Data Mining

Knowledge Discovery in Databases

http://www-kdd.isti.cnr.it/

MAINS - Master in Management dell'Innovazione Scuola Superiore Sant'Anna

Seminar 1 outline

Motivations

- Application Areas
- KDD Decisional Context
- **KDD Process**
- Architecture of a KDD system
- The KDD steps in short
- Some examples in short

Atherosclerosis prevention study

2nd Department of Medicine, 1st Faculty of Medicine of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC)

Atherosclerosis prevention study:

The STULONG 1 data set is a real database that keeps information about the study of the development of atherosclerosis risk factors in a population of middle aged men.

Used for Discovery Challenge at PKDD 00-02-03-04

Atherosclerosis prevention study:

Study on 1400 middle-aged men at Czech hospitals

- Measurements concern development of cardiovascular disease and other health data in a series of exams
- The aim of this analysis is to look for associations between medical characteristics of patients and death causes.

Four tables

Entry and subsequent exams, questionnaire responses, deaths

The input data

Data [.]	from Entry and Ex	xams
General characteristics	Examinations	habits
Marital status	Chest pain	Alcohol
Transport to a job	Breathlesness	Liquors
Physical activity in a job	Cholesterol	Beer 10
Activity after a job	Urine	Beer 12
Education	Subscapular	Wine
Responsibility	Triceps	Smoking
Age		Former smoker
Weight		Duration of smoking
Height		Tea 🤇 😕 🚬
		Sugar
		Coffee
ning x MAINS - Seminar 1	Giannotti &	Pedreschi

The input data

PATIENTS	%
80	20.6
33	8.5
30	7.7
79	20.3
23	5.9
8	2.0
114	29.3
22	5.7
389	100.0
	PATIENTS 80 33 33 30 79 23 8 114 22 389

Data Mining x MAINS - Seminar 1

Giannotti & Pedreschi

7

Data selection

- When joining "Entry" and "Death" tables we implicitly create a new attribute "Cause of death", which is set to "alive" for subjects present in the "Entry" table but not in the "Death" table.
- We have only 389 subjects in death table.

Data Mining x MAINS - Seminar 1

Giannotti & Pedreschi

8

The prepared data

Patient	General characteristics		Examinations		Habits		Cause of
	Activity after work	Education	Chest pain		Alcohol		death
1	moderate activity	university	not present		no		Stroke
2	great activity		not ischaemic		occasionally		myocardial infarction
3	he mainly sits		other pains		regularly		tumorous disease
							alive
389	he mainly sits		other pains		regularly		tumorous disease

Descriptive Analysis/ Subgroup Discovery /Association Rules

Are there strong relations concerning death cause?

General characteristics $(?) \Rightarrow$ Death cause (?)

Examinations $(?) \Rightarrow$ Death cause (?)

Habits (?) \Rightarrow Death cause (?)

Combinations (?) \Rightarrow Death cause (?)

Data Mining x MAINS - Seminar 1

Giannotti & Pedreschi

Example of extracted rules

- Education(university) & Height<176-180> ÞDeath cause (tumouros disease), 16; 0.62
- It means that on tumorous disease have died 16, i.e. 62% of patients with university education and with height 176-180 cm.

Example of extracted rules

- Physical activity in work(he mainly sits) & Height<176-180> Þ Death cause (tumouros disease), 24; 0.52
- It means that on tumorous disease have died 24 i.e. 52% of patients that mainly sit in the work and whose height is 176-180 cm.

Example of extracted rules

- Education(university) & Height<176-180> ÞDeath cause (tumouros disease), 16; 0.62; +1.1;
- the relative frequency of patients who died on tumorous disease among patients with university education and with height 176-180 cm is 110 per cent higher than the relative frequency of patients who died on tumorous disease among all the 389 observed patients

Moviegoer Database :

moviegoers.name	sex	age	source	movies.name
Amy	f	27	Oberlin	Independence Day
Andrew	m	25	Oberlin	12 Monkeys
Andy	m	34	Oberlin	The Birdcage
Anne	f	30	Oberlin	Trainspotting
Ansje	f	25	Oberlin	I Shot Andy Warhol
Beth	f	30	Oberlin	Chain Reaction
Bob	m	51	Pinewoods	Schindler's List
Brian	m	23	Oberlin	Super Cop
Candy	f	29	Oberlin	Eddie
Cara	f	25	Oberlin	Phenomenon
Cathy	f	39	Mt. Auburn	The Birdcage 📃 🚽
Charles	m	25	Oberlin	Kingpin
Curt	m	30	MRJ	T2 Judgment Day
David	m	40	MRJ	Independence Day
Erica	f	23	Mt. Auburn	Trainspotting

Example: Moviegoer Database

Classification

- determine sex based on age, source, and movies seen
- determine source based on sex, age, and movies seen
- determine most recent movie based on past movies, age, sex, and source

Estimation

- for predict, need a continuous variable (e.g., "age")
- predict age as a function of source, sex, and past movies

Data Min.ng if Me had an "rating" field for achimoviegoer, we

Example: Moviegoer Database

Clustering

- find groupings of movies that are often seen by the same people
- find groupings of people that tend to see the same movies
- clustering might reveal relationships that are not necessarily recorded in the data (e.g., we may find a cluster that is dominated by people with young children; or a cluster of movies that correspond to a particular genre)

Example: Moviegoer Database Association Rules

- market basket analysis (MBA): "which movies go together?"
- need to create "transactions" for each moviegoer containing movies seen by that moviegoer:

name	TID	Transaction
Amy	001	{Independence Day, Trainspotting}
Andrew	002	{12 Monkeys, The Birdcage, Trainspotting, Phenomenon}
Andy	003	{Super Cop, Independence Day, Kingpin}
Anne	004	{Trainspotting, Schindler's List}

Example: Moviegoer Database

Sequence Analysis

- similar to MBA, but order in which items appear in the pattern is important
- e.g., people who rent "The Birdcage" during a visit tend to rent "Trainspotting" in the next visit.

On the road to knowledge: mining 21 years of UK traffic accident reports

> Peter Flach et al. Silnet Network of Excellence

Mining traffic accident reports

- The Hampshire County Council (UK) wanted to obtain a better insight into how the characteristics of traffic accidents may have changed over the past 20 years as a result of improvements in highway design and in vehicle design.
- The database, contained police traffic accident reports for all UK accidents that happened in the period 1979-1999.

Business Understanding

- Understanding of road safety in order to reduce the occurrences and severity of accidents.
 - influence of road surface condition;
 - influence of skidding;
 - influence of location (for example: junction approach);
 - and influence of street lighting.
- trend analysis: long-term overall trends, regional trends, urban trends, and rural trends.
- the comparison of different kinds of locations is interesting: for example, rural versus metropolitan versus suburban.

Data understanding

- Low data quality. Many attribute values were missing or recorded as unknown.
- Different maps were created to investigate the effect of several parameters like accident severity and accident date.

Modelling

- The aim of this effort was to find interesting associations between road number, conditions (e.g., weather, and light) and serious or fatal accidents.
- Certain localities had been selected and performed the analysis only over the years 1998 and 1999.

Extracted rule

	FATAL	Non FATAL	TOTAL
Road=V61 AND Weather=1	15	141	156
NOT (Road=V61 AND Weather=1)	147	5056	5203

- The relative frequency of fatal accidents among all accidents in the locality was 3%.
- The relative frequency of fatal accidents on the road (V61) under fine weather with no winds was 9.6% — more than 3 times greater.

How to develop a Data Mining Project?

CRISP-DM: The life cicle of a data mining project

Business understanding

- Understanding the project objectives and requirements from a business perspective.
 - then converting this knowledge into a data mining problem definition and a preliminary plan.
 - Determine the Business Objectives
 - Determine Data requirements for Business Objectives
 - Translate Business questions into Data Mining Objective

Data understanding

Data understanding: characterize data available for modelling. Provide assessment and verification for data.

Data Mining x MAINS - Seminar 1

Giannotti & Pedreschi

Modeling

- In this phase, various modeling techniques are selected and applied and their parameters are calibrated to optimal values.
- Typically, there are several techniques for the same data mining problem type. Some techniques have specific requirements on the form of data.
- Therefore, stepping back to the data preparation phase is often necessary.

Evaluation

- At this stage in the project you have built a model (or models) that appears to have high quality from a data analysis perspective.
- Evaluate the model and review the steps executed to construct the model to be certain it properly achieves the business objectives.
- A key objective is to determine if there is some important business issue that has not been sufficiently considered.

Deployment

- The knowledge gained will need to be organized and presented in a way that the customer can use it.
- It often involves applying "live" models within an organization's decision making processes, for example in real-time personalization of Web pages or repeated scoring of marketing databases.

Deployment

- It can be as simple as generating a report or as complex as implementing a repeatable data mining process across the enterprise.
- In many cases it is the customer, not the data analyst, who carries out the deployment steps.

