Introduction to Time in Networks

Michele Berlingerio

Why studying time in networks?

• It's everywhere

. . .

- Evolving social networks
- Information diffusion in networks
- Spread of viruses
- Performed tasks in workflows
- Folding of proteins
- Chemical reactions

Why studying time in networks?

• It's difficult to model

. . .

- From simple temporal dependencies A -> B ..
- ..to temporal annotations A(2003) -> B(2004)
- ..to recurring events A(t) -> B(t+1) -> A(t+2)
 -> B(t+3) -> .. -> A(t+2k) -> B(t+2k+1) -> ..
- ..to intervals of time A –[0, 5]->B –[2, 25] -> C
- .. to recurring intervals of time ...

Thus: it's both interesting and difficult to mine!

Time in networks: possible scenarios

- Action
 - Users perform tasks individually
 - Users perform tasks jointly
 - Users exchange information
 - Web pages get updated
- Evolution
 - New users join the communities
 - Users connect to other users
 - Users quit the communities
 - Global network statistics change
- The two may coexist!
 - Online social networks
 - The Web
 - Internet
 - ..

Time in networks: possible analyses

- Analyze global statistics
- Analyze local statistics
- Mine the information propagation
- Mine frequent evolution patterns
- Model an action log with a temporally annotated graph

•

A few examples

- Information propagation
 Leskovec et al., 2005: The Dynamics of Viral marketing
 - Viral Marketing studied with statistical approaches
 - 4 millions of people in a recommendation network
 - Decreasing influence with repeated interactions
 - But increasing with the number of recommendations

A few examples

- Workflow Mining
 - Hwang et. al, 2002: On the discovery of process models from their instances
 - Directed graphs to model workflows
 - Temporal dependencies between tasks
 - Overlapping tasks
 - Disjointed activities

A few examples

Network evolution

Sun et al., 2007: Graphscope: parameter-free mining of large time-evolving graphs

- Discovery of communities in dynamic networks
- MDL principle
- Parameter-free framework
- Clusters, no exact patterns found

Let's focus on Information Diffusion

Next slides by Jure Leskovec

Information cascades and Network effects

Processes and dynamics

Spreading through networks:

- Cascading behavior
- Diffusion of innovations
- Epidemics

Examples:

- Biological:
 - Diseases via contagion
- Technological:
 - Cascading failures
 - Spread of information
- Social:
 - Rumors, news, new technology
 - Viral marketing

Information diffusion

Information diffusion

Spread of diseases

Diffusion in Social Networks

One of the networks is a spread of a disease, the other one is product recommendations
Which is which? ^(C)

Diffusion in Networks

- A fundamental process in social networks: Behaviors that cascade from node to node like an epidemic
 - News, opinions, rumors, fads, urban legends, ...
 - Word-of-mouth effects in marketing: rise of new websites, free web based services
 - Virus, disease propagation
 - Change in social priorities: smoking, recycling
 - Saturation news coverage: topic diffusion among bloggers
 - Internet-energized political campaigns
 - Cascading failures in financial markets
 - Localized effects: riots, people walking out of a lecture

Empirical Studies of Diffusion

- Experimental studies of diffusion:
 - Spread of new agricultural practices [Ryan-Gross 1943]
 - Adoption of a new hybrid-corn between the 259 farmers in lowa
 - Classical study of diffusion
 - Interpersonal network plays important role in adoption
 Diffusion is a social process
 - Spread of new medical practices [Coleman et al. 1966]
 - Studied the adoption of a new drug between doctors in Illinois
 - Clinical studies and scientific evaluations were not sufficient to convince the doctors
 - It was the social power of peers that led to adoption

Hybrid Corn [Ryan-Gross 1966]

Diffusion in Viral Marketing

 Senders and followers of recommendations receive discounts on products

Empirical Studies of Diffusion (2)

- Diffusion has many (very interesting) flavors:
 - The contagion of obesity [Christakis et al. 2007]
 - If you have an overweight friend your chances of becoming obese increases by 57%
 - Psychological effects of others' opinions, *e.g.*: Which line is closest in length to A? [Asch 1958]

Diffusion Curves (1)

- Basis for models:
 - Probability of adopting new behavior depends on the number of friends who have adopted [Bass '69, Granovetter '78, Shelling '78]
- What's the dependence?

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Diffusion Curves (2)

- Key issue: qualitative shape of diffusion curves
 - Diminishing returns? Critical mass?
 - Distinction has consequences for models of diffusion at population level

How to model diffusion?

Probabilistic models:

- Example:
 - "catch" a disease with some prob.
 from neighbors in the network

Decision based models:

- Example:
 - Adopt new behaviors if k of your friends do

Models

Two flavors, two types of questions:

- A) Probabilistic models: Virus Propagation
 - SIS: Susceptible–Infective–Susceptible (e.g., flu)
 - SIR: Susceptible–Infective–Recovered (*e.g.*, chicken-pox)
 - Question: Will the virus take over the network?
 - Independent contagion model
- B) Decision based models: Diffusion of Innovation
 - Threshold model
 - Herding behavior
 - Questions:
 - Finding influential nodes
 - Detecting cascades

[Banerjee '92]

Decision based model: Herding

- Influence of actions of others
 - Model where everyone sees everyone else's behavior
- Sequential decision making
 - Picking a restaurant:
 - Consider you are choosing a restaurant in an unfamiliar town
 - Based on Yelp reviews you intend to go to restaurant A
 - But then you arrive there is no one eating at A but the next door restaurant B is nearly full
 - What will you do?
 - Information that you can infer from other's choices may be more powerful than your own

Herding: Structure

Herding:

- There is a decision to be made
- People make the decision sequentially
- Each person has some private information that helps guide the decision
- You can't directly observe private info of others but can see what they do
 - Can make inferences about their private information

Herding: Simple experiment

- Consider an urn with 3 marbles. It can be either:
 - Majority-blue: 2 blue, 1 red, or
 - Majority-red: 1 blue, 2 red
- Each person wants to **best guess** whether the urn is majority-blue or majority-red
- Experiment: One by one each person:
 - Draws a marble
 - Privately looks are the color and puts the marble back
 - Publicly guesses whether the urn is majority-red or majority-blue
- You see all the guesses beforehand
- How should you guess?

TIE

Herding: What happens?

What happens:

- 1st person: Guess the color you draw from the urn
- 2nd person: Guess the color you draw from the urn
 - if same color as 1st, then go with it
 - If different, break the tie by doing with your own color BREAK MG
- 3rd person:
 - If the two before made different guesses, go with your color
 - Else, just go with their guess (regardless of the color you see)
- 4th person:
 - If the first two guesses were the same, go with it
 - 3rd person's guess conveys no information
- Can model this type of reasoning using the Bayes rule
 - see chapter 16 of Easley-Kleinberg

Herding: What happens?

Cascade begins when the difference between the number of blue and red guesses reaches 2

Herding: Observations

Easy to occur given right structural conditions

Can lead to bizarre patterns of decisions

Non-optimal outcomes

With prob. ⅓·⅓=⅓ first two see the wrong color, from then on the whole population guesses wrong

Can be very fragile

- Suppose first two guess blue
- People 100 and 101 draw red and cheat by showing their marbles
- Person 102 now has 4 pieces of information, she guesses based on her own color
- Cascade is broken

Decision based models

Collective action [Granovetter, '78]

- Model where everyone sees everyone else's behavior
- Examples:
 - Clapping or getting up and leaving in a theater
 - Keeping your money or not in a stock market
 - Neighborhoods in cities changing ethnic composition
 - Riots, protests, strikes

Collective action: The model

- n people everyone observes all actions
- Each person *i* has a threshold t_i
 - Node *i* will adopt the behavior iff at the least *t_i* other people are adopters:
 - Small t_i: early adopter
 - Large t_i: late adopter
- The population is described by {t₁,...,t_n}
 - F(x) ... fraction of people with threshold $t_i \le x$

Collective action: Dynamics

Weaknesses of the model

It does not take into account:

- No notion of social network more influential users
- It matters who the early adopters are, not just how many
- Models people's awareness of size of participation not just actual number of people participating
- Modeling thresholds
 - Richer distributions
 - Deriving thresholds from mode basic assumptions
 - game theoretic models

Weaknesses of the model

It does not take into account:

- Modeling perceptions of who is adopting the behavior/ who you believe is adopting
- Non monotone behavior dropping out if too many people adopt
 - Similarity thresholds not based only on numbers
 - People get "locked in" to certain choice over a period of time

Network matters! (next slide)

How should we organize a revolt?

- You live in an oppressive society
- You know of a demonstration against the government planned for tomorrow
- If a lot of people show up, the government will fall
- If only a few people show up, the demonstrators will be arrested and it would have been better had everyone stayed at home

Pluralistic ignorance

- You should do something if you believe you are in the majority!
- <u>Dictator tip</u>: <u>Pluralistic ignorance</u> erroneous estimates about the prevalence of certain opinions in the population
 - Survey conducted in the U.S. in 1970 showed that while a clear minority of white Americans at that point favored racial segregation, significantly more than 50% believed that it was favored by a majority of white Americans in their region of the country

Organizing the revolt: The model

- Personal threshold <u>k</u>: "I will show up to the protest if I am sure at least k people in total (including myself) will show up"
- Each node in the network knows the thresholds of all their friends

Subtle issues

• Will uprising occur?

Subtle issues

Will uprising occur?

Subtle issues

Will uprising occur?

