High Quality True-Positive Prediction for Fiscal Fraud Detection

S. Basta, F. Fassetti, F. Giannotti, M. Guarascio. G. Manco G. Papi, D. Pedreschi, S. Pisani, L. Spinsanti

Outline

Scenario and Motivation

DIVA Overview

- Solution Proposed
- Scoring Criteria
- Multi-purpose objectives

Sniper Core

- Generating Rule
- Merging Rule
- Evaluation

Conclusion

The Context: VAT frauds in Italy

- DIVA A joint initiative involving academic researchers, experts on fiscal laws, IT Professionals
- Main objective:
- To tackle the VAT Fraud
 Detection issue raised by the credit mechanism via the adoption of data mining techniques.

Scenario

Several challenges, both from a scientific and a practical point of view:

- Sample selection bias
 - Audited subjects are not randomly chosen
 - Highly skewed data
 - $\hfill\square$ Positive subjects larger than non-defrauders in audit data
- Imprecise settings

D

- Inaccurate, incomplete, and irrelevant data attributes
- Only 0.004% of population audited

Motivation

D

- Classical approaches to the problem of fraud detection are not very effective:
 - Rule-Based classifiers are preferable for interpretability, but
 - Poor predictive accuracy in highly imprecise learning settings
 - Class-imbalance problem
 - Cost-sensitive classification and meta-learning approaches suffer from low interpretability

The proposal: Sniper as a meta-learner

- The core of the Sniper technique is the extraction of a binary rule-based classifier able to identify X topmost defrauders
 - Based on the combined use of local models and the definition of multi-objective functions.

DIVA Overview

- The data made available by the agency consisted of about 34 million VAT declarations spread over 5 years.
- Data contain general 'demographic' information, plus specific information about VAT declarations.
- As a result of a data understanding process conducted jointly with domain experts, we chose a total of 135 such features and 45,442 audited subjects.

Scoring individuals

- A multi-purpose modeling strategy, aiming at characterizing the exceptionalness and interestingness of an individual
 - PROFITABILITY: The amount of VAT fraud
 - The higher, the better
 - ► EQUITY
 - Low amounts do not necessarily correspond to meaningless fraudsters. The amount of fraud is relevant related to their business volume (1.000eur on 10.000eur is better than 1.000eur on 100.000eur)

FFICIENCY

 Scoring and detection should be sensitive to total/partial frauds (underclaring 200eur declaring 2.000eur is less dignificant than underclaring 200eur declaring 200eur)

Issues

- Need to face a trade-off among profitability, equity and efficiency
 - Solution: a combination of baseline functions
 - > AND, OR, FUZZY_AND, FUZZY_OR

The Fuzzy combination

Two different objective functions, four main classes

Score function results

Generating rules

- Sniper builds a hybrid classifier, resulting from the combination of the whole set of classifiers trained over the training set
- Advantages:
 - Separate model construction from model selection
 - Model construction
 - Several different strategies are attempted to build models focused on local peculiarities of the top class
 - Model selection
 - Several local fragments can be selected or discarded if the global accuracy improves

Merging Rules

• A candidate ruleset *R* is obtained by merging all the rules returned by *h* classifiers modeling the top class

$$\mathcal{R} = \left\{ r \in \bigcup_{i \in [1,h]} R_i \mid r.class = top \right\}$$

- R still represents a classifier, and class top is assigned to a non-labeled object o if and only if there exists at least a rule in R that activates it.
- The model is distilled from R by selecting accurate rules, and removing inaccurate rules from R in a principled (confidence-based) way

Building Ruleset

Why we cannot just collect all the "good" rules from our classifiers?

 $conf_{min} = 0.8$

Building Ruleset

Why we cannot just collect all the "good" rules from our classifiers?

 $conf_{min} = 0.8$

Building Ruleset

Why we cannot just collect all the "good" rules from our classifiers?

 $conf_{min} = 0.8$

Merging Rules

A set of non-exclusive positive rules \mathcal{R} , Input: a confidence threshold γ_{\min} , an integer X**Output:** A model \mathcal{M} Method: 1: $\mathcal{M} := \emptyset$ 2: $\mathcal{R} := \left\{ r \in \mathcal{R} \mid \gamma(r) \ge \gamma_{\min} \right\}$ while $\hat{\mathcal{R}} \neq \emptyset$ do *l*/first stop condition 3: 4: $r^* := \arg \max_{r \in \mathcal{R}} \{\gamma(r)\}$ //select the best rule 5: $\mathcal{M} := \mathcal{M} \cup \{r^*\}$ //update the current model 6: **if** $\mathcal{M}(D) \geq X$ **then** *//second stop condition* 7: return \mathcal{M} \mathcal{R} is updated by removing r^* and by replacing each rule r 8. other than r^* with the rule r' if $\gamma(r') = \gamma_{\min}$, otherwise r is just removed from \mathcal{R} return \mathcal{M} 9:

- Assume $\gamma_{\min} = 60\%$
- Initially, $R = \{R1, R2, R3, R4, R5\}, M = \{\}$

► *R* = {*R*2,*R*3,*R*4,*R*5}, *M*={*R*1}

► *R* = {*R*2,*R*4,*R*5}, *M*={*R*1,*R*3}

$R = \{R4, R5\}, M = \{R1, R3, R2\}$

Evaluation

We compared the results obtained from a single classifier against those obtained by Sniper in terms of confidence and support of the rules generated

classifier	supp (%)	<i>conf</i> (%)	dataset subjects
C_1	1.01	84.90	1,910
C_2	1.10	82.97	2,240
C_3	3.11	77.28	4,955
C_4	3.44	77.12	5,675
C_5^*	6.36	62.26	10,056
C_6^*	6.81	60.80	8,875
C_7^*	7.07	59.72	9,059
C_{8}^{*}	5.22	52.64	9,950
C_9^*	4.56	49.18	12,584
S	8.78	80.41	9,840

(Partial) Results

I 475 subjects identified

- > 276 subjects audited (feb-2010)
 - ▶ 147 in class 3 (53,26%)

Mean Values:

- Proficiency: 77.514,14
- Equity: 32,5738
- Efficiency: 0,4252