Data Mining A.A. 2015/16

Final projects
List of projects

- Market basket context
 - Individual vs collective purchase behaviours

- Online services
 - Churn analysis on LastFM listenings

- Mobility context
 - Taxi cabs & criminality in San Francisco
Project assignment

• Form groups of 1-3 students
• Send names and project chosen to the instructors
 – Detailed descriptions of the projects will be put online now
 – The datasets will be sent upon receiving your email
• Write a report on the analyses performed and the results obtained and send it before the final exam
 – Final exam will include a presentation with slides
 – 10-15min total for each group/project
Project assignment

- Each project includes
 - A preliminary data exploration phase
 - Data analysis: central phase, driven by the general objectives assigned to you
 - Conclusions, where a summary of the key results, limitations and issues met is provided
Individual vs collective supermarket purchase activity

- General idea: provide the customer a self-awareness of what he does w.r.t. the others
Market basket project
Dataset

- Real data describing customers and transactions
 - Several department stores
 - Purchases performed over 12 months
 - Includes product details, customer ID

- articolo.csv
 - Textual description of the products (in Italian)

- cliente.csv
 - Basic information about customers (in Italian)

- data.csv
 - Translation table for date coding

- marketing.csv
 - Marketing hierarchy of products (in Italian)

- venduto.csv
 - Transactions, a line for each product sold
Market basket project
Top 10 most purchased products

- Choose the proper product category level to adopt
 - 70cl Whole Milk Brand X? Whole Milk? Milk?
- Identify an interesting period of day
 - 17-18? Mornings? Thursdays 16-19? Weekends?
- Discover top-10 products in the period for each customer
- Compute purchases distribution on them, for each customer
 - Milk: 50%, Bread: 30%, Wine: 10%, ...
Market basket project
Customer segmentation

- Segment customers into homogeneous groups
- Characterize each group
 - Purchase distributions
 - Other info derived from original data
Market basket project
Individual vs. collective

- Select (small) sample of customers
- Compare the customer to the segment he belongs to
 - Highlight similarities and deviations
 - Sketch a self-awareness-style service
LastFM & Churn

- General idea: who and why does stop listening to some music artist or genre?
LastFM & Churn Data

- Data about listenings: last 200 listening performed by a set of users:
 - user_id: identifies the user
 - date: timestamp of the listening
 - track: title of the song listened
 - artist: artist of the song
 - album: album of the song
LastFM & Churn Data

- Music genres: association of the predominant / best fitting genre for a given artist, according to LastFM weights:
 - artist: artist/group's name
 - genre: genre of the artist
LastFM & Churn Data

• Network of friendships of the users:
 - user_id1: user_id contained in listening file
 - user_id2: user which is friend of user_id1
 (Notice: he is not necessarily in listening file)
LastFM & Churn
Churn analysis

- Choose an artist, set of artist or a whole genre
- Study the churn phenomenon for that:
 - Identify the users that consistently listen to them
 - Identify those that, at some point, abandoned the artist/group/genre (churn)
 - Try to understand what determined the churn, and build a model able to predict it in advance.
 - Possible causes to consider: features of the user, of the artist/group/genre, friends' features, etc.
LastFM & Churn
Customer segmentation

• Build a customer segmentation of LastFM users based on as much information as you can infer:
 – what they listen to
 – when they do that
 – friendships
 – etc.
Taxi cabs & crimes in S.F.

- General idea: does crime influence how taxis operate their service?
Taxi cabs in S.F. Dataset

- GPS traces of ~500 taxis over 30 days
- Each San Francisco based Yellow Cab vehicle is currently outfitted with a GPS tracking device
- The data is transmitted from each cab to a central receiving station, and then delivered in real-time to dispatch computers via a central server
- This system broadcasts the cab number, location and whether currently has a fare
Taxi cabs in S.F.

Dataset

• Raw dataset: ~500 files, one per cab:

<Latitude, Longitude, Passenger?, Unix Timestamp>
Crimes in S.F. Dataset

- Crime event records for S.F. over several years
 - Source: Kaggle data challenge
 https://www.kaggle.com/c/sf-crime
- Incidents derived from SFPD Crime Incident Reporting system.
- The data ranges from 1/1/2003 to 5/13/2015
Crimes in S.F. Dataset

• Data format:
 - **Dates** - timestamp of the crime incident
 - **Category** - category of the crime incident (only in train.csv). This is the target variable you are going to predict.
 - **Description** - detailed description of the crime incident (only in train.csv)
 - **DayOfWeek** - the day of the week
 - **PdDistrict** - name of the Police Department District
 - **Resolution** - how the crime incident was resolved (only in train.csv)
 - **Address** - the approximate street address of the crime incident
 - **X** - Longitude
 - **Y** - Latitude
Crimes in S.F. Dataset

- Additional data available from https://data.sfgov.org/
Objectives

- Relation between crimes and the taxi drivers' activity
- Basic questions:
 - Do taxi drivers avoid the areas with highest crime rates when driving?
 - What is the relation between crime rates and number of taxi pick-ups / drop-offs?
 - E.g. do people in high-crime areas prefer taxi to other public transport?
 - Are there specific cases of crimes or crime bursts that apparently affected the taxi activity?
 - globally or in the area of interest of the crimes
 - Any other question you deem interesting.
Questions?