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What is Cluster Analysis?

! Finding groups of objects such that the objects in a group will
be similar (or related) to one another and different from (or
unrelated to) the objects in other groups

Inter-cluster

Intra-cluster distances are

distances are maximized
minimized




Similarity and Dissimilarity

¥ Similarity
I Numerical measure of how alike two data objects are.
I Is higher when objects are more alike.
I Often falls in the range [0,1]
¥ Dissimilarity
I Numerical measure of how different are two data objects
I Lower when objects are more alike
I Minimum dissimilarity is often 0
I Upper limit varies

! Proximity refers to a similarity or dissimilarity



Euclidean Distance

I Euclidean Distance

. L )
dist = kEl(Pk - q;)



Euclidean Distance
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Minkowski Distance

1
. m e
dist = (kEl\Pk - q; )



Minkowski Distance: Examples

r = 1. City block (Manhattan, taxicab, L, norm) distance.

I A common example of this is the Hamming distance, which is just the number of
bits that are different between two binary vectors

r = 2. Euclidean distance

r— o, “supremum” (L__ norm, L_norm) distance.

max
I This is the maximum difference between any component of the vectors

Do not confuse r with n, i.e., all these distances are defined for
all numbers of dimensions.



Minkowski Distance
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Common Properties of a Distance

! Distances, such as the Euclidean distance, have
some well known properties.

1. d(p,q)=0 forallpandgqgandd(p, g)=0onlyif
p = q. (Positive definiteness)

2. d(p, q)=d(q, p) forall p and q. (Symmetry)

3. d(p,r)=<d(p, q) +d(q, r) forall points p, g, and r.
(Triangle Inequality)

where d(p, g) is the distance (dissimilarity) between
points (data objects), p and q.

§ Adistance that satisfies these properties is a
metric



Common Properties of a Similarity

Similarities, also have some well known
properties.

=

s(p, q) = 1 (or maximum similarity) only if p = g.

™

s(p, q) =s(q, p) for all p and g. (Symmetry)

where s(p, q) is the similarity between points (data
objects), p and q.



Similarity Between Binary Vectors

# Common situation is that objects, p and g, have only binary
attributes

I Compute similarities using the following quantities
M,, = the number of attributes where p was 0 and q was 1

M,, = the number of attributes where p was 1 and q was 0
M,, = the number of attributes where p was 0 and q was 0
M,, = the number of attributes where p was 1 and q was 1

I Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes

= (M11 + M00) / (MO1 + M10 + M11 + MOO0)

J = number of 11 matches / number of not-both-zero attributes values

=(M11) / (M01 + M10 + M11)



SMC versus Jaccard: Example

p=1000000000
q=0000001001

My, =2 (the number of attributes where p was 0 and q was 1)
M,, =1 (the number of attributes where p was 1 and q was 0)
My, =7 (the number of attributes where p was 0 and q was 0)
M,, =0 (the number of attributes where p was 1 and q was 1)

SMC=(M_, +M_)/(M,, + M, + M, + M) =(0+7) / (2+1+0+7) = 0.7

J=(M,)/ (M, +M  ,+M_,)=0/(2+1+0)=0



Cosine Similarity

1 1f d, and d, are two document vectors, then
cos(d, d,) = (d,*d)/ |1d,11 |ld,]1,

where ¢ indicates vector dot product and || d | | is the length of vector d.

¥ Example:

d,=3205000200
d,=1000000102

d1 J d2= 3*1+2*0+0*0+5*0+0*0+0*0+0*0+2*1 + 0*0+ 0*2 =5
|1d, || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)%> = (42) °> = 6.481

|1d,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) %5 = (6) *-> = 2.245

cos(d, d,)=.3150



General Approach for Combining Similarities

I Sometimes attributes are of many different types,
but an overall similarity is needed.

1. For the k** attribute, compute a similarity, s, in the range [0, 1].
2. Define an indicator variable, ., for the k;;, attribute as follows:

0 = a value of 0, or if one of the objects has a missing values for the k** attribute

0 if the k** attribute is a binary asymmetric attribute and both objects have
1 otherwise

3. Compute the overall similarity between the two objects using the following formula:

7

k=1 Ok Sk
n
k=1 Ok

similarity(p, q) =



Using Weights to Combine Similarities

I May not want to treat all attributes the same.
I Use weights w, which are between 0 and 1 and sum to 1.

-1 <
k—1 WkOk Sk
L

k—1 Ok

similarity(p, q) =

" 1/r
distance(p,q) = (Z Wi Pk — qk") 4

k=1



What is Cluster Analysis?

! Finding groups of objects such that the objects in a group will
be similar (or related) to one another and different from (or
unrelated to) the objects in other groups

Inter-cluster

Intra-cluster distances are

distances are maximized
minimized




Applications of Cluster Analysis

! Understanding

I Group related documents for
browsing, group genes and
proteins that have similar
functionality, or group stocks
with similar price fluctuations

§ Summarization

I Reduce the size of large data
sets

Discovered Clusters

Industry Group

= W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

Oil-UP

Clustering
precipitati
Australia




What is not Cluster Analysis?

§ Supervised classification
I Have class label information

I Simple segmentation

| Dividing students into different registration groups alphabetically,
by last name

I Results of a query
I Groupings are a result of an external specification

! Graph partitioning

I Some mutual relevance and synergy, but areas are not identical



Notion of a Cluster can be Ambiguous
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Types of Clusterings

B A clustering is a set of clusters

! Important distinction between hierarchical and
partitional sets of clusters

! Partitional Clustering

I A division data objects into non-overlapping subsets (clusters) such
that each data object is in exactly one subset

! Hierarchical clustering
I A set of nested clusters organized as a hierarchical tree



Partitional Clustering

Original Points A Partitional Clustering



Hierarchical Clustering

pl
’ p4.

Traditional Hierarchical Clustering

Non-traditional Hierarchical
Clustering

B
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Traditional Dendrogram
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Non-traditional Dendrogram



Other Distinctions Between Sets of Clusters

B Exclusive versus non-exclusive
I In non-exclusive clusterings, points may belong to multiple clusters.
I Can represent multiple classes or ‘border’ points

! Fuzzy versus non-fuzzy

I In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

I Weights mustsumto 1
I Probabilistic clustering has similar characteristics

! Partial versus complete
I In some cases, we only want to cluster some of the data

i Heterogeneous versus homogeneous
I Cluster of widely different sizes, shapes, and densities



Types of Clusters

Well-separated clusters

Center-based clusters

Contiguous clusters

Density-based clusters

Property or Conceptual

Described by an Objective Function



Types of Clusters: Well-Separated

I Well-Separated Clusters:

I Acluster is a set of points such that any point in a cluster is closer
(or more similar) to every other point in the cluster than to any
point not in the cluster.

3 well-separated clusters



Types of Clusters: Center-Based

¥ Center-based

I Acluster is a set of objects such that an object in a cluster is closer
(more similar) to the “center” of a cluster, than to the center of any
other cluster

I The center of a cluster is often a centroid, the average of all the
points in the cluster, or a medoid, the most “representative” point
of a cluster

4 center-based clusters



Types of Clusters: Contiguity-Based

§ Contiguous Cluster (Nearest neighbor or Transitive)

I Acluster is a set of points such that a point in a cluster is closer (or
more similar) to one or more other points in the cluster than to any
point not in the cluster.

------
K}

---------

8 contiguous clusters



Types of Clusters: Density-Based

! Density-based

I Aclusteris a dense region of points, which is separated by low-
density regions, from other regions of high density.

I Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters



Characteristics of the Input Data Are Important

Type of proximity or density measure
I This is a derived measure, but central to clustering

Sparseness
I Dictates type of similarity
I Adds to efficiency

Attribute type
I Dictates type of similarity

Type of Data
I Dictates type of similarity
I Other characteristics, e.g., autocorrelation

Dimensionality
Noise and Outliers
Type of Distribution



Clustering Algorithms

I K-means and its variants
! Hierarchical clustering

! Density-based clustering



K-means Clustering

I Partitional clustering approach
I Each cluster is associated with a (center point)
I Each point is assigned to the cluster with the closest centroid
I Number of clusters, K, must be specified
I The basic algorithm is very simple
1: Select K points as the initial centroids.
2: repeat
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.
5: until The centroids don’t change




K-means Clustering — Details

Initial centroids are often chosen randomly.
1 Clusters produced vary from one run to another.
The centroid is (typically) the mean of the points in the cluster.
‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
K-means will converge for common similarity measures mentioned above.
Most of the convergence happens in the first few iterations.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Evaluating K-means Clusters

¥ Most common measure is Sum of Squared Error (SSE)
I For each point, the error is the distance to the nearest cluster
I To get SSE, we square these errors and sum them.

SSE = ggadistz (m,x)

I xis adata point in cluster C,and m;, is the representative point for
cluster C.

| can show that m,corresponds to the center (mean) of the cluster

I Given two clusters, we can choose the one with the smallest error

I One easy way to reduce SSE is to increase K, the number of clusters

| A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K



Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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D
Problems with Selecting Initial Points

I Ifthere are K ‘real’ clusters then the chance of selecting one centroid from each cluster is small.
1 Chance is relatively small when K is large
1 If clusters are the same size, n, then

number of ways to select one centroid from each cluster KInk K!

number of ways to select K centroids (Kn)k KK



!8 !lusters !xample
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!U !lus!ers !xample
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!5 Elusters Example

0 5 10 15 20

Starting with some pairs of clusters having three initial centroids, while other have
only one.



!8 Elusters !xample
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Solutions to Initial Centroids Problem

Multiple runs
I Helps, but probability is not on your side

Sample and use hierarchical clustering to determine
initial centroids

Select more than k initial centroids and then select
among these initial centroids

I Select most widely separated
Postprocessing

Bisecting K-means
I Not as susceptible to initialization issues



Handling Empty Clusters

! Basic K-means algorithm can yield empty clusters

I Several strategies
I Choose the point that contributes most to SSE
I Choose a point from the cluster with the highest SSE

I If there are several empty clusters, the above can be
repeated several times.



Updating Centers Incrementally

! In the basic K-means algorithm, centroids are updated
after all points are assigned to a centroid

I An alternative is to update the centroids after each
assignment (incremental approach)

Each assignment updates zero or two centroids

More expensive

Introduces an order dependency

Never get an empty cluster

Can use “weights” to change the impact



Pre-processing and Post-processing

! Pre-processing
! Normalize the data
! Eliminate outliers

! Post-processing
I Eliminate small clusters that may represent outliers
I Split ‘loose’ clusters, i.e., clusters with relatively high SSE
I Merge clusters that are ‘close’ and that have relatively low SSE

I Can use these steps during the clustering process
| ISODATA



Bisecting K-means

! Bisecting K-means algorithm
[ Variant of K-means that can produce a partitional or a hierarchical clustering

. Initialize the list of clusters to contain the cluster containing all points.

[

£

repeat
Select a cluster from the list of clusters

for 1 = 1 to number_of _iterations do

end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

8: until Until the list of clusters contains K clusters

3
41
5: Bisect the selected cluster using basic K-means
6
7
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Limitations of K-means

! K-means has problems when clusters are of differing
I Sizes
I Densities
I Non-globular shapes

I K-means has problems when the data contains
outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

s
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Original Points K-means Clusters



Hierarchical Clustering

! Produces a set of nested clusters organized as a
hierarchical tree

B Can be visualized as a dendrogram

I Atree like diagram that records the sequences of merges
or splits

0.2¢

0.15¢

0.1t

0.05¢




Strengths of Hierarchical Clustering

! Do not have to assume any particular number of
clusters

I Any desired number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

! They may correspond to meaningful taxonomies

I Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)



Hierarchical Clustering

¥ Two main types of hierarchical clustering

I Agglomerative:
| Start with the points as individual clusters

| At each step, merge the closest pair of clusters until only one cluster (or k clusters)
left

I Divisive:
| Start with one, all-inclusive cluster

| At each step, split a cluster until each cluster contains a point (or there are k
clusters)

! Traditional hierarchical algorithms use a similarity or distance matrix
I Merge or split one cluster at a time



Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward

1. Compute the proximity matrix

2 Let each data point be a cluster

3 Repeat

4. Merge the two closest clusters
5 Update the proximity matrix

6. Until only a single cluster remains

Key operation is the computation of the proximity of two
clusters

[ Different approaches to defining the distance between clusters
distinguish the different algorithms



Starting Situation

B Start with clusters of individual points and a

proximity matrix
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Intermediate Situation

I After some merging steps, we have some clusters

Cl |C2 |C3 |C4 |C5
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Intermediate Situation

¥ We want to merge the two closest clusters (C2 and C5) and update

the proximity matrix.
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After Merging

! The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity

Similarity?

- »
< | o

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective

function
— Ward’s Method uses squared error

Pl [p2 [p3 | p4

Proximity Matrix




How to Define Inter-Cluster Similarity

pl |p2 [p3 | p4 p5
pl
p2
p3
p4
MIN P>
MAX '
Group Average
Distance Between Centroids ~ Proximity Matrix
Other methods driven by an objective
function

— Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

MIN

MAX

Group Average

Distance Between Centroids

Other methods driven by an objective

function
— Ward’s Method uses squared error

Pl [p2 [p3 | p4

Proximity Matrix




Cluster Similarity: MIN or Single Link

§ Similarity of two clusters is based on the two most
similar (closest) points in the different clusters

I Determined by one pair of points, i.e., by one link in the
proximity graph.

1 12 13 14 15 ‘
111 1.00 0.90 0.10 0.65 0.20
121 0.90 1.00 0.70 0.60 0.50
13( 0.10 0.70 1.00 0.40 0.30
14/ 0.65 0.60 0.40 1.00 0.80 r_‘

151 0.20 0.50 0.30 0.80 1.00 | 3 4 5




Hierarchical Clustering: MIN
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Nested Clusters Dendrogram
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Cluster Similarity: MAX or Complete Linkage

I Similarity of two clusters is based on the two least
similar (most distant) points in the different clusters
I Determined by all pairs of points in the two clusters

1
12
13
14
15

1 12 13 4 15

1.00 0.90 0.10 0.65 0.20
0.90 1.00 0.70 0.60 0.50

0.10 0.70 1.00 0.40 0.30
0.65 0.60 0.40 1.00 0.80 |__‘ r_‘

0.20 0.50 0.30 0.80 1.00 1 2 3 4 5




Hierarchical Clustering: MAX
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Limitations of MAX
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Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

proximity(p;,p;)
p;Cluster;
p;j=Cluster;

roximity(Cluster,, Cluster,) =
P tv( " i) | Cluster, | | Cluster, |

Need to use average connectivity for scalability since total
proximity favors large clusters

1 12 13 14 15

111 1.00 0.90 0.10 0.65 0.20
12| 0.90 1.00 0.70 0.60 0.50

13| 0.10 0.70 1.00 0.40 0.30
14| 0.65 0.60 0.40 1.00 0.80 r_‘

15[ 0.20 0.50 0.30 0.80 1.00 1 2 3 4




Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

I Compromise between Single and Complete Link

i Strengths

I Less susceptible to noise and outliers

I Limitations

| Biased towards globular clusters



Cluster Similarity: Ward’s Method

§ Similarity of two clusters is based on the increase in
squared error when two clusters are merged

I Similar to group average if distance between points is distance
squared
§ Less susceptible to noise and outliers

! Biased towards globular clusters

! Hierarchical analogue of K-means

I Can be used to initialize K-means



Hierarchical Clustering: Comparison

MAX

Ward’s Method

Group Average




Hierarchical Clustering: Time and Space requirements

B O(N?3) space since it uses the proximity matrix.
I N is the number of points.

¥ O(N3) time in many cases

I There are N steps and at each step the size, N2, proximity
matrix must be updated and searched

I Complexity can be reduced to O(N2 log(N) ) time for some
approaches



Hierarchical Clustering: Problems and Limitations

¥ Once a decision is made to combine two clusters, it
cannot be undone

! No objective function is directly minimized

! Different schemes have problems with one or more of
the following:

I Sensitivity to noise and outliers

I Difficulty handling different sized clusters and convex shapes
I Breaking large clusters



MST: Divisive Hierarchical Clustering

I Use MST for constructing hierarchy of clusters

Algorithm 7.5 MS'T Divisive Hierarchical Clustering Algorithm

1 Compute a minimum spanning tree for the proximity graph.

2: repeat

3: Create a new cluster by breaking the link corresponding to the largest distance
(smallest similaritv).

i: until Only singleton clusters remain




DBSCAN

I DBSCAN is a density-based algorithm.

[ Density = number of points within a specified radius (Eps)

[ A point is a core point if it has more than a specified number of
points (MinPts) within Eps
| These are points that are at the interior of a cluster

[ A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point

] A noise point is any point that is not a core point or a border
point.



DBSCAN: Core, Border, and Noise Points
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DBSCAN Algorithm

! Eliminate noise points

! Perform clustering on the remaining points

current _cluster label « 1
for all core points do
if the core point has no cluster label then
current_cluster_label « current_cluster_label + 1
Label the current core point with cluster label current _cluster_label
end if
for all points in the Eps-neighborhood. except i the point itself do
if the point does not have a cluster label then
Label the point with cluster label current_cluster label
end if
end for

end for
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When DBSCAN Works Well

Clusters

Original Points

e Resistant to Noise

e Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

e Varying densities

e High-dimensional data .
(MinPts=4, Eps=9.92)



DBSCAN: Determining EPS and MinPts

Idea is that for points in a cluster, their k" nearest
neighbors are at roughly the same distance

Noise points have the k' nearest neighbor at farther
distance

So, plot sorted distance of every point to its k" nearest
neighbor

i o
o o
1

W W
o O O

- - rn "0
o "w O o
Y ¥

4th Nearest Neighbor Distance

e

0 500 1000 1500 20.00 2600 3000
Points Sorted According to Distance of 4th Nearest Neighbor

o v



Cluster Validity

For supervised classification we have a variety of measures to evaluate
how good our model is
I Accuracy, precision, recall

For cluster analysis, the analogous question is how to evaluate the
“goodness” of the resulting clusters?

But “clusters are in the eye of the beholder”!

Then why do we want to evaluate them?
I To avoid finding patterns in noise
I To compare clustering algorithms
I To compare two sets of clusters
I To compare two clusters



Clusters found in Random Data

Random
Points

K-means
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Different Aspects of Cluster Validation

Determining the clustering tendency of a set of data, i.e., distinguishing
whether non-random structure actually exists in the data.

Comparing the results of a cluster analysis to externally known results,
e.g., to externally given class labels.

Evaluating how well the results of a cluster analysis fit the data without
reference to external information.

- Use only the data

Comparing the results of two different sets of cluster analyses to
determine which is better.

Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate
the entire clustering or just individual clusters.



Measures of Cluster Validity

¥ Numerical measures that are applied to judge various aspects of
cluster validity, are classified into the following three types.

I External Index: Used to measure the extent to which cluster labels
match externally supplied class labels.
| Entropy
I Internal Index: Used to measure the goodness of a clustering structure
without respect to external information.
| Sum of Squared Error (SSE)
I Relative Index: Used to compare two different clusterings or clusters.
| Often an external or internal index is used for this function, e.g., SSE or entropy

I Sometimes these are referred to as criteria instead of indices

I However, sometimes criterion is the general strategy and index is the numerical
measure that implements the criterion.



Measuring Cluster Validity Via Correlation

¥ Two matrices

[ Proximity Matrix

[ “Incidence” Matrix
I One row and one column for each data point
I An entry is 1 if the associated pair of points belong to the same cluster
I An entry is O if the associated pair of points belongs to different clusters

§ Compute the correlation between the two matrices

[ Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

¥ High correlation indicates that points that belong to the same
cluster are close to each other.

I Not agood measure for some density or contiguity based
clusters.



Measuring Cluster Validity Via Correlation

I Correlation of incidence and proximity matrices for
the K-means clusterings of the following two data
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Using Similarity Matrix for Cluster Validation

¥ Order the similarity matrix with respect to cluster labels
and inspect visually.
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Using Similarity Matrix for Cluster Validation

¥ Clusters in random data are not so crisp

DBSCAN
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Using Similarity Matrix for Cluster Validation

¥ Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation

¥ Clusters in random data are not so crisp

Complete Link
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Using Similarity Matrix for Cluster Validation
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Internal Measures: SSE

Clusters in more complicated figures aren’t well separated

Internal Index: Used to measure the goodness of a clustering
structure without respect to external information

| SSE

SSE is good for comparing two clusterings or two clusters
(average SSE).

Can also be used to estimate the number of clusters
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Internal Measures: SSE

§ SSE curve for a more complicated data set
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Framework for Cluster Validity

! Need a framework to interpret any measure.
[ For example, if our measure of evaluation has the value, 10, is that good, fair,
or poor?
§ Statistics provide a framework for cluster validity

[ The more “atypical” a clustering result is, the more likely it represents valid
structure in the data

[ Can compare the values of an index that result from random data or
clusterings to those of a clustering result.

I If the value of the index is unlikely, then the cluster results are valid
[ These approaches are more complicated and harder to understand.
! For comparing the results of two different sets of cluster
analyses, a framework is less necessary.

] However, there is the question of whether the difference between two index
values is significant



Statistical Framework for SSE

§ Example

I Compare SSE of 0.005 against three clusters in random data

I Histogram shows SSE of three clusters in 500 sets of random data points
of size 100 distributed over the range 0.2 — 0.8 for x and y values
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Statistical Framework for Correlation

¥ Correlation of incidence and proximity matrices for the K-
means clusterings of the following two data sets.
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Internal Measures: Cohesion and Separation

Cluster Cohesion: Measures how closely related are

objects in a cluster
I Example: SSE
Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters

Example: Squared Error
I Cohesion is measured by the within cluster sum of squares (SSE)

2
WSS =3 S(x-m;)
i x&C,
I Separation is measured by the between cluster sum of squares

(m - mi)2

BSS = ) |C.
Sl

o Where |C| is the size of cluster i



Internal Measures: Cohesion and Separation

! Example: SSE
! BSS + WSS = constant

X ¢ X o— X ¢
1 m, 2 3 4 m, 5
K=1 cluster: WSS=(1-3"+(2-3+(4-3"+(5-3)"=10
BSS=4x(3-3)"=0
Total =10+0=10
K=2 clusters: WSS=(1-1.5)°+(2-1.5° +(4-4.5 +(5-4

BSS=2x(3-1.5)+2x(4.5-3)" =9
Total =1+9 =10



Internal Measures: Cohesion and Separation

! A proximity graph based approach can also be used for cohesion and
separation.
I Cluster cohesion is the sum of the weight of all links within a cluster.

I Cluster separation is the sum of the weights between nodes in the cluster and
nodes outside the cluster.

cohesion separation



Internal Measures: Silhouette Coefficient

¥ Silhouette Coefficient combine ideas of both cohesion and separation, but
for individual points, as well as clusters and clusterings
¥ For an individual point, i
I Calculate a = average distance of i to the points in its cluster
I Calculate b = min (average distance of i to points in another cluster)
I The silhouette coefficient for a point is then given by

s=1-a/b ifa<b, (ors=b/a-1 ifa=b,notthe usual case)

I Typically between 0 and 1. b
I The closer to 1 the better. %“‘g

¥ Can calculate the Average Silhouette width for a cluster or a
clustering



External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474

2 4 7 280 29 39 2 1.1472 | 0.7756

3 1 1 1 7 4 671 0.1813 | 0.9796

4 10 162 3 119 73 2 1.7487 | 0.4390

5 331 22 5 70 13 23 1.3976 | 0.7134

6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster j belongs to class ¢ as follows:
pi; = m;;/m;, where m; is the number of values in cluster j and m;; is the number of values
of class 7 in cluster 3. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; = Zf; 1 Pij logs pij, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each

cluster weighted by the size of each cluster, i.e.,e = ]

,’i] Zie;, where m; is the size of cluster
- m

1, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by purity; =

max p;; and the overall purity of a clustering by purity =

K

i1 D purity;.




Final Comment on Cluster Validity

“The validation of clustering structures is the most
difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and great
courage.”

Algorithms for Clustering Data, Jain and Dubes



