
Graph Mining

Mirco Nanni
Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://kdd.isti.cnr.it/

Slides from “Introduction to Data Mining” (Tan, Steinbach, Kumar)

© Tan,Steinbach, Kumar Introduction to Data Mining 1

http://kdd.isti.cnr.it/

© Tan,Steinbach, Kumar Introduction to Data Mining 2

Frequent Subgraph Mining

 Extend frequent itemset mining to finding
frequent subgraphs

 Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Databases

Homepage

Research

Artificial
Intelligence

Data Mining

© Tan,Steinbach, Kumar Introduction to Data Mining 3

Graph Definitions

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

a

c

b

(b) Subgraph

p

s

t

p

a

a

c

b

(c) Induced Subgraph

p

r
s

t
r

p

© Tan,Steinbach, Kumar Introduction to Data Mining 4

Examples of sub-graph containment

© Tan,Steinbach, Kumar Introduction to Data Mining 5

Representing Graphs as Transactions

a

b

e

c

p

q

r
p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …

© Tan,Steinbach, Kumar Introduction to Data Mining 6

Challenges

 Node may contain duplicate labels
 Support

– How to define it?

 Assumptions
– Frequent subgraphs must be connected

– Edges are undirected e

c

a

p q

r

b

p

d

r

© Tan,Steinbach, Kumar Introduction to Data Mining 7

Mining frequent sub-graphs

 Support:
– number of graphs that contain a particular

subgraph

 Apriori principle still holds

 Apriori-like approach: Use frequent k-subgraphs
to generate frequent (k+1) subgraphs

– Vertex growing: k is the number of vertices

– Edge growing: k is the number of edges

© Tan,Steinbach, Kumar Introduction to Data Mining 8

Vertex Growing

 Follow same strategy as Apriori:
 Find pairs of frequent, overlapping k-graphs
 Merge them to form a (k+1)-graph

© Tan,Steinbach, Kumar Introduction to Data Mining 9

Edge Growing

© Tan,Steinbach, Kumar Introduction to Data Mining 10

Apriori-like Algorithm

 Find frequent 1-subgraphs
 Repeat

– Candidate generation
 Use frequent (k-1)-subgraphs to generate candidate k-subgraph

– Candidate pruning
 Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

– Support counting
 Count the support of each remaining candidate

– Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

© Tan,Steinbach, Kumar Introduction to Data Mining 11

Example: Dataset

© Tan,Steinbach, Kumar Introduction to Data Mining 12

Example

© Tan,Steinbach, Kumar Introduction to Data Mining 13

Candidate Generation

 In Apriori:
– Merging two frequent k-itemsets will produce a

candidate (k+1)-itemset

 In frequent subgraph mining (vertex/edge
growing)

– Merging two frequent k-subgraphs may produce more
than one candidate (k+1)-subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining 14

Multiplicity of Candidates (Vertex Growing)

© Tan,Steinbach, Kumar Introduction to Data Mining 15

Multiplicity of Candidates (Edge growing)

 Case 1: identical vertex labels

a

b
e

a

a

b
e

a

+

a

b
e

a

e
a

b
e

a

© Tan,Steinbach, Kumar Introduction to Data Mining 16

Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common
 between the joint graphs

© Tan,Steinbach, Kumar Introduction to Data Mining 17

Multiplicity of Candidates (Edge growing)

 Case 3: Core multiplicity

a

ab

+

a

a

a ab

a ab

a

a

ab

a a

ab

ab

a ab

a a

© Tan,Steinbach, Kumar Introduction to Data Mining 18

Adjacency Matrix Representation

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

• The same graph can be represented in many ways

© Tan,Steinbach, Kumar Introduction to Data Mining 19

Graph Isomorphism

 A graph is isomorphic if it is topologically
equivalent to another graph

© Tan,Steinbach, Kumar Introduction to Data Mining 20

Graph Isomorphism

 Test for graph isomorphism is needed:
– During candidate generation step, to determine

whether a candidate has been generated

– During candidate pruning step, to check whether its
(k-1)-subgraphs are frequent

– During candidate counting, to check whether a
candidate is contained within another graph

© Tan,Steinbach, Kumar Introduction to Data Mining 21

Graph Isomorphism

 Use canonical labeling to handle isomorphism
– Map each graph into an ordered string representation

(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

– Example:
 Lexicographically largest adjacency matrix

[
0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

]
String: 0010001111010110

[
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

]
Canonical: 0111101011001000

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

