section 5. In Section 6
we describe our realization of the framework and Section 7
presents results. Finally, Section 8 provides recommenda-
tions and concludes.

2. DATA AND EVALUATION

In order to make a compelling, novel case for a supervised
framework, we offer a comprehensive explanation of the na-
ture of link prediction, primarily through an examination
of two real-world data sets. We also report the prediction
results relative to an appropriate metric for predicting in
imbalanced environments. It is therefore necessary to first
present the two data sources and the principal measure of
performance that we employ.

2.1 Network Data Sources

The first data source is a stream of 712 million cellular
phone calls from a major non-American cellular phone ser-
vice provider. We construct weighted, directed networks
from the calls by creating a node v; for each caller and a
weighted, directed link e;; from v; to v; if and only if v;
calls v;. Weights correspond to the number of calls over the
link. We shall henceforth refer to this network as phone.
For all experiments except those in section 4.1 we use the
first 5 weeks of data (5.5M nodes, 19.7M links) for extract-
ing features and the sixth week (4.4M nodes, 8.5M links) for
obtaining ground truth.

The second data source is a stream of 19,464 multi-agent
events representing condensed matter physics collaborations
from 1995 to 2000. We construct weighted, undirected net-
works from the collaborations by creating a node for each
author in the event and a weighted, undirected link connect-
ing each pair of authors. Weights correspond to the number
of collaborations two authors share. We shall henceforth re-
fer to this network as condmat. For all experiments involving
condmat, we use the years 1995 to 1999 (13.9K nodes, 80.6K
links) for extracting features and the year 2000 (8.5K nodes,
41.0K links) for obtaining ground truth.

The networks exhibit different quantitative characteris-
tics. Table 1 contains some summary network statistics
in order to provide context for the two networks. These
statistics result from the complete 6 weeks of data for phone
and the complete 1995-2000 network for condmat. The as-
sortativity coefficient measures the tendency to find highly
connected nodes that are connected to each other. The av-
erage clustering coefficient measures the tendency of nodes
in the network to be connected in dense groups. Strongly-
connected components (SCCs), or connected components in
the undirected network, are clusters of vertices in the net-
work in which every vertex in the cluster has a path to all
other vertices in the cluster. The size and diameter of such

Table 1: Network Characteristics
phone | condmat

Assortativity Coef. 0.293 0.177
Average Clustering Coef. 0.187 0.642
Mean Degree 3.88 6.42
Median Degree 3 4
Number of SCCs 1,023,044 652
Largest SCC 4,293,751 15,081
Largest SCC Diameter 25 19

components provides some insight into the broad topological
structure of the network.

2.2 Evaluation

Scalar measures often used in link prediction, such as pre-
cision on the top-N predictions and factors of improvement
in precision over random models, rely upon the application
of an arbitrary and often unjustified threshold. Most of our
evaluation relies instead upon receiver operating character-
istic (ROC) curves. These curves present achievable true
positive rates (T'P) with respect to all false positive rates
(FP) by varying the decision threshold on probability esti-
mations or scores. ROC curves provide information about
the operating range of classifiers. For example, classifier A
may outperform classifier B when we dictate F'P < 20% but
B may outperform A when we allow FP > 20%. The ex-
pected performance of a random classifier is the line y = z,
and curves below this line indicate an inverted predictor.
Finally, we can say that classifier A dominates classifier B
in ROC space if all points on the convex hull of A dominate
all points on the convex hull of B in the zy-plane, and this
is a condition known to correlate highly with superiority in
many other measures [13]. The area under the ROC curve
(AUQ) is a related scalar measure of the performance over
all thresholds. AUC has classically been used as a measure
of performance in imbalanced learning.

3. UNSUPERVISED METHODS

Most existing studies in link prediction consider baseline
unsupervised methods to assign scores to potential links.
The state-of-the-art in these methods is aggregated and com-
pared in [11], and in Section 3.1 we offer a brief explanation
of the particular methods that we study. Moreover, since
our goal is to derive a robust feature set, we introduce a
novel, effective method in Section 3.2.

3.1 Baseline Predictors

Most unsupervised methods either generate scores based
on node neighborhoods or path information. The common
neighbors predictor is the number of neighbors, or out-degree
neighbors in our directed network, that are shared by nodes
v; and vj. Jaccard’s coefficient simply divides the num-
ber of common neighbors by the number of total neighbors.
The Adamic/Adar measure [1] weights the importance of a
common neighbor vy by the rarity of relationships between
other nodes and v. Finally, the preferential attachment link
prediction score [3, 12] is the product of the degrees of v;
and v;. When we observed especially poor performance for
this predictor in phone, we tried using in-degree, out-degree,
and their sum but observed only minor differences. We re-
port our results based on out-degree performance. From
the path-based methods we employ the unweighted Katz



Algorithm 1 PropFlow Predictor

Require: network G = (V, E), node vs, max length [
Ensure: score Ssq for all n < I-degree neighbors vy of vs

1: insert vs into Found

2: push vs onto NewSearch

3: insert (vs,1) into S

4: for CurrentDegree < 0 tol do

5. OldSearch < NewSearch

6: empty NewSearch

7:  while OldSearch is not empty do
8: pop v; from OldSearch

9: find Nodelnput using v; in S

10: SumQutput < 0

11: for each v; in neighbors of v; do
12: add weight of e;; to SumOQOutput
13: end for

14: Flow <0

15: for each v; in neighbors of v; do
16: w;j — weight of e;;

17: Flow < Nodelnput X #’itm
18: insert or sum (v;, Flow) into S
19: if v; is not in Found then
20: insert v; into Found
21: push v; onto NewSearch
22: end if
23: end for
24:  end while
25: end for

measure [8], which had better, more stable performance in
the networks than the weighted variant. This method con-
tributes each path to a sum with an influence damped in
exponential proportion to its length, [, using the parameter
B. We select 8 = 0.005 and, for performance reasons, we
restrict our examination of the measure such that [ < 5.

3.2 ThePropFlow Method

We introduce a new unsupervised prediction method on
networks, PropFlow, which corresponds to the probability
that a restricted random walk starting at v; ends at v; in [
steps or fewer using link weights as transition probabilities.
The restrictions are that the walk terminates upon reaching
v; or upon revisiting any node including v;. The walk selects
links based on their weights. This produces a score s;; that
can serve as an estimation of the likelihood of new links.
PropFlow is somewhat similar to Rooted PageRank, but it is
a more localized measure of propagation, and is insensitive
to topological noise far from the source node. Unlike Rooted
PageRank, the computation of PropFlow does not require
walk restarts or convergence but simply employs a modified
breadth-first search restricted to height [. It is thus much
faster to compute. It may be used on weighted, unweighted,
directed, or undirected networks. We supply the detailed
procedure for weighted, directed networks in Algorithm 1.

In the phone network, PropFlow outperforms baseline un-
supervised methods by > 15% AUC on average. It out-
performs Rooted PageRank by more than 8.75% AUC. We
attribute this success to the nature of the mechanisms in
phone underlying the appearance of new links. Although it
may be used in any network, PropFlow has special intuitive
significance as a link predictor in networks where some re-

source such as information flows, propagates, or cascades. In
transportation networks, when a resource frequently travels
from one node through neighbors to another, there is of-
ten some cost for the intermediaries. When the expected
cost inherent in traveling through intermediaries overcomes
the cost of establishing a new link, one can expect forma-
tion of that particular link. In transmission networks, the
measure represents the link-weighted probability that a ran-
domly outward-propagated transmission sent by one node
will reach another. In condmat, there is no strong analogy
and PropFlow is not as effective. Later in the paper, we
will explore the utility of PropFlow both as an individual
predictor and as a feature in our supervised classification
framework.

4. A CASE FOR SUPERVISED LEARNING

While past studies on link prediction have focused on un-
supervised single metrics, some recent works have used a
supervised classification scheme, and rightly so. If one ac-
cepts the basic premise that ground truth, whether a link
forms or not, is always available from prior incarnations of
the network, there is no practical disadvantage to using a
supervised framework. Even training classifiers based on a
single unsupervised method has the potential to outperform
rankings generated by sorting the scores of the method if
there are multiple differentiating boundaries in the domain
of scores. Supervised algorithms are also able to capture
important interdependency relationships between topologi-
cal properties. While past studies simply acknowledged this
fact and trained classifiers, we probe more deeply into the
relevant issues so that we can fully understand how to frame
the prediction problem and why a supervised framework is
best for the task. We first address the how question in Sec-
tion 4.1 by examining how to best transform network data
into standard data sets. We then address the why question
in sections 4.2, 4.3, and throughout section 5. More specif-
ically, Section 4.2 explains that supervised approaches are
adaptive and may be more general whereas unsupervised
methods are invariant. Section 4.3 demonstrates that un-
supervised methods cannot be, or at least have not been,
combined into ensembles to reduce variance. Section 5 ex-
plains that unsupervised methods are inherently incapable
of combating extreme class imbalance, a natural character-
istic of link prediction in nearly any network.

4.1 Constructing Data Sets

Some networks may always be observable, such as WWW,
the Internet, and electricity grids. Others are observable
only through events that indicate the presence of links. In
the former, one need only select a moment at which to ob-
serve the structure directly. In the latter, one must col-
lect events to construct an approximation of the underlying
structure. Regardless, the network evolves through time to
present a longitudinal source of data. We see then that
link prediction, a domain in which unsupervised topologi-
cal measures receive much attention, is very often suitable
for supervised learning. The acquisition of ground truth for
constructing models does not mitigate the necessity of the
task; future forms of the static network will raise the same
questions that exist in the present.

In a typical supervised learning task, we are given a unified
set of data with each instance of the form (Z,y). To convert
networks such as phone or condmat into this format, we have
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Figure 1: Performance in the second-degree neigh-
borhood as a function of 7.

to select two values 7, and 7,. These values correspond to
the lengths of two adjacent periods over which we want to
record events to construct networks. From the first network,
Gy = (Va, Ez), constructed from to to tot+r,, we extract
topological measures, and potentially node attributes, that
serve as features for each pair of nodes (vs;,v;). From the
second network, G, = (V, Ey), constructed from t,,4+1 to
trytr,, We examine (v;,v;) to discover whether e;; exists
and determine the class label. This yields a data set in the
standard (%, y) format with |V;|? — |E,| instances.

The two parameters 7, and 7, have important but pre-
dictable influences on the success of models. We can expect
that increasing 7, will increase the quality of topological
measures as the network reaches saturation. This is the
point at which 7, is large enough that the observed events
form a topology that closely reflects the underlying static
network. As 7, approaches this point, the topological mea-
sures converge to their actual unobservable static network
values, thus allowing improved individual predictive capac-
ity. We can expect that increasing 7, will increase the num-
ber of positives. We investigate 7, on the phone network in
Figure 1.

Increasing 7, has the expected result. The strength of the
predictors increases greatly from 7, = 2 weeks to 7, = 5
weeks and again from 7, = 5 weeks to 7, = 8 weeks. Al-
though measures of network saturation and convergence are
outside the scope of this paper, we can remark that they are
highly correlated with performance. Since we observe an in-
crease in the predictive power of unsupervised methods, we
can expect increases in supervised classification performance
too. In effect, the features more closely reflect actual rela-
tionships underlying observable events, so models are more
closely related to reality.

Although this suggests that the results in Section 7 could
be even higher with 7, = 8 weeks, we choose to present
the rest of the paper based on 7, = 5 weeks and 7, = 1
week. This observational period corresponds to a network
that is only partially approaching saturation and might more
realistically represent the data available for training in real-
world environments.

4.2 Generality

While classifiers can generalize well to many environments
in the sense that they can adjust models depending on poste-
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Figure 2: Preferential attachment performance by
scoring region.

rior information, unsupervised methods are domain-specific.
The figures in [11] show that predictors that serve well in
one network do not necessarily serve well in all networks;
our observations concur. It is clear throughout our results
that the performance of the unsupervised methods is un-
stable not only from one network to the other, but from
one graph-distance to another. The preferential attachment
predictor is a particularly clear example in Figure 2. The
figure shows the percentage of a given score that is positive.
Intuitively, the model serves as a good predictor when low
scores produce low percentages and high scores produce high
percentages and an inverted predictor when the opposite is
true.

In the phone network, we see that the predictions are in-
verted, with a higher percentage of positives falling into low
scores than high scores. In the condmat network, the predic-
tions are much better, with the highest scores corresponding
to much higher incidences of links. Finally, for both net-
works, we observe a similar trend with increasing geodesic
distance n. The greater the distance, the better preferential
attachment models the appearance of links. That is, we see
lower percentages for lower scores and higher percentages
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for higher scores as we move from n = 2 to n = 4. This sup-
ports the intuition that preferential attachment is better as
a global indicator where underlying local mechanisms such
as neighbor recommendations are weaker.

4.3 Variance Reduction and Sampling Issues

Yet another benefit of supervised learning is that classi-
fication algorithms, especially unstable algorithms like de-
cision trees, can benefit from reduced variance by placing
them in an ensemble framework. Ensembles consist of many
models that have been trained on slightly perturbed varia-
tions of the data. It is difficult or impossible to accomplish
the same goal with unsupervised methods common in link
prediction because the score is invariant for a given poten-
tial link. Furthermore, it is likely that network analogs to
common ensemble sampling techniques are fundamentally
flawed as a rough corollary of work in [16], where samples
of networks with ill-behaving distributions produce new net-
works with different properties. Nevertheless, we wanted to
explore the potential for one method of ensemble construc-
tion using unsupervised methods. To achieve the values in
Figure 3, we construct 10 new networks, randomly selecting
p percent of the edges in the original network for each. Then,
we compute a common neighbors score for the pair (v;, v;)
in each network and combine the scores using a summary
statistic.

The figure shows that the attempt at constructing an en-
semble out of an unsupervised method fails. The best AUC
appears at 100%, where the network is unsampled and there
is no ensemble, which suggests that sampling the network to
construct the ensemble does nothing but remove important
information, a result we find unsurprising. What the figure
does not show is that the p = 100 ROC curve dominates
all ROC curves for p < 100, including mean and max, and
that transformations of the ROC curves into precision-recall
space show p = 100 greatly outperforms even p = 95. We
performed these experiments only for the common neighbors

classifier, but expect the same results for other unsupervised
methods.

Supervised classification, on the other hand, offers many
strong options for reducing variance such as bagging [4] and
random forests for decision trees [5], the latter of which also
increases classification efficiency. While a single classifier
that incorporates several of the unsupervised methods can
greatly improve classification versus those methods, variance
reduction techniques can further improve it.

5. GRAPH DISTANCE AND IMBALANCE

A significant novelty of link prediction as a supervised
learning problem is its extreme imbalance, which reaches
past the most skewed distributions studied by the imbal-
ance community. While unsupervised methods cannot com-
bat this imbalance because they are agnostic to class distri-
butions by definition, supervised learning schemes are able
to balance data and focus on class boundaries. In this sec-
tion, we will study some of the properties of that imbalance,
especially as it relates to graph distance.

5.1 Sparse Networks

We proceed by constructing a formal proof of the lower
bound on the class imbalance ratio for link prediction in
sparse networks. The proof operates on two reasonable, al-
most ubiquitously satisfied assumptions. First, the network
maintains the property of sparseness throughout the period
of interest. Second, the network growth is limited such that
the number of nodes may only double during the period of
interest, although the theorem holds for any factor of growth
g such that g < |V].

Definition 1. Let a network G = (V, E) be described as
sparse if it maintains the property |E| = k|V/| for some con-
stant k < |V].

THEOREM 1. The class imbalance ratio for link prediction
A4}

in a sparse network G is () ( T

) when at most |V| nodes

may join the network.

PROOF. The number of possible links in G is |V|?. Then
the number of missing links, |[E€|, is |[V|*> — k|V| € ©(|V]?).
Let |V'| nodes and |E’| links join the network. Since |V| +
[V'| < 2|V| € ©(V]), |E| + |E'| € ©(]V]), which requires
that |E’| € O(|V]). The number of positives is |E’|, and
there are ‘(EUE’)C’ € O(|V|?) negatives. This gives us

o(|v|?

) i V]
oavDp equivalent to 2 (T

), as the class ratio. [J

Thus the imbalance issue in the general link imbalance
problem becomes clear. No matter how many links we hope
to anticipate, T'P, we must accept a baseline random model
that produces F'P such that FP « TP x |[V|. Even a model
thousands of times better than random performs poorly.
The severity of the problem is exacerbated by the fact that
positives often represent occurrences of greater interest.

5.2 Graph Distance and Neighborhoods

In link prediction, graph distance plays a primary role in
determining the imbalance ratio. We define the n-degree
neighborhood of a node v; as the set of nodes exactly n
hops away from v;. As n increases, the number of potential
links will increase in proportion to the superlinear increase
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Figure 4: Neighborhood imbalance properties.

in the number of neighbors. Simultaneously, it is reasonable
to expect that the new links will tend to form between nodes
that are close, such as in phone where local influences such as
recommendations and common neighbors pertain. Figure 4
illustrates the imbalance behavior of the phone and condmat
networks. It also demonstrates the distribution of distances
between pairs of nodes for all distances where the under-
lying computation is feasible. It is important to note here
that phone has a diameter in its largest strongly connected
component of 25 while condmat has a diameter of only 19 in
its largest connected component. Further, the n < 6-degree
neighborhood of any given node in phone still includes only
a moderate fraction of nodes in the network. In the much
smaller condmat network, the n < 6-degree neighborhood of
any given node often approaches the periphery and includes
almost every node in the network.

The simultaneous severe increase in unformed potential
links and severe decrease in links that actually form causes
even more dramatic increases in imbalance ratios. phone
imbalance goes from 131:1 at n = 2 to 32,880:1 at n =
4 and 606,926:1 at n = 6. condmat imbalance goes from
179:1 at n = 2 to 6,247:1 at n = 4. Fortunately, there is
often little reason to believe that the benefit of successfully
predicting links to nodes at high n is greater than the benefit
of predicting them at low n.

Given that imbalance increases so sharply between neigh-
borhoods, and local mechanisms quickly give way to global
mechanisms at higher values of n, we suggest that each
neighborhood should be treated as a separate problem in
supervised learning. This also allows us to avoid the V:1
imbalance of the general problem. Additionally, in the case
of the entire class of neighbor-based models, there is null
output for n > 3 in undirected networks because there is
no sense in which such nodes can have common neighbors.
Many unsupervised methods have implicit or explicit adjust-
ments for graph distance, but the fundamental distinction of
neighborhood comes for free. Supervised models may bene-
fit from a decrease in noise and, for networks in which the
distance spanned by the predicted link is inconsequential,
the consideration of low n saves computational time.

6. CLASSIFICATION

With the nature of the problem and the advantages of
supervised learning carefully considered, we now present
the details of the high-performance link prediction (HPLP)
framework. In most cases, we reserved two-thirds of the la-
beled data for training the model and the remaining third
for testing, but for the presentation of significance results,
we employed 10-fold cross-validation with care to use un-
modified folds for testing. At no time do we change the class
distribution in any testing data. Due to computational com-
plexity, we restricted our consideration of classifiers to the
WEKA [18] C4.5 [14] equivalent, J48 (parameters -A -U), naive
Bayes (default parameters), and WEKA bagging (10 bags, de-
fault parameters) with random forests (10 trees, default pa-
rameters). The last is easy to parallelize.

6.1 General Feature Extraction

Any network, no matter its type or source, necessarily
supports basic topological measures such as v; and v; in-
degree and out-degree, v; and v; in-volume and out-volume,
or their undirected equivalents in the case of condmat. We
also employ the baseline unsupervised models from Section
3, including PropFlow, and path-oriented measures such as
the number of shortest paths from v; to v; and the maximum
flow that can travel from v; to v; within 5 steps. Though
we use only these features for generality, we could use any
other available features, including measures of reciprocity,
or node attributes such as age and gender.

To illustrate that we are able not only to achieve perfor-
mance that vastly exceeds baseline methods, but that we
do so without using them as features, we include both a re-
stricted feature set that does not use the existing unsuper-
vised methods (HPLP) and the full feature set (HPLP+).
Table 2 contains details of the features.

6.2 Ensemble of Classifiers

We capitalize on the ability of supervised frameworks to
reduce variance, as described in Section 4.3, by using ensem-
bles of classifiers. We use two different ensemble methods:
bagging and random forests. Random forests is an excel-



Table 2: Feature Listing
Name Parameters HPLP | HPLP+
In-Degree(i) -
In-Volume(7) -
In-Degree(5) -
In-Volume(j) -
Out-Degree(7)
Out-Volume(z)
Out-Degree(j) -
Out-Volume(j) -
Common Nbrs(4,7)
Max. Flow(%,5)
Shortest Paths(4,7)
PropFlow(i,j)
Adamic/Adar(i,5)
Jaccard’s Coef(4,7)
Katz(i,5)
Pref Attach(s,5)

N N NN

NNN
L [
SRS RS

l=5,5=0.005

N N N N N N N NN

lent method for these data sets for two reasons. First, the
data sets are composed of a combination of strong features
and weak features. While the weak features are occasion-
ally helpful, random forests is an excellent method to pre-
vent overfitting them. Second, the decreased training time
for each single tree counters the increased training time to
build the forest, making it an especially efficient method of
variance reduction for these large data sets.

In both data sets, after undersampling to balance, we
found on average a 4.04% AUC improvement moving from
a single tree to 10 bagged trees and an additional 3.91% im-
provement moving from 10 bagged trees to 10 bagged ran-
dom forests. The total average improvement of 8.11% jus-
tifies the use of these variance reduction methods, and the
sheer size of the testing sets lends significance to even frac-
tional percentage improvements. We found that neither 100
bagged trees without random forests nor 100 random for-
est trees without bagging offered the same improvements.
Finally, we note that the improvements we observed after
the application of these techniques are impressive, but still
suboptimal. We constructed our ensembles from the same
selection of undersampled negative class instances. With a
minimal penalty in computational time, each member of the
ensemble could make use of a random selection of the entire
set of negative class instances.

6.3 Overcoming Imbalance

Aside from reducing variance, we considered different ap-
proaches to overcome the imbalance described in Section 5.
In doing so, we had to carefully consider the enormity of
the data sets, especially for large values of n. As Figure 4
shows, in phone n = 2 produces 81.4 million instances and
n = 4 produces 2.2 billion instances. Even in the smaller
condmat network, n = 2 produces 431.6 thousand instances
and n = 4 produces 8.1 million instances.

One of the best oversampling strategies, SMOTE [6], is
O(p® - |Z), the product of the number of positive class in-
stances p and the length of the feature vector. While this
may work for condmat where p is on the order of thousands,
it certainly will not work for phone. We also theorize that
phone, with p in the order of tens or hundreds of thousands,
does not suffer as much from lack of definition in the positive
class as from a strong classifier bias toward f(z) = 0 from
prior information. Furthermore, oversampling approaches
only increase data set size and training time. We considered
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Figure 5: Performance reaction of a single C4.5 de-
cision tree to different undersampling levels. The
x-axis is in terms of the percentage of all training
examples that are positive.

training skew-insensitive decision trees based on Hellinger
distance [7]. Such trees are best when trained on the origi-
nal training set distribution, however, and performed poorly
with undersampled data. Without undersampling, the train-
ing set sizes for the data often render training with these
trees infeasible. Undersampling, on the other hand, can help
to mitigate the problem of class imbalance while also reduc-
ing the size of the training set.

In section 5.2 we argue for treating each neighborhood as
a separate problem. This also allows for skew-combating
methods that are appropriate to the particular neighbor-
hood. If n > 2 is combined into a single data set and sub-
sequently uniformly undersampled, negative representatives
of n = 2 will be underrepresented causing a distortion of the
real n = 2 class boundary.

The class ratio to which the data set is undersampled
serves as a significant parameter to our framework. In Fig-
ure 5 we explore a wide range of possible sampling param-
eters using a single C4.5 decision tree evaluated according
to AUC. The performance of the phone data set is rela-
tively stable, but it exhibits an interesting trend wherein
AUC drops slightly when the class distribution is balanced.
condmat achieves AUC values that are higher with increasing
negative class representation through the ratios we tested.
Despite these results, in Section 7 we undersample the train-
ing sets to balance to present a consistent view of perfor-
mance.

We would like to mention that the beneficial relationship
between link prediction researchers and class imbalance re-
searchers is mutual. Class imbalance research contributes
many options to the link prediction community. Simultane-
ously, link prediction offers the potential for a wide variety of
data sets that match or surpass the imbalance ratios of the
most demanding publicly available data. Any large network
can become an authentic source for data with selectable fea-
tures, selectable imbalance ratios depending on the chosen
value of n, and a large pool of positive instances from which
to draw the desired positive class cardinality.
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Figure 6: The ROC curves for phone (top) and condmat (bottom).

7. DETAILED ANALYSIS

To achieve the following results, we trained bagged ran-
dom forests, which exhibited universally superior perfor-
mance. For uniformity of reporting, all training sets are
undersampled to balance rather than to a level optimized for
each network and n. Because AUC alone can sometimes be
misleading, we also include ROC curves. Figure 6 contains
curves describing the performance of unsupervised methods
and the supervised framework.

The phone and condmat curves illustrate that the mech-
anism by which links arise is indeed different both across
networks and geodesic distances. In fact, this leads to an
interesting broad observation about mechanisms of link for-
mation. In the condmat network, individuals have a global
view of the topology through a variety of means. In essence,
researchers know of other eminent researchers in the field
however remote they may be in terms of geodesic distance.
In the phone network, there is little reason to suspect that
individuals have much knowledge of other individuals at re-
mote locations in the network. The performance of the pref-
erential attachment method supports this theory in the two
networks; it is much stronger for condmat than for phone.
Additionally, it shows performance that increases with n in
both networks. The more distance potential links span in
a network, the weaker local influences such as neighbor rec-
ommendations or path-based considerations become. The
discriminative power of methods based on these principles
generally drops accordingly. On the other hand, global influ-
ences such as degree have the same interpretation at any dis-
tance in the network. As the local influences lose their mean-
ing with increasing n, the preferential attachment method

becomes an increasingly pure estimation of link formation
biases.

We can clearly see the deterioration in predictive capac-
ity of the local methods. Neighbor-based methods perform
worse for n = 3 than for n = 2 phone, and they perform
much worse for n = 4 than for n = 3. Neighbor-based
methods have no meaning for n > 3 in directed networks
such as condmat; there is no sense in which two unconnected
individuals greater than two hops away from each other can
share a neighbor. The PropFlow predictor degrades more
gracefully than neighbor-based methods in phone but suffers
mediocre performance on condmat. Despite much greater
curve areas in phone, PropFlow does not dominate other
measures. Instead, methods based on common neighbors
achieve slightly higher TP rates at very low F'P rates, but
PropFlow rapidly surpasses them. Importantly, the HPLP
dominates all other methods in ROC space in every case
except phone n = 2, where PropFlow actually crosses at
FP = 0.99. On a more general note, especially in phone
where imbalance ratios grow higher, the increasing difficulty
of more distant neighborhoods is exhibited in the form of
ROC curves that converge toward TP = FP.

We now move to the discussion of AUC values and Fig-
ure 7. HPLP achieves performance levels as much as 30%
higher than the best unsupervised methods. The difference
in performance between HPLP and HPLP+ averages < 1%
AUC. Though it does not appear in the figures, in phone
we also created a data set with all unsupervised methods
except PropFlow. We found that PropFlow alone achieves
higher performance than using all other unsupervised meth-
ods put together when using the same basic supporting fea-
tures, such as node degree. To substantiate the hypothe-
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Figure 7: The AUC values for phone and condmat.

sis that there are useful dependencies between features, we
compared naive Bayes to a single C4.5 tree and confirmed
that the latter wins by > 2.3%. Nonetheless, even using
a single, fast naive Bayes classifier, HPLP always greatly
outperforms the strongest of the unsupervised methods. To
provide statistical significance to this statement, we used
two-tailed paired t-tests. The paired samples come from 10-
fold cross validation AUC scores. For all values of n, HPLP
outperforms unsupervised methods at over 99% confidence
and HPLP+ outperforms them at over 99.99% confidence.

8. CONCLUSION

The general framework we propose in this paper achieves
major improvements over existing methods. Although it
outperforms such methods by > 30% in terms of AUC, it
does not require any domain-specific node attributes to do
so. It can be applied in any domain exactly as described or
it can accept any number of domain-specific features. It is
also highly scalable; feature computation for a single path-
based method requires more time than the entire classifica-
tion framework. The feature computation itself is embar-
rassingly parallel.

In addition to the results, the supporting study allows for
some recommendations. Unsurprisingly, for networks where
topological convergence and saturation may be a concern,
the training observation period, 7, should be as long as pos-
sible. The parameter 7, for the static network from which
labels are gathered should match the size of the real-world
prediction window so that testing and real-world prior dis-
tributions are as similar as possible. In link prediction on
networks such as the Internet or electricity grids, these con-
cerns are moot since snapshots contain the entire network
structure.

Optimal class ratios for undersampling are specific to the
problem at hand, but the results we obtained for both net-
works indicate that undersampling to balance may not be
ideal in the link prediction domain. Those employing this
classification framework should be aware of this fact and
should investigate other ratios as resources permit. For small
networks where computational resources are not problem-

atic, we advise the use of skew-insensitive classifiers such
as Hellinger trees in an ensemble framework. We encour-
age the community to consider the link prediction task as
a separate problem for each desired neighborhood in do-
mains where local mechanisms are likely to pertain. This
not only decreases computational time by considering those
links most likely to rank highly regardless but has the po-
tential to sensitize supervised classification to the specific
mechanisms and boundaries present for predictions within
the target graph distances.

In general, the application of unsupervised methods, at
least without due study and consideration, is highly subop-
timal. No such method, no matter how high its performance
in some subset of our data, provides acceptable performance
for the entire range of problems. Where there is some limita-
tion on supervised learning due to the unavailability of labels
for training, we hope that the included study of unsuper-
vised performance measures proves helpful in the selection
of an appropriate option. For networks where one expects
local mechanisms to dominate, especially local mechanisms
related to flow or propagation, we highly encourage the use
of the unsupervised method, PropFlow, proposed in this pa-
per.

We have published all scripts and source code for pre-
diction and evaluation at http://www.nd.edu/ rlichten/
linkpred along with the condmat data set. We regret that
we are unable to make the phone data set available due to
non-disclosure agreements.
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