Università di Pisa	A.A. 2013- 2014
--------------------	-----------------

June 30th, 2014

Data Mining II

Exercise 1 - Classification – alternative methods (11 points)

Given the training dataset below (on the left), build and apply a Naïve Bayes Classifier to predict the "class" attribute on the test dataset (on the right).

outlook	Temp.	humidity	windy	play				
sunny	hot	high	false	no				
sunny	hot	high	true	no				
overcast	hot	high	false	yes				
rainy	mild	high	false	yes				
rainy	cool	normal	false	yes				
rainy	cool	normal	true	no]			
overcast	cool	normal	true	yes	outlook	temp.	humidity	windy
sunny	mild	high	false	no	sunny	hot	high	false
sunny	cool	normal	false	yes	overcast	cool	high	true
rainy	mild	normal	false	yes	rainy	hot hot	normal high	true
sunny	mild	normal	true	yes	sunny	ΠΟΙ	Iligii	true
overcast	mild	high	true	yes				
overcast	hot	normal	false	yes				
rainy	mild	high	true	no	-			
	Trainin	U	1			Test	: set	

Exercise 2 - Sequential patterns (10 points)

Given the following input sequence

<	$\{A,B\}$	{C,D}	{C,F}	{A,D}	$\{A,B,D\}$ {E}	$\{A,B,F\}$	$\{D\} >$
	t=0	t=1	t=2	t=3	t=4 t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following susequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering min-gap = 1 (right column). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

	Occurrences	Occurrences with min-gap=1
<i>ex.</i> : $\{C\}\{F\}\{D\}>$	<1,2,3> <1,2,4> <1,2,7> <1,6,7> <2,6,7>	none
$w_I = < \{B\} \{C\} \{A\} >$		
$w_2 = \langle \{\mathbf{A}\}\{\mathbf{A}\}\rangle$		
$w_2 = <\{C\}\{B\}>$		

Exercise 3 - Time series / Classification (11 points)

Given the following dataset of labelled time series:

Time series	Label
< 9, 8, 3, 2 >	Y
< 9, 1, 5, 2 >	N
< 3, 2, 7, 8 >	Y
< 1, 1, 2, 1 >	N

and the following test set of unlabelled time series:

Time series	Label
< 9, 9, 3, 1 >	
< 9, 1, 5, 2 >	
< 1, 7, 8, 5 >	

1) Classify the test set using a 1-Nearest-Neighbor approach, by adopting the Euclidean distance as proximity measure to compare time series.

2) Repeat the same task adopting a Dynamic Time Warping distance.

Università di Pisa	A.A. 2013- 2014
--------------------	-----------------

Data Mining II

July 21th, 2014

Exercise 1 - Classification – alternative methods (11 points)

Given the training dataset below (on the left), apply a K-Nearest-Neighbor Classifier with K=3 to predict the "class" attribute on the test dataset (on the right). Evaluate the accuracy of the classifier.

X	Y	Ζ	Class
46	33	48	No
8	15	25	No
10	11	35	Yes
29	15	7	Yes
11	32	46	Yes
	Traini	na set	

Training set

Х	Y	Z	Class			
^	L. L.	~	01055			
7	8	45	Yes			
30	8	40	No			
13	23	21	No			
47	43	34	No			
37	10	29	Yes			
19	49	31	No			
20	13	8	Yes			
33	44	16	Yes			
47	12	41	No			
49	21	3	Yes			
Test set						

Test set

Exercise 2 - Sequential patterns (10 points)

Given the following input sequence

<	$\{A,B\}$	$\{A,C,D\}$	$\{C,F\}$	{A,D}	$\{A,B,D\}$	E }	${A,B,F}$	$\{D\} >$
	t=0	t=1	t=2	t=3	t=4 t	=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following susequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering min-gap = 1 (right column). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

	Occurrences	Occurrences with min-gap=1
<i>ex.:</i> <{F}{D}>	<2,3><2,4><2,7><6,7>	<2,4> <2,7>
$w_I = \langle \{A\} \{C\} \{D\} \rangle$		
$w_2 = <\{B\}\{A\}>$		
$w_3 = \langle \{A\} \{F\} \{D\} \rangle$		
$w_4 = \langle \{A\} \{E\} \rangle$		

Exercise 3 -	Time series	/ Distances	(11	points)
--------------	-------------	-------------	-----	---------

Given the following dataset of time series:

ID	Time series
A	< 19, 14, 19, 19, 26, 29, 38, 30 >
В	< 15, 10, 0, 2, 4, 7, 1, 9 >
С	< 19, 11, 20, 27, 18, 25, 15, 19 >
D	< 12, 3, 12, 19, 18, 24, 27, 31 >

compute the matrix of distances among all pairs of time series adopting a Dynamic Time Warping distance, constrained with a "Sakoe-Chiba Band" of size r=2, i.e. the maximum misalignment allowed in the matching is of 2 positions.

Data Mining II

January 19th, 2014

Exercise 1 - Classification – alternative methods (11 points)

Given the training dataset below (on the left), apply a K-Nearest-Neighbor Classifier with K=1 and then also with K=3 to predict the "class" attribute on the test dataset (on the right). Evaluate the accuracy of the two classifiers. Which one performs better?

X	Y	Ζ	Class
30	33	48	No
8	15	25	No
15	11	35	Yes
29	15	7	Yes
35	20	46	Yes
Training sot			

Training set

Х	Y	Ζ	Class
7	8	45	Yes
30	8	40	No
13	23	21	No
47	43	34	No
37	10	29	Yes
19	49	31	No
20	13	8	Yes
33	44	16	Yes
47	12	41	No
49	21	3	Yes

Test set

Exercise 2 - Sequential patterns (10 points)

Given the following input sequence

<	$\{A,B\}$	$\{A,C,D\}$	$\{C,F\}$	$\{A,D\}$	$\{A,B,D\} \{E\}$	$\{A,B,F\}$	$\{D\} >$
	t=0	t=1	t=2	t=3	t=4 t=5	t=6	t=7

show all the occurrences (there can be more than one or none, in general) of each of the following susequences in the input sequence above. Repeat the exercise twice: the first time considering no temporal constraints (left column): the second time considering max-gap = 3 (right column). Each occurrence should be represented by its corresponding list of time stamps, e.g.:: <0,2,3> = <t=0, t=2, t=3>.

	Occurrences	Occurrences with max-gap= 3
<i>ex.:</i> <{F}{D}>	<2,3><2,4><2,7><6,7>	<2,3> <2,4> <6,7>
$w_1 = < \{A\} \{C\} \{D\} >$		
$w_2 = <\{B\}\{A\}>$		
$w_3 = \langle \{A\} \{F\} \{D\} \rangle$		
$w_4 = \langle \{A\} \{E\} \rangle$		

Exercise 3 - Time series / Distances (11 points)

Given the following dataset of time series:

ID	Time series
A	< 19, 14, 19, 26, 38 >
В	< 15, 10, 0, 2, 4 >
С	< 19, 18, 25, 27, 40 >
D	< 20, 15, 15, 0, 5 >

compute the matrix of distances among all pairs of time series adopting a Dynamic Time Warping distance.