- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

Focus on the predictive capability of a model

 Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	а	b		
CLASS	Class=No	С	d		

a: TP (true positive)

b: FN (false negative)

: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)			
CLASS	Class=No	с (FP)	d (TN)			

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

	PREDICTED CLASS				
	C(i j)	Class=Yes	Class=No		
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)		
CLASS	Class=No	C(Yes No)	C(No No)		

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS			
	C(i j)	+	-	
ACTUAL	+	-1	100	
ULAUU	-	1	0	

Model M₂

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	150	40	
		60	250	

Accuracy = 80% Cost = 3910
 ACTUAL CLASS
 +

 250
 45

 5
 200

PREDICTED CLASS

Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy = (a + d)/N

Cost	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	р	q		
CLASS	Class=No	q	р		

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F - measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Metrics for Performance Evaluation
 How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

- Metrics for Performance Evaluation
 How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

© Tan, Steinbach, Kumar

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

© Tan, Steinbach, Kumar

Introduction to Data Mining

Test of Significance

• Given two models:

- Model M1: accuracy = 85%, tested on 30 instances
- Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

Prediction can be regarded as a Bernoulli trial

- A Bernoulli trial has 2 possible outcomes
- Possible outcomes for prediction: correct or wrong
- Collection of Bernoulli trials has a Binomial distribution:
 - x ~ Bin(N, p)
 x: number of correct predictions
 - e.g: Toss a fair coin 50 times, how many heads would turn up?
 Expected number of heads = N×p = 50 × 0.5 = 25
- Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances),

Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

• For large test sets
$$(N > 30)$$
,

 acc has a normal distribution with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1 - p)/N}} < Z_{1 - \alpha/2})$$
$$= 1 - \alpha$$

Confidence Interval for p:

 $p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$

Confidence Interval for Accuracy

- Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:
 - N=100, acc = 0.8
 - Let $1-\alpha = 0.95$ (95% confidence)
 - From probability table, $Z_{\alpha/2}$ =1.96

Ν	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e_1
 - M2 is tested on D2 (size=n2), found error rate = e_2
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_{1} \sim N(\mu_{1}, \sigma_{1})$$

$$e_{2} \sim N(\mu_{2}, \sigma_{2})$$
Approximate: $\hat{\sigma}_{i} = \frac{e_{i}(1 - e_{i})}{n_{i}}$

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: d = e1 – e2
 - d ~ $N(d_t, \sigma_t)$ where d_t is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$\sigma_{t}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} \cong \hat{\sigma}_{1}^{2} + \hat{\sigma}_{2}^{2}$$
$$= \frac{e1(1-e1)}{n1} + \frac{e2(1-e2)}{n2}$$

- At (1- α) confidence level, $d_t = d \pm Z_{\alpha/2} \hat{\sigma}_t$

An Illustrative Example

• Given: M1: n1 = 30, e1 = 0.15
M2: n2 = 5000, e2 = 0.25
• d =
$$|e2 - e1| = 0.1$$
 (2-sided test)
 $\hat{\sigma}_{d} = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$

• At 95% confidence level, $Z_{\alpha/2}$ =1.96

 $d_{t} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$

=> Interval contains 0 => difference may not be statistically significant

Comparing Performance of 2 Algorithms

• Each learning algorithm may produce k models:

- L1 may produce M11 , M12, ..., M1k
- L2 may produce M21 , M22, ..., M2k
- If models are generated on the same test sets D1,D2, ..., Dk (e.g., via cross-validation)
 - For each set: compute $d_j = e_{1j} e_{2j}$
 - d_i has mean d_t and variance σ_t
 - Estimate: $\hat{\sigma}_{t}^{2} = \frac{\sum_{j=1}^{k} (d_{j} - \overline{d})^{2}}{k(k-1)}$

$$d_{t} = d \pm t_{1-\alpha,k-1} \hat{O}_{t}$$