Graph Mining

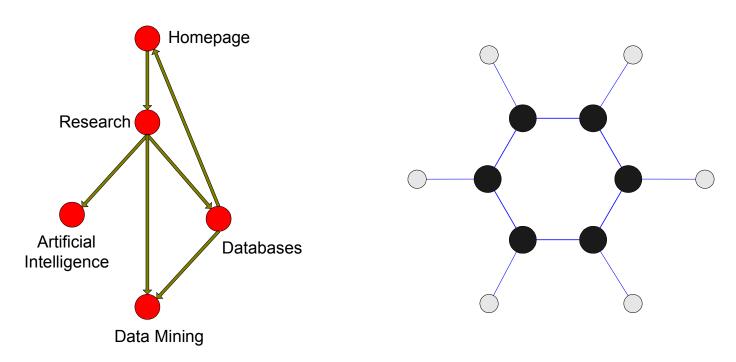
Mirco Nanni Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://kdd.isti.cnr.it/

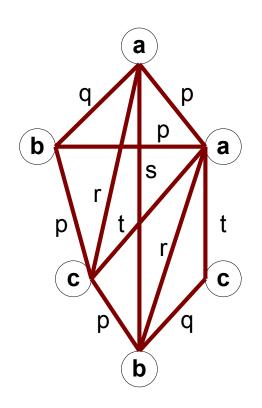
Slides from "Introduction to Data Mining" (Tan, Steinbach, Kumar)

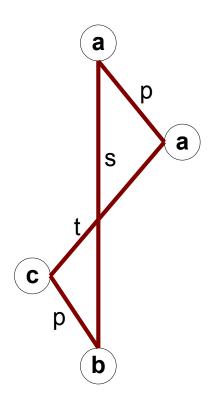
Frequent Subgraph Mining

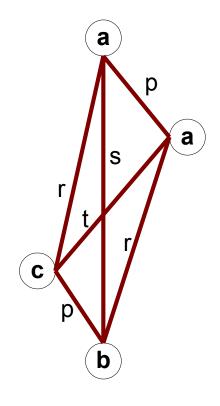
- Extend frequent itemset mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc



Graph Definitions





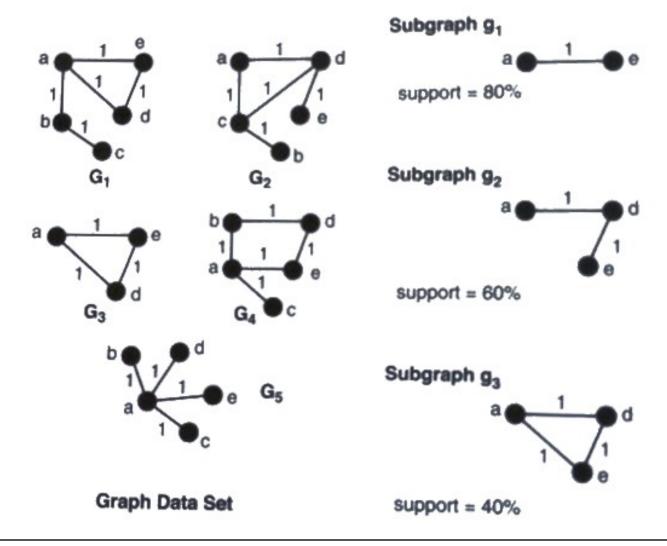


(a) Labeled Graph

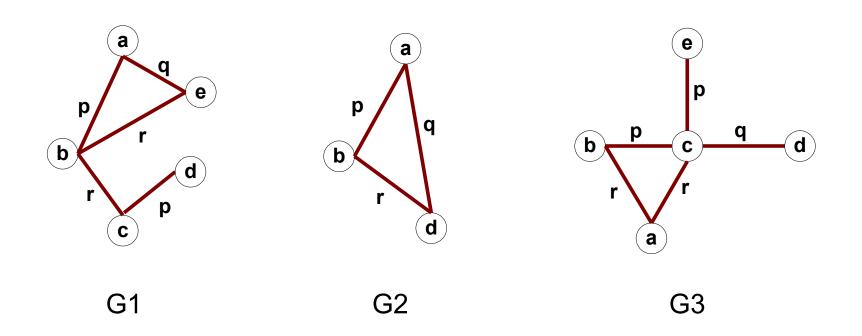
(b) Subgraph

(c) Induced Subgraph

Examples of sub-graph containment



Representing Graphs as Transactions



	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

Challenges

- Node may contain duplicate labels
- Support
 - How to define it?
- Assumptions
 - Frequent subgraphs must be connected
 - Edges are undirected e p
 b p c q d
 r r

Mining frequent sub-graphs

- Support:
 - number of graphs that contain a particular subgraph

Apriori principle still holds

- Apriori-like approach: Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - Vertex growing: k is the number of vertices
 - Edge growing: k is the number of edges

Vertex Growing

- Follow same strategy as Apriori:
 - Find pairs of frequent, overlapping k-graphs
 - Merge them to form a (k+1)-graph

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - ◆ Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

Example

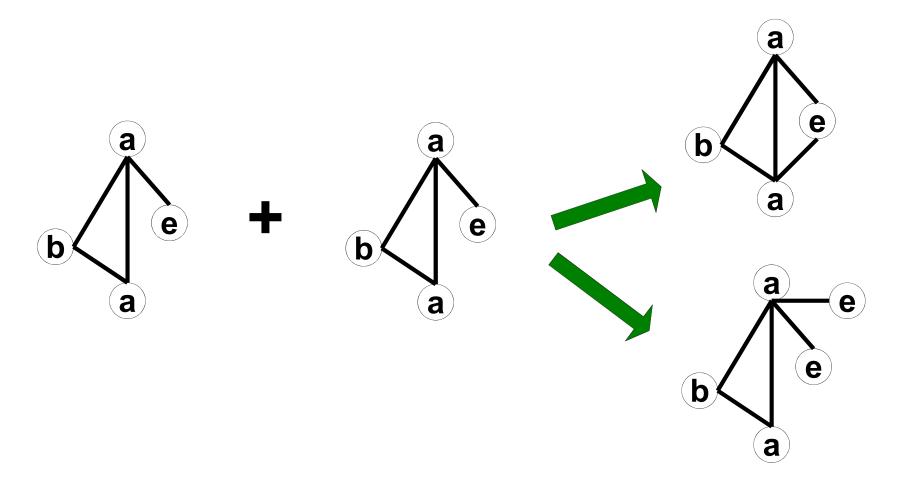
Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

Case 1: identical vertex labels



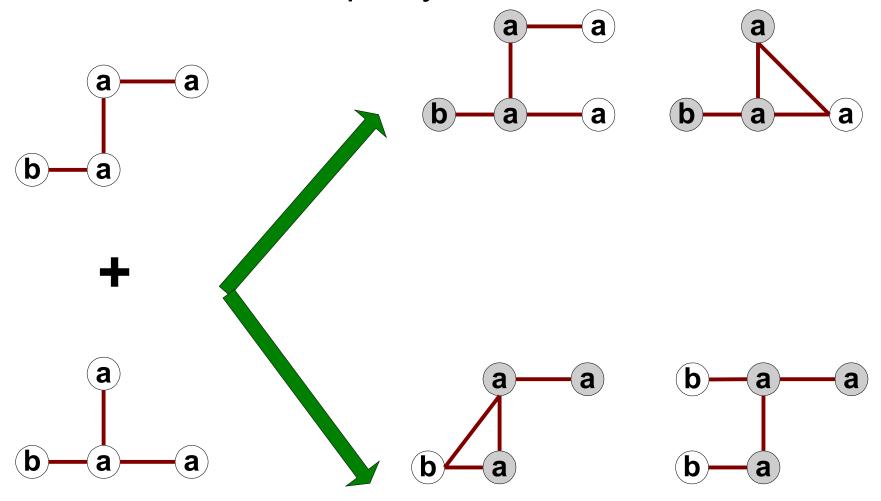
Multiplicity of Candidates (Edge growing)

Case 2: Core contains identical labels

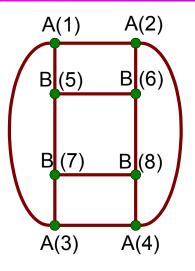
Core: The (k-1) subgraph that is common between the joint graphs

Multiplicity of Candidates (Edge growing)

Case 3: Core multiplicity



Adjacency Matrix Representation



	A (1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A (1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

A	(2)	A(1)			
В	(7)	В	(6)		
В	(5)	В	(8)		
A	(3)	A	(4)		

	A (1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A (1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A (3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

The same graph can be represented in many ways

Graph Isomorphism

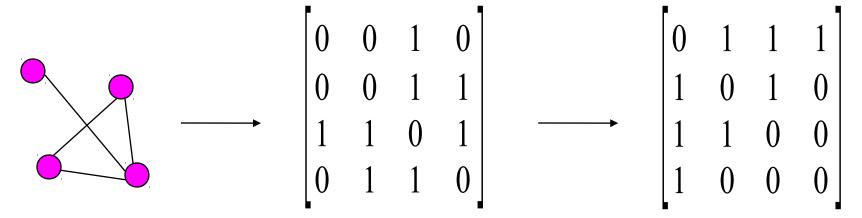
 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix



String: 0010001111010110

Canonical: 0111101011001000