Graph Mining

Mirco Nanni Pisa KDD Lab, ISTI-CNR \& Univ. Pisa

http://kdd.isti.cnr.it/

Slides from "Introduction to Data Mining" (Tan, Steinbach, Kumar)

Frequent Subgraph Mining

\square Extend frequent itemset mining to finding frequent subgraphs

- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(a) Labeled Graph
(b) Subgraph
(c) Induced Subgraph

Examples of sub-graph containment

Representing Graphs as Transactions

G1

G2

G3

	$(\mathrm{a}, \mathrm{b}, \mathrm{p})$	$(\mathrm{a}, \mathrm{b}, \mathrm{q})$	$(\mathrm{a}, \mathrm{b}, \mathrm{r})$	$(\mathrm{b}, \mathrm{c}, \mathrm{p})$	$(\mathrm{b}, \mathrm{c}, \mathrm{q})$	$(\mathrm{b}, \mathrm{c}, \mathrm{r})$	\ldots	$(\mathrm{d}, \mathrm{e}, \mathrm{r})$
G1	1	0	0	0	0	1	\ldots	0
G2	1	0	0	0	0	0	\ldots	0
G3	0	0	1	1	0	0	\ldots	0
G3	\ldots							

Challenges

- Node may contain duplicate labels
- Support
- How to define it?
- Assumptions
- Frequent subgraphs must be connected
- Edges are undirected

Mining frequent sub-graphs

- Support:
- number of graphs that contain a particular subgraph
${ }^{0}$ Apriori principle still holds
- Apriori-like approach: Use frequent k-subgraphs to generate frequent ($k+1$) subgraphs
- Vertex growing: k is the number of vertices
- Edge growing: k is the number of edges

Vertex Growing

- Follow same strategy as Apriori:
- Find pairs of frequent, overlapping k-graphs
- Merge them to form a (k+1)-graph

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
- Candidate generation
- Use frequent ($k-1$)-subgraphs to generate candidate k-subgraph
- Candidate pruning
- Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
- Support counting
- Count the support of each remaining candidate
- Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

Example

O Tan,Steinbach, Kumar	Introduction to Data Mining

Candidate Generation

- In Apriori:
- Merging two frequent k-itemsets will produce a candidate ($k+1$)-itemset
- In frequent subgraph mining (vertex/edge growing)
- Merging two frequent k-subgraphs may produce more than one candidate $(k+1)$-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

- Case 1: identical vertex labels

Multiplicity of Candidates (Edge growing)

Case 2: Core contains identical labels

Core: The ($k-1$) subgraph that is common between the joint graphs

Multiplicity of Candidates (Edge growing)

- Case 3: Core multiplicity

Adjacency Matrix Representation

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1
	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0		1
B(8)	0	0	0	1	0	1	1	1

- The same graph can be represented in many ways

Graph Isomorphism

\square A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
- During candidate generation step, to determine whether a candidate has been generated
- During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
- During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
- Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
- Example:
- Lexicographically largest adjacency matrix

String: 0010001111010110

