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Frequent Subgraph Mining

 Extend frequent itemset mining to finding 
frequent subgraphs

 Useful for Web Mining, computational chemistry, 
bioinformatics, spatial data sets, etc
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Graph Definitions
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Examples of sub-graph containment
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Representing Graphs as Transactions
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(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …
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Challenges

 Node may contain duplicate labels
 Support

– How to define it?

 Assumptions
– Frequent subgraphs must be connected

– Edges are undirected e 
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Mining frequent sub-graphs

 Support:
– number of graphs that contain a particular 

subgraph

 Apriori principle still holds

 Apriori-like approach: Use frequent k-subgraphs 
to generate frequent (k+1) subgraphs

– Vertex growing:  k is the number of vertices

– Edge growing:  k is the number of edges
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Vertex Growing

  Follow same strategy as Apriori:
 Find pairs of frequent, overlapping k-graphs
 Merge them to form a (k+1)-graph
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Edge Growing
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Apriori-like Algorithm

 Find frequent 1-subgraphs
 Repeat

– Candidate generation
 Use frequent (k-1)-subgraphs to generate candidate k-subgraph

– Candidate pruning
 Prune candidate subgraphs that contain infrequent 
(k-1)-subgraphs 

– Support counting
 Count the support of each remaining candidate

– Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
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Example: Dataset
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Example
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Candidate Generation

 In Apriori:
– Merging two frequent k-itemsets will produce a 

candidate (k+1)-itemset

 In frequent subgraph mining (vertex/edge 
growing)

– Merging two frequent k-subgraphs may produce more 
than one candidate (k+1)-subgraph
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Multiplicity of Candidates (Vertex Growing)
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Multiplicity of Candidates (Edge growing)

 Case 1: identical vertex labels
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Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels

Core: The (k-1) subgraph that is common
           between the joint graphs
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Multiplicity of Candidates (Edge growing)

 Case 3: Core multiplicity
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Adjacency Matrix Representation

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

• The same graph can be represented in many ways
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Graph Isomorphism

 A graph is isomorphic if it is topologically 
equivalent to another graph
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Graph Isomorphism

 Test for graph isomorphism is needed:
– During candidate generation step, to determine 

whether a candidate has been generated

– During candidate pruning step, to check whether its 
(k-1)-subgraphs are frequent

– During candidate counting, to check whether a 
candidate is contained within another graph
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Graph Isomorphism

 Use canonical labeling to handle isomorphism
– Map each graph into an ordered string representation 

(known as its code) such that two isomorphic graphs 
will be mapped to the same canonical encoding

– Example: 
 Lexicographically largest adjacency matrix

[
0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

]
String: 0010001111010110

[
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

]
Canonical: 0111101011001000
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