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worked with the Electronic Frontier 
Foundation and the National Lawyers 
Guild among other organizations. 

Wolfgang Richter is a Ph.D. stu-
dent at Carnegie Mellon in computer 
science focusing on distributed com-
puting Systems. Wolf is developing 
technologies that will enable new ap-
plications in cloud computing. Dimi-
tris Mitropoulos is a Ph.D. candidate 

tory posts from each of the bloggers 
in this issue. We hope you find them 
as diverse and informative as we do. 
By the time this issue is in your hands 
there should be even more posts from 
each of the bloggers up on the website 
and maybe even some new faces there 
as well.

We’re continuing to expand the 
blog as well, so please write in and let 
us know what you think. Nominate 
a blogger or give feedback at eic@
xrds.acm.org. In the coming months 
we’ll be reaching out to ACM student 
chapters at universities worldwide. 
If you’re involved with one of these 
and would like to partner with XRDS, 
please reach out. 

Finally, we’re searching for help 
with promoting XRDS content on so-
cial networks and external blogs and 
news sites. If you have any interest in 
helping out, definitely get in touch! 
Strong candidates will have a back-
ground in computer science or tech-
nology and business or marketing. 
We’d love to hear from you!

 —Peter Kinnaird and  
Inbal Talgam-Cohen

at Athens University of Economics 
and Business in Greece. He has au-
thored numerous open source soft-
ware libraries and worked on research 
projects in information security and 
software engineering. 

Lora Oehlberg is a Ph.D. candidate 
in mechanical engineering at the Uni-
versity of California, Berkeley. Her 
work extends design theory and meth-
odology for engineers building on, in-
corporating, and pushing the bounds 
in human-computer interaction. She 
has worked at Apple and Autodesk 
among other places. Finally, Matthew 
Kay will be writing about Ubiquitous 
computing (Ubicomp). He is a Ph.D. 
student working on health sensing 
and feedback at the University of 
Washington’s Computer Science and 
Engineering Department.

We’d like to welcome all of our read-
ers to check out the fascinating blog 
posts that these contributors have 
already posted and join the conversa-
tion online by leaving comments for 
each post. Going forward, you’ll find 
a few compelling posts in each print 
edition of the magazine. In that light 
we’ve decided to feature the introduc-

Among the goals highlighted in the previous issue was the launching of a new blog  
to give voice to student concerns, interests, and opinions. To that end we’re delighted 
to announce the XRDS blog has been live since May with feature editor Shawn 
Freeman’s coverage of the ICPC World’s undergraduate programming competition.

We are currently featuring five bloggers who span continents and fields. Lea Rosen  
recently graduated from Rutgers School of Law with a J.D. She will be writing about  
the connections between technology, law, and civil and human rights issues. Lea has

Upcoming issUes 

winter 2012
[December issue]
iCt for development
Article deadline: August 31, 2012

spring 2013
[March issue]
scientific Computing
Article deadline: november 23, 2012

summer 2013
[June issue]
Cs and Creativity 
Article deadline: March 1, 2013

Announcing  
the XRDS Blog

mailto:eic@xrds.acm.org
mailto:eic@xrds.acm.org
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iNBoX

The sTArTUp issUe
This [“How to be an 
‘Entrepredemic,’” by 
Jonathan Friedman, 
June 2012] was a long 
overdue introspect in how 
to navigate the decision 
of choosing academia, 
entrepreneurship, and 
corporate America. The 
quote —“Your goal should 
be: ‘To help people do X,’ 
where X is something you 
feel extremely passionate 
about. The business is just 
a vehicle to help you get 
there.”—really says it all 
about entrepreneurship and 
research. Thanks this really 
provoked my thoughts. 
—Andrea Johnson,  
Comment on XRDS.acm.org

Editor’s reply:  
Thanks, Andrea. Happy to 
hear the article was helpful!

Great article [“Want a 
Tenure?” by Eldar Sadikov 
and Montse Medina, June 
2012], it contains a lot of 
useful information. 
—Marvin Andujar,  
Comment on XRDS.acm.org

Editor’s reply:  
Glad you enjoyed it!

Hi guys,
The role of academia in the 
startup world was a good 
read. Recently, professor 
Alan M. Davis (http://
reqbib.com/adavis/) visited 
our campus and gave an 
insightful lecture on what 
every computer science 
students needs to know 

about start-ups. He referred 
to his colleague’s (Jeff C.) 
idea that, “you and I could 
sit down at a bar and think 
of 100 new business ideas 
with no problem at all.” It is 
relatively very easy to think 
about simple ideas (that 
will eventually not work); 
the difficulty lies in making 
simple ideas work.

The “entrepredemic” 
should not only have 
academic qualification, skill, 
and expertise but also should 
be driven by passion to think 
different, make difference, 
and solve real world 
challenging problems. On 
one hand there is great risk, in 
terms of income, investments 
and mental stress. However, 
on the other hand, there is far 
greater likelihood of success 
if someone opts in for this 

type of work.
—Santosh Kalwar, Email,  
Lappeenranta University  
of Technology, Finland

AroUnd The Web 
I encourage you to check 
out ACM XRDS Magazine, 
the ACM’s magazine for 
students xrds.acm.org 
#acm_xrds
—Jessica Jones, Ph. D.  
candidate, Clemson University, 
Twitter (@JessicaNJones_)

Use ur business as a vehicle 
to help people do whatever 
it is you’re passionate 
about. ~Jonathan Friedman 
#acm_xrds. Powerful 
words!
—A.E. Johnson, Ph. D.  
candidate, Clemson University, 
Twitter (@hccandrea)

Thx for the shoutout! RT 
@XRDS_ACM: Interested 
in startups check out @
PlugandPlayTC launching 
Plug and Play Moscow  
plugandplaytechcenter.
com/blog/news/plug…
—Plug and Play, Twitter,  
(@PlugandPlayTC)

This has been a very quiet 
group.
—Shirley Hicks, Facebook

Editor’s reply: We’re looking 
for help on that front! Check 
out the “Letter from the Edi-
tors” in this issue for more 
information.

How to contact XRDS: Send a letter to the 
editors or other feedback by email (xrds@
acm.org), on Facebook by posting on our 
group page (http://tinyurl.com/XRDS-
Facebook), via Twitter by using #xrds in any 
message, or by post to ACM Attn: XRDS, 2 
Penn Plaza, Suite 701, new York, new York 
10121, U.S.

http://XRDS.acm.org
http://XRDS.acm.org
http://xrds.acm.org
http://reqbib.com/adavis/
mailto:xrds@acm.org
http://tinyurl.com/XRDS-Facebook
mailto:xrds@acm.org
http://tinyurl.com/XRDS-Facebook
http://reqbib.com/adavis/
http://plugandplaytechcenter.com/blog/news/plug
http://plugandplaytechcenter.com/blog/news/plug
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iNit

Big Data
antees about the optimality 
of these systems and strate-
gies? Even if we can store the 
data, how do we learn from 
data sets that we cannot hold 
on a single computer or even 
in many computers? Can we 
learn from data on the fly? 
Moreover, our data is hetero-
geneous: We are observing 
social networks, ad click-
throughs, gene sequences, 
protein concentrations from 
cells, as well as confidential 
personal data that must be 
kept secret. How do we adapt 
our systems and algorithms 
for all kinds of data? These 
are just some of the exciting 
challenges facing the big 
data community.

For such a diverse topic 
like big data, it is nearly im-
possible to provide a com-
prehensive picture. Instead, 
in this issue we try to high-
light some recent develop-
ments organized into three 
main themes: the theoreti-

big data is every-
where. In just about 
every part of the 
modern world, sci-

entists and engineers are 
developing new ways to 
measure events. Whether 
it’s sensors, traffic cameras, 
sales data, Web usage, gene 
expression, or just about 
anything else, we have en-
tered an age of truly massive 
data. Why do we collect this 
data? It’s simple—to learn. 
We want to make predic-
tions, quantify reality, or 
understand the past to opti-
mize the decisions we make.

Massive data leads to 
many challenges for com-
puter scientists. We’re re-
cording petabytes of data 
every day. Before we even 
think about learning from it, 
how and where do we store 
it? What kinds of systems 
do we build to retrieve and 
analyze the data? Can we 
develop theoretical guar-

cal foundation providing 
models and algorithms for 
reasoning about various 
data processing tasks, the 
large-scale computer sys-
tems for handling big data, 
and the range of applications 
and analyses enabled by big 
data from a variety of scien-
tific domains. It has been 
an interesting time for big 
data with innovations com-
ing simultaneously from 
theorists, system builders, 
and scientists or applica-
tion designers. We hope to 
provide readers with an idea 
of the interplay between de-
velopments in these three 
different communities, how 
ideas and priorities in differ-
ent communities interact, 
and together drive forward 
the development of big data 
analysis.

Theory
Opening the issue is an 
introduction to the theo-

interest in big 
data has given 
rise to a lot of 
recent interest 
in building 
systems 
to support 
queries and 
transactions 
over massive 
quantities  
of data. 
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retical work for modeling 
and studying challenges 
in big data. Jelani Nelson 
introduces us to the world 
of streaming algorithms 
where there is a voluminous 
stream of data passing by. 
One can only examine each 
piece rudimentarily and yet 
is still able to report mean-
ingful statistics about the 
whole stream at the end.

Nex t,  Ashw in Mach-
anavajjhala and Jerome P. 
Reiter describe a principled 
approach to privacy when 
dealing with big data. They 
provide examples of com-
mon pitfalls and general 
methods in both statistics 
and computer science for 
protecting privacy while 
still providing the enormous 
utility of big data. 

Ronitt Rubinfeld follows 
with a task seeming even 
more incredible: Comput-
ing the answer without even 
looking at the whole input. 
She focuses on the problem 
of understanding distribu-
tions just from a few sam-
ples, in fact, much fewer 
than the domain size.

To wrap up the theory 
foundation, Jeff Ullman pro-
vides a gentle introduction 
to designing algorithms for 
the map-reduce framework 
for parallel processing of big 
data, a hugely successful ap-
proach for distributed com-
puting in computer clusters 
with many practical applica-
tions.

sysTems
Interest in big data has 
given rise to a lot of recent 

interest in building sys-
tems to support queries and 
transactions over massive 
quantities of data. A num-
ber of important technical 
developments in this arena 
have happened outside of 
academia. We have chosen 
to present three different 
perspectives from indus-
tr y: one from a mature 
company, one from a small 
startup, and one from a 
company that is somewhere 
in between.

From Cloudera, Yanpei 
Chen and his coauthors—
Andrew Ferg uson, Brian 
Martin, Andrew Wang, Pat-
rick Wendell—provide les-
sons that can be learned 
from a small startup on big 
data and why it makes sense 
for students to intern in a 
big data startup.

Our interview with Sura-
jit Chaudhuri from Micro-
soft Research provides a 
lens into big data systems 
design from a company that 
has been designing data-
base systems for decades.

Raghotham and Rajat 
from Facebook, which has 
been in the forefront of the 
NoSQL big data movement 
(as it is called), tell us how 
Facebook designs systems 
used internally to support 
queries over the massive 
quantities of data.

If the industry perspec-
tive on building systems 
wasn’t enough, we present 
an article from Mike Carey, 
Chen Li, and Vinayak Bork-
ar from UC Irvine, who have 
been rethinking the design 
of these big data systems 

from first principles, and 
have been making some ex-
citing progress.

ApplicATions
In such massive data con-
texts, getting data into a 
form amenable to analysis 
and visualization is chal-
lenging. Jeff Heer and Sean 
Kandel write about cutting-
edge work that enables data 
analysts to quickly gain 

valuable insights from their 
data.

Social network analysts 
have been using massive 
graph data to understand 
social interactions and be-
havior. B. Aditya Prakash 
presents some of the chal-
lenges and strategies for 
studying propagation and 
immunization in the realm 
of large social networks. 

John Langford from Mi-
crosoft Research gives an 
overview of the challenges 
in machine learning on 
big data. He addresses ap-
proaches to thinking about 
learning from data in par-
allel and some interesting 
applications.

We also have massive 
datasets on the cell-by-cell 
and genome levels. Cliburn 
Chan reviews the current 
issues facing the computa-
tional biology community 
and current computational 
strategies for tackling these 
problems.

sUmmAry
Overall, through this issue, 
we are providing a peek into 
the exciting world of big 
data—through the lens of 
theorists, systems design-
ers, scientists and applica-
tion developers. Indeed, it 
is undeniable that big data 
is going to grow in impor-
tance in all fields, and will 
need our expertise. The 
expertise of an educated 
bunch of young researchers, 
scientists, and engineers. 

 —Andrew Cron, Huy 
L. Nguyen, and Aditya 

Parameswaran, Issue Editors

it has been  
an interesting 
time for big 
data with 
innovations 
coming 
simultaneously 
from theorists, 
system 
builders, and 
scientists or 
application 
designers.

project is researching the use big data can 
have in understanding global development.

one of the datasets they are currently providing to researchers is anonymized cell phone records from Cote d’ivoire, to explore 
what these might reveal about society and development there. 

The U.n. global pulse
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adviCe

This department is quite different than 
previous ones. Instead of having students 
advising you, we’ve asked a big data ex-
pert at IBM what it takes to get a job in 
big data. Here is what she had to say. 

 —Vaggelis Giannikas

F orrester, a global research and 
advisory firm, estimates firms 
effectively utilize less than five 
percent of available data, main-

ly due to the lack of training and skills 
necessary for the type of informa-
tion gathering and analysis needed to 
transform big data.  If you are consider-
ing a career in information technology, 
business analytics, and/or computer 
science, you may want to consider the 
data scientist role. As I’m often asked 
where students can begin, I’ve pulled 
together six tips for those interested 
in a career in the growing and exciting 
field of big data.

1. look for programs offering hands-on 
training. Large organizations like IBM 
are working with academic organiza-
tions around the world specifically in 
the area of expanding and strength-
ening data and analytics curricula to 
meet the growing demand of highly 
skilled business professionals of the 
future. As an example, Yale’s School 
of Management partnered with IBM to 
examine existing case studies and ap-
ply big data analytics software to solve 
problems.

2. gain domain expertise, or industry 
knowledge, across several fields before 
applying data analysis to gain the best 
insights. As Manish Parashar, direc-
tor of Rutgers Discovery Informatics 
Institute says, “Students not only need 
to learn tools to handle big data—they 
must learn how to integrate big data 

into their reasoning.” Domain exper-
tise will be important across multiple 
industries as the applications of big 
data analytics expand. 

3. develop an understanding of busi-
ness practices. In a recent conversation 
on big data skills, educator and author 
Terri Griffith believes you can’t manage 
people, technology, or organizational 
processes in silos. Instead, an effective 
data professional in the business world 
knows how to use all of their resources 
as well as mix and match solutions of 
people, technology, and other assets 
across the organization. 

4. gain background in computer science 
and software development, but do not ig-
nore basic analytical skills such as statis-
tics. During an online panel discussion, 
Anders Rhod Gregersen of Vestas Wind 
Systems stated the “power-users” of 
analytics are statisticians. By combin-
ing math with computer science, data 
professionals can develop unique algo-
rithms that analyze data in organiza-
tion-specific ways. This unique overlap 
is known as “machine learning” and is 
one of the most in-demand skills. 

5. learn to think like a scientist. Scien-
tists see the world very differently. They 
do research, ask questions, and set up 
experiments to get answers. They ques-
tion everything and don’t just look at 
data, they dissect it.   

6. Never stop learning. Ask people to 
explain what they do to expand your 
skills and explore supplemental learn-
ing opportunities.

Biography

Anjul Bhambhri has 23 years of experience in the database 
industry and is currently IBM’s vice President of Big Data 
Products, overseeing product strategy and business 
partnerships. In 2009, she received the YWCA of Silicon 
valley’s “Tribute to Women in Technology” Award. 

Six Tips for Students Inter-
ested in Big Data Analytics

BeNefit

Anyone who has had to 
perform research knows 
the value of the ACM Digital 
Library (DL). What they 
may not realize is this 
access is paid for either by 
their institution or by their 
own membership. The 
pay wall restricts access to 
the population at large—a 
controversial decision 
given how much research is 
funded from public sources. 
This has meant that for 
many years individuals have 
chosen to self-archive and 
promote their publications 
on their websites, running 
the risk of copyright 
infringement and resulting 
in inaccurate download 
counts in the DL.

ACM has come up with 
an awesome way of dealing 
with this. Author-Izer 
enables authors to generate 
and post links on their 
websites, allowing visitors 
to download the definitive 
version of their paper from 
the DL. 

So why should students 
be interested? In developing 
your career, it’s important 
to share the work you’ve 
produced. Not only does 
Author-Izer allow you to 
do this, it does it in such a 
way that any downloads off 
your personal webpage are 
counted into the download 
statistics.

For more info, visit http://
www.acm.org/publications/
acm-author-izer-service. 

 —Daniel Gooch

ACM  
Author-Izer

(1.8 trillion gigabytes) 

of information created or copied in 2011.

1.8 zettabytes 

http://www.acm.org/publications/acm-author-izer-service
http://www.acm.org/publications/acm-author-izer-service
http://www.acm.org/publications/acm-author-izer-service
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ware automated the calcu-
lation of the competition 
results.

The Short Movie Com-
petition is one example of 
a fantastic and creative way 
to broaden the range of 
activities and services pro-
vided by an ACM student 
chapter. PUCIT-ACM did a 
wonderful job of engaging 
their students and faculty in 
a fun, novel event that fused 
creativit y and computer 
science. This event helps 
remind us of the value of 
interdisciplinary activity in 
computing—not even movie 
making is too far a stretch 
for ACM student chapters!

 —Ben Deverett

updates

W ho says com-
puter science 
and creativity 
can’t mingle? 

In a creative and novel 
twist on traditional ACM 
student chapter initiatives, 
the PUCIT-ACM chapter in 
Pakistan fused the worlds 
of computer science and 
cinema with their first ever 
Short Movie Competition. 
The activity gave students 
the opportunity to dem-
onstrate their acting, di-
recting, and editing capa-
bilities—all in a computer 
science environment.

 “Enter t ainment and 
enjoyment is ever ybody’s 
right and without this life 
seems dull and boring. If 
we put some technical and 
soft skills in it, then it pro-
duces the best results in 
the form of learning and 
inspiration of students,” 

e x p l a i n e d  P U C I T-AC M 
chairman Jawad Javed. The 
goals of the program were 
numerous: to encourage a 
good combination of tech-
nical and creative skill, to 
promote awareness of vari-
ous social issues, to attract 
and inspire students to en-
gage with ACM, to provide 
a platform through which 
students could express the 
problems of society, and to 
induce intellectual discus-
sion among students.

Entries were divided into 
three categories: serious, 
documentary, and humor-
ous. The movies were limit-
ed to five minutes in length. 
Students were encouraged 
to apply their knowledge of 
image processing and mul-
timedia editing software to 
glamorize their films. Sub-
mission titles included a 
wide range of topics such as 
“History Repeats Itself” (se-
rious), “Brain Drain” (docu-
mentary), and “Recursion” 
(humorous). The activity 
recruited computer science 
faculty to sit on a panel of 
judges. The short films were 
critiqued on the basis of sto-
ry, acting, effectiveness, au-
dience response, and most 
importantly, visual effects. 
The winners in each catego-
ry represented three differ-
ent institutions in Pakistan: 
PUCIT, UET, and GCU. To 
boost entertainment, the 

animated film “Despicable 
Me” was screened following 
the competition.

But what is an ACM event 
without a bit of computing 
innovation? In an idea un-
heard of at PUCIT-ACM, 
the organizers decided to 
employ an automated judg-
ing panel and scoreboard. 
The head of the chapter’s 
IT branch teamed up with 
the creative art director to 
develop a Web-based scor-
ing system in PHP. The soft-
ware, MC2 (Movie Competi-
tion Squared), was deployed 
to the student chapter’s 
website and every judge was 
given a login to use during 
the competition. The soft-

with their eyes glued to the screen, attendees of the puCit-
aCm short movie Competition enjoy a submitted film.

Creativity and Computing
An ACM Student Chapter Initiative

servers in just one of microsoft’s  
data centres.

300,000
the cost of the first  
1gB hard drive in 1980. 

$40,000
the cost of 1gB storage  
for one year on amazon s3. 

66¢
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the newly launched Xrds blog highlights a range of topics from conference overviews to 
privacy and security, from hCi to cryptography. selected blog posts, edited for print, will be 
featured in every issue. please visit xrds.acm.org/blog to read each post in its entirety.

The Changing Nature of  
(Ubiquitous) Computing
By Matthew Kay

I seem lately to be having recurring conversations on the same 
theme: The changing nature of computing and the movement 
from desktop to mobile/ubiquitous computing. I think, like 
social change, much of technological change comes through 
new generations that grow up with realities their parents 
had to adopt—computers, the Internet, social media. 
Wonderful clichés like, “Back in my day, we had to know how 
to read a map!” betray fundamentally different views of the 
world that are symptomatic of technological shift. When 
kids are so used to a technology being there that they can’t 
conceive of its absence—the 2-year-old pinch-zooming a 
magazine in vain—that is when a new generation of people, 
whose underlying worldview is not shaped by old ideas but 
built on a foundation of new technology, develop solutions 
that are truly native to that technological landscape.

So, what does this have to do with ubicomp? Ubiquitous 
computing is a thing—separate from other instantiations 
of interactive computing—only insofar as it isn’t 
ubiquitous. Once it underlies, as it increasingly does, so 
much of how we interact with technology on a day-to-day 
basis, it becomes less meaningful to say one does work in 
ubiquitous computing apart from other areas of human–
computer interaction (HCI).

For example, my own interest in pervasive health 
sensing and feedback (i.e. mobile, or in-home, or ubiquitous 
health tech) did not arise from my interests in ubiquitous 
computing as an area—I had none. It arose, broadly, from 
my interest in human–computer interaction and a particular 
application area. It happens that many of the problems and 
questions I am interested in draw on ubicomp solutions, and 
are appropriate for a ubicomp audience, but if (for example) 
my research takes me into Web-based or desktop-based 
solutions I will follow my way there. I suspect many other 
people ostensibly in ubicomp today feel similarly. Ten or 20 
years out from now, when the kids who today are frustratedly 
pinch-zooming magazines have become researchers 
and app developers, it won’t occur to them that building 
interactive systems doesn’t involve ubicomp, since in their 
technological landscape the two will be the same.

As the computing everyone uses moves off the desktop, 
more and more questions in human–computer interaction 
involve ubiquitous computing technology, such as smart-
phones, even if only as a platform. Does that research then 
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become ubicomp work? Or will the notion of ubicomp be-
come so embedded in much of the rest of HCI that this dis-
tinction is meaningless? Like most things there is a grey 
area here, but as ubicomp becomes integral to much of HCI 
it might be useful to ask if we need to rethink the boundar-
ies of these concepts. I suspect the coming generation of 
pinch-zoomers will have difficulty seeing the difference.

Matthew Kay is a Ph.D. student in computer science and engineering at the University of 
Washington. He studies health sensing and feedback.

How Secure is Your Software?
By Dimitris Mitropoulos

When you are implementing an application, your first 
goal is to achieve a specific functionality. You will follow 
some code conventions during implementation while 
simultaneously checking your code quality. But how secure 
is your code? Is there a way for a malicious user to harm you 
or your application by taking advantage of potential bugs 
that exist in your code? Unfortunately, most programmers 
have been trained in writing code that implements the 
required functionality without considering its many 
security aspects. Most software vulnerabilities derive from 
a relatively small number of common programming errors 
that lead to security holes. 

In 2001 when software security was first introduced as 
a field, information security was mainly associated with 
network security, operating systems security, and viral 
software. Until then, there were hundreds of millions of 
applications implemented but not with security in mind. 
As a result, the vulnerabilities “hidden” in these (now 
legacy) applications can still be used as backdoors that 
lead to security breaches.

Although, nowadays computer security is standard 
fare in academic curricula around the globe, few courses 
emphasize secure coding practices. For instance, during 
a standard introductory C course, students may not 
learn that using the gets function could make their code 
vulnerable to an exploit. Even if someone includes it in a 
program, while compiling he or she will get the following 
obscure warning: “the ‘gets’ function is dangerous and 
should not be used.” Well, gets is dangerous because it is 
possible for the user to crash the program by typing too 
much into the command prompt. In addition, it cannot 
detect the end of available memory, so if you allocate an 
amount of memory too small for the purpose, it can cause a 
segmentation fault and crash.

http://xrds.acm.org/blog
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The situation is similar in Web programming. 
Programmers are not aware of security loopholes inherent 
to the code they write; in fact, knowing they program using 
higher level languages than those prone to security exploits, 
they may assume these render their application immune 
from exploits stemming from coding errors. Common traps 
into which programmers fall concerns user input validation, 
the sanitization of data that is sent to other systems, the lack 
of definition of security requirements, the encoding of data 
that comes from an untrusted source, and others.

Do not panic, you are not obliged to become an expert in 
secure coding. There are numerous tools that can help you 
either build secure applications or protect existing ones. 

Dimitris Mitropoulos is a Ph.D candidate at the Athens University of Economics and 
Business. His research interests include information security and software engineering. 

Eyes Clouded by  
Distributed Systems
By Wolfgang Richter

You are probably reading this article with a dual- or quad-
core processor, and perhaps with even more cores. Your 
computer is already a distributed system, with multiple 
computing components—cores—communicating with 
each other via main memory and other channels such as 
physical buses—or wires—between them. As you browse 
multiple Web pages you are interacting with the largest 
distributed system ever created—the Internet. Every 
Internet company depends on distributed systems, and, 
by extension, the economies of the world are now tied to 
them. Companies such as Google, Facebook, and Amazon 
are all interested in building highly efficient large-scale 
distributed systems, which power their businesses. 

With world economies tied to distributed systems, it is no 
mistake that the study of distributed systems is paramount to 
the future of computing and research reflects this with efforts 
such as the Exascale project. The Exascale project explores 
what future distributed systems might look like beyond the 
largest scale imaginable today. No problem moving forward 
will be able to avoid the often messy, although ultimately sat-
isfying when overcome, challenges of distributed computing. 

We must come to agreement on the definition for distrib-
uted system. Of course, my view is clouded by a lens through 
which I see everything as a distributed system. You may not 
agree with me, and we encourage discourse, so please feel 
free to comment in with your criticism. I hope that the defini-
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tion below crisply defines what a distributed system is in your 
mind, as I hope to dissect many of the most interesting devel-
opments in distributed systems research in future articles:

In computer science, a distributed system is any set of enti-
ties capable of computation, which also have the capability of 
communicating via a set of mechanisms such that computation 
may be organized among them.

Examples of distributed systems:
1. Car; multiple embedded microprocessors
2. Single core computer with graphics card; two discrete 

computation entities communicating via shared buses
3. Multicore computer; clearly a distributed system with 

multiple cores
4. Networked computers; at a minimum they cooperate 

via network protocols, in the limit they could be architected 
together for high performance or scientific computing.

Wolfgang Richter is a fourth year Ph.D. student in the CS Departmentat at Carnegie Mellon 
University. His research focus is distributed systems, specifically both retrospecting and 
introspecting clouds and other collections of virtual machines.

Dear HCI, Thank you. Love, 
Mechanical Engineering
By Lora Oehlberg

My entire academic background—B.S., M.S., Ph.D.—is in 
mechanical engineering, specializing in design. However, 
in addition to conferences hosted by the American Society 
of Mechanical Engineering, I also attend the suite of ACM’s 
Human-Computer Interaction (HCI) Conferences. So, why 
should mechanical engineering care about HCI? 

Product design refers to the blend of mechanical 
engineering and industrial design. Design is the “outward 
facing” side of mechanical engineering; product designers 
conceptualize, design, and implement many of the physical 
products you interact with on a daily basis. In the cafe that 
I’m currently writing from, a design engineer was involved 
in everything from the teacup, the teapot, the table, the 
chair, and the laptop I’m writing on… and all the packaging 
that each of those products arrived in. These traditional 
products still have interfaces—examples from Don 
Norman’s infamous Design of Everyday Things address how 
people physically interact with “non-smart” products and 
devices such as teapots, doorknobs, or rotary telephones. 
Today’s product designers are asked to not only design the 
physical product, but also weigh in on how the user should 
interact with smart products.

Early-stage phases of new product development—

the city of santa Cruz, Ca was able to achieve by using 
crime data to predict where future crimes would happen. 

27% the reduction in burglaries  
from July 2010 to July 2011
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particularly user research and concept generation—are 
agnostic to whether or not the final “product” is a physical 
product, software, a physical or digital service, or an 
architectural space. As a result, many of the same design 
theory principles coming out of the interaction design 
community are broadly applicable to other design domains, 
including product design or new product development, 
within some level of translation.

While computer scientists frequently design new 
programming environments for themselves, mechanical 
engineers and new product developers are not always the 
subject of thoughtful, human-centered technology design. 
Taking an HCI perspective to understand how engineers and 
designers are users of software opens up the possibility for 
better-designed tools in the future (I’m looking at you, CAD!).

It’s sometimes easy to get lost in cognition, perception, 
algorithms, and pixels. However, when mechanical 
engineers check their gut, they see the physical interface 
between humans and computers. You’ll see plenty of 
relevant contributions from mechanical engineering in 
the areas of ergonomics, haptic feedback, or tangible 
interfaces. But more broadly, mechanical engineers offer 
the reminder that humans (and computers) still primarily 
exist in a physical world.

lora oehlberg is a Ph.D. candidate in mechanical engineering at the University of 
California, Berkeley. Her research focuses on design theory and methodology, and 
frequently extends into HCI.

If You Think Network  
Security is a Safety Issue, 
You’ll Need to Deal with  
Cost-Benefit Analysis
By Lea Rosen

I gave a short presentation at Hive76 recently, and after it 
was over I hung around answering questions. One man 
asked me, repeatedly, whether the FDA has codified security 
standards for networked and wireless medical devices 
like insulin pumps and pacemakers. The answer wasn’t 
satisfactory for either of us; he was sincerely alarmed, and 
I couldn’t reassure him. When I said they have no such 
standards, he asked me why not. If their mandate is to 
ensure the safety of medical devices, he said, how could 
they reasonably neglect such an obvious security risk? 

Many of us believe this kind of security bears 
seriously on human safety and human rights. I think 

this perspective is common in engineers, designers, and 
hackers—people for whom network and wireless security 
are tangible realities, who are accustomed to translating 
abstract into concrete. And yet, government agencies 
tasked with ensuring our safety seem oblivious to the 
danger posed by insecure networks. That’s why the man I 
spoke to was so frustrated—he saw technological security 
as a natural extension of the FDA’s mandate to ensure the 
safety of medical implants and devices. It seemed to him 
like they were failing to adequately do their job. 

Look, civil servants are as able as anyone to comprehend 
the danger that insecure pacemakers or insulin pumps might 
pose. But they’re also required to prepare and present cost-
benefit analysis reports to the Office of Management and 
Budget before they can do anything. Cost-benefit analysis 
(CBA) is probably familiar to most readers of this blog. 
It’s a method of decision-making that aims to maximize 
welfare along an economic model. After accumulating 
data on the benefits and costs of each project, the analysis 
determines whether the benefits o outweigh the costs. Since 
1981, all federal agencies have been required by law to use 
CBA to determine how they will carry out their individual 
mandates. The question they need to answer is not whether a 
project would be useful, or a logical extension of an agency’s 
mandate, but whether the project is economically rational.

The risk posed to human life by bad or nonexistent 
security is difficult to quantify. The FDA would need to 
do so much outside work just to prepare itself to do these 
initial evaluations that it’s unlikely to ever seem worth 
it compared to the current status quo. It is possible that 
investing in security—developing standards, hiring or 
outsourcing experts, training employees in an area with 
which they are presumably not familiar—just isn’t an 
economically rational thing for the FDA to do.

There is no federal agency that regulates the network 
security of consumer devices, and it seems unlikely that 
existing agencies will find it economically rational in the 
near future to invest in learning how to evaluate the risk 
and harm that might come of bad security. If secuarity 
experts want to persuade the administrative state to take 
a serious interest in this problem—and many of us believe 
that it should—the language and values of cost-benefit 
analysis are important to consider. If CBA can be used to 
make a case for device security, we should make it. If the 
numbers don’t add up in our favor, it’ll be all the more 
essential to articulate why agencies like the FDA should 
look at network security in a different way.

lea Rosen, J.D., writes about technology and law, with a focus on civil and human rights 
issues inherent in the creation and adoption of new technologies. 

for google to sort 1pB 100-byte records in 2008.
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sketching  
and streaming  
Algorithms  
for processing  
massive data

s everal modern applications require handling data so massive that traditional 
algorithmic models do not provide accurate means to design and evaluate efficient 
algorithms. Such models typically assume that all data fits in memory, and that 
running time is accurately modeled as the number of basic instructions the 

algorithm performs. However in applications such as online social networks, large-scale 
modern scientific experiments, search engines, online content delivery, and product and 
consumer tracking for large retailers such as Amazon and Walmart, data too large to fit in
memory must be analyzed. This con-
sideration has led to the development 
of several models for processing such 
large amounts of data: The external 
memory model [1, 2] and cache-oblivi-
ousness [3, 4], where one aims to mini-
mize the number of blocks fetched 
from disk; property testing [5], where it 
is assumed the data is so massive that 
we do not wish to even look at it all and 
thus aim to minimize the number of 
probes made into the data; and mas-

sively parallel algorithms operating in 
such systems as MapReduce and Ha-
doop [6, 7]. Also in some applications, 
data arrives in a streaming fashion 
and must be processed on the fly. Such 
cases arise, for example, with packet 
streams in network traffic monitoring, 
or query streams arriving at a Web-
based service such as a search engine. 

In this article we focus on this lat-
ter streaming model of computation, 
where a given algorithm must make 

one pass over a data set to then com-
pute some function. We pursue such 
streaming algorithms, which use mem-
ory that is sublinear in the amount of 
data, since we assume the data is too 
large to fit in memory. Sometimes it 
becomes useful to consider algorithms 
that are allowed not just one, but a few 
passes over the data, in cases where the 
data set lives on disk and the number of 
passes may dominate the overall run-
ning time. We also occasionally discuss 

The rate at which electronic information is generated in  
the world is exploding. In this article we explore techniques  
known as sketching and streaming for processing massive  
data both quickly and memory-efficiently.

By Jelani Nelson
DOI: 10.1145/2331042.2331049
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feature

traffic. Such knowledge can help in 
detecting Denial of Service attacks, 
as well as designing network infra-
structure to minimize costs. For com-
panies serving similar or identical 
content to large numbers of users, 
such as Akamai or Dropbox, it may be 
beneficial to detect whether certain 
content becomes hot, i.e. frequently 
downloaded, to know which files to 
place on servers that are faster or have 
connections with higher bandwidth.

The formal setup of this problem 
is as follows. There is some stream of 
tokens i1, i2, …,im with each ij coming 
from some fixed set of size n (e.g. the 
set of all 232 IPv4 IP addresses, or the 
set of all queries in some dictionary). 
Let us just suppose this fixed set is [n] 
(denoting the set {1, 2, …, n}). For some 
0 < ε ≤ 1/2 known to the algorithm at 
the beginning of the stream, we would 
like to report all indices i  [n] such that 
i appeared in the stream more than 
εm times. This formalization models 
the examples above: A query stream 
coming into Google, a packet stream 
going through a router, or a stream of 
downloads over time made from some 
content delivery service.

One of the oldest streaming algo-
rithms for detecting frequent items 
is the MJRTY algorithm invented by 
Boyer and Moore [15]. MJRTY makes 
the following guarantee: If some i ∈ [n] 
appears in the stream a strict majority 
of the time, it will be found. If this guar-
antee does not hold, MJRTY may output 
anything. Note that if given a second 
pass over the stream, one can verify 
whether the output index actually is a 
majority index. Thus, MJRTY solves the 
frequent items problem for ε = 1/2.

Before describing MJRTY, first con-
sider the following means of carrying 
out an election. We have m voters in a 
room, each voting for some candidate i  
[n]. We ask the voters to run around the 
room and find one other voter to pair 
up with who voted for a different can-
didate (note that some voters may not 
be able to find someone to pair with, 
for example if everyone voted for the 
same candidate). Then, we kick every-
one out of the room who did manage 
to find a partner (see Figure 1). A claim 
whose proof we leave to the reader as 
an exercise is that if there actually was 
a candidate with a strict majority, then 

sketches. A sketch is with respect to 
some function f, and a sketch of a data 
set x is a compressed representation of 
x from which one can compute f(x). Of 
course under this definition f(x) is itself 
a valid sketch of x, but we often require 
more of our sketch than just being able 
to compute f(x). For example, we typi-
cally require that it should be possible 
for the sketch to be updated as more 
data arrives, and sometimes we also 
require sketches of two different data 
sets that are prepared independently 
can be compared to compute some 
function of the aggregate data, or simi-
larity or difference measures across 
different data sets.

Our goal in this article is not to 
be comprehensive in our coverage of 
streaming algorithms. Rather, we dis-
cuss in some detail a few surprising 
results in order to convince the read-
er that it is possible to obtain some 
non-trivial algorithms within this 
model. Those interested in learning 
more about this area are encouraged 
to read the surveys [8, 9], or view the 
notes online for streaming courses 
taught by Chakrabarti at Dartmouth 
[10], Indyk at MIT [11], and McGregor 
at UMass Amherst [12].

probAbilisTic coUnTing
How many bits does it take to store an 
integer between 1 and n? The answer 
is clearly log2 n bits, else two integers 
would map to the same bitstring and 
be indistinguishable. But what if we 
only care about recovering the integer 
up to a constant factor? Then it suffic-
es to only recover log n, and storing 
log n only requires O (log log n) bits.

This observation was behind one 
of the oldest known streaming al-

gorithms, proposed by Morris, for-
mer chief scientist of a division of 
the NSA (and father of the inventor 
of the first Internet worm) [13]. Con-
sider the streaming problem where 
we see a stream of n increments. We 
would like to compute n, though ap-
proximately, and with some potential 
small probability of failure. We could 
keep an explicit counter in memory 
and increment it after each stream 
update, but that would require log2 n 
bits. Morris’ clever algorithm works 
as follows: initialize a counter c to 
1, and after each update increment 
c with probability 1/2C and do noth-
ing otherwise. Flajolet showed the 
expected value of 2C is n + 2 after n 
updates [14], and thus 2C – 2 is an un-
biased estimator of n. The same work 
showed the variance is bounded such 
that 2C – 2 will be within a constant 
factor of n with constant probability. 
By a combination of averaging many 
independent estimators, as well as at-
tempting to store log1+γ n in memory 
instead of log2 n for some small γ > 
0 by incrementing with higher prob-
ability, it is possible to obtain more 
precise approximations of n in small 
memory with very large probability.

FreqUenT iTems
A common desired ability in many 
software systems is the ability to 
track “hot” items. For example, 
Google Trends keeps track of the 
search queries and topics that have 
been the most popular over a recent 
time window. Large ISPs like AT&T 
want to monitor IP traffic being 
routed through their network to un-
derstand, for example, which servers 
are receiving the largest amounts of 

figure 1: explaining the mJrty algorithm.
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some non-zero number of voters will 
be left in the room at the end, and fur-
thermore all these voters will be sup-
porters of the majority candidate.

The MJRTY algorithm is sim-
ply the streaming implementation 
of the election procedure stated in 
the previous paragraph. We imag-
ine an election official sitting at the 
exit door, processing the voters one 
by one. When the next voter is pro-
cessed, he will either be asked to sit 
aside amongst a pool of people wait-
ing to be paired off (clearly everyone 
in this pool supports the same candi-
date, else the official could pair two 
people in the pool with each other 
and kick them out of the room), or 
he will be paired up with someone in 
the pool and removed. Now, when a 
new voter approaches the official one 
of several things may happen. If the 
pool is empty, the official adds him to 
the pool. If the pool is not empty and 
he is voting for a different candidate 
than everyone in the pool, the official 
grabs someone else from the pool, 
pairs them off, and kicks them both 
out of the room. Else if his vote agrees 
with the pool, the official adds him 
to the pool. If the pool is non-empty 
at the end, then the candidate the 
pool supports is labeled the majority 
candidate. Note that this algorithm 
can be implemented to discover the 
majority by keeping track of only two 
things: The size of the pool, and the 
name of the candidate everyone in 
the pool supports. Maintaining these 
two integers requires at most log2 n +  
log2 m bits of memory.

What about general ε < 1/2? A natu-
ral generalization of the MJRTY al-
gorithm was invented by Misra and 
Gries [16] (and has been rediscovered 
at least a couple times since then [17, 
18]). Rather than pair off voters sup-
porting different candidates, this 
algorithm tells the voters to form 
groups of size exactly k such that no 
two people in the same group support 
the same candidate. Then everyone 
who managed to make it into a group 
of size exactly k is kicked out of the 
room. It can be shown that any candi-
date receiving strictly more than m/k 
votes will be supported by one of the 
last candidates standing, so we can 
set k = 1/ε. Furthermore, a simple 

extension of the MJRTY algorithm 
implementation using k-1 ID/counter 
pairs (and thus using O (k log (n + m)) 
bits of space) provides a streaming al-
gorithm. When a new voter enters, if 
he matches with any candidate in the 
pool then we increment that counter 
by one. Else, we decrement all coun-
ters by one (corresponding to forming 
a group of size k and removing them).

disTincT elemenTs
On July 19, 2001 a variant of the Code 
Red worm began infecting machines 
vulnerable to a certain exploit in an 
older version of the Microsoft IIS web 
server. The worm’s activities included 
changing the website hosted by the 
infected Web server to display

HELLO!  
Welcome to http://www.worm.com!  

Hacked By Chinese!

as well as an attempted Denial of 
Service attack against www1.white-
house.gov.

In August 2001, while trying to 
track the rate at which the worm was 
spreading, Moore and Shannon at The 
Cooperative Association for Internet 
Data Analysis (CAIDA) needed to track 
the number of distinct IP addresses 
sending traffic on particular links 
whose packets contained the signa-
ture of the Code Red worm. This setup 
turns out to precisely be an instantia-
tion of the distinct elements problem 
introduced and studied by Flajolet and 
Martin [19]. In this problem, one has a 
stream of elements i1, i2, …,im each be-

ing an integer in the set {1, 2, …, n}. 
Then, given one pass over this stream, 
one must compute F0, the number of 
distinct integers amongst the ij. In the 
case of tracking the Code Red worm, 
n = 232 is the number of distinct IP 
addresses in IPv4, and m is the num-
ber of packets traversing a monitored 
link while carrying the signature of 
the worm. Aside from network traffic 
monitoring applications, the distinct 
elements problem naturally arises in 
several other domains: estimating the 
number of distinct IP addresses visit-
ing a website, or number of distinct 
queries made to a search engine, or 
to estimate query selectivity in the de-
sign of database query optimizers.

An obvious solution to the distinct 
elements problem is to maintain a 
bitvector x of length n, where we ini-
tialize x = 0 then set xi = 1 if we ever 
see i in the stream. This takes n bits of 
memory. Another option is to remem-
ber the entire stream, taking O (m log 
n) bits. In fact Alon, Matias and Sze-
gedy [20] showed Ω (min{n, m}) bits 
are necessary for this problem unless 
slack is allowed in two ways:

1. Approximation. We do not prom-
ise to output F0 exactly, but rather 
some estimate such that |F0  – F0| ≤ εF0.

2. Randomization. Our algorithm 
may output a wrong answer with 
some small probability.

Our goal is now to produce such 
an estimate F0, which is within εF0 of 
F0 with probability at least two-thirds. 
This success probability can be ampli-
fied arbitrarily by taking the median 
estimate of several independent par-
allel runs of the algorithm. Our goal 
is to design an algorithm using f (1/ε) 
· log n bits of memory, e.g. O (log n) 
memory for a constant factor approxi-
mation. Note that just storing an in-
dex in [n] requires log2 n bits, which 
we presume fits in a single machine 
word, so we are aiming to use just a 
constant number of machine words!

In fact, such an algorithm is pos-
sible. Suppose for a minute that we 
had access to a perfectly random hash 
function h mapping [n] to the con-
tinuous interval [0, 1] (although one 
might work with a sufficiently fine 
discretization of this interval since 
computers can only store numbers to 
finite precision). We maintain a single 

Several modern 
applications 
require handling 
data so massive 
that traditional 
algorithmic models 
do not provide 
accurate means to 
design and evaluate 
efficient algorithms. 

http://www1.whitehouse.gov
http://www1.whitehouse.gov
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desired approximation guarantees 
with large constant probability.

Linear SketcheS
In some situations we do not simply 
want to compute on data coming into a 
single data stream, but on multiple data-
sets coming from multiple data streams. 
For example, we may want to compare 
traffic patterns across two different time 
periods, or collected at two different 
parts of the network. Another motivat-
ing force is parallelization: Split a single 
data stream into several to farm out 
computation to several machines, then 
combine the sketches of the data these 
machines have computed later to recov-
er results on the entire data set.

One way of accomplishing the above 
is to design streaming algorithms that 
use linear sketches. Suppose we are 
interested in a problem, which can 
be modeled in the following turnstile 
model. We have a vector x ∈ Rn that 
receives a stream of coordinate-wise 
updates of the form xi ← xi + v (v may 
be positive or negative). We then at the 
end of the stream want to approximate 
f (x) for some function f. For example in 
the distinct elements problem, v is al-
ways 1 and f (x) = |{i : xi ≠ 0}|. A stream-
ing algorithm using a linear sketch is 
then one whose memory contents can 
be viewed as Ax for some (possibly ran-
dom) matrix A. Unfortunately the algo-
rithms discussed above do not operate 
via linear sketches, but now we will see 
examples where this is the case.

Join size estimation. When query-
ing a relational database there can be 
multiple ways of executing the query 
to obtain the result, for example by 
taking advantage of associativity. Da-
tabase query optimizers try to cheaply 
estimate a plan to use to answer the 
query so as to minimize the time re-
quired. For queries involving joins or 
self-joins, such optimizers make use 
of size estimates of these joins to esti-
mate intermediate table sizes. Ideally 
we would like to obtain these estimates 
from a short sketch that can fit in cache 
and thus be updated quickly as data is 
inserted into the database.

Let us formally define this problem. 
We have an attribute A and domain D, 
and for i ∈ D we let xi denote the fre-
quency of i in A. We will assume that 
D = [n]. The self-join size on this attri-

number X in memory: The minimum 
value of h(i) we have ever encountered 
over all i appearing in the stream. One 
can show that the expected minimum 
value satisfies

EX = 1/(F0 + 1).

Thus a natural estimator is to output 
1/X – 1. Unfortunately a calculation 
shows the standard deviation of X is 
almost equal to its expectation, so that 
1/X – 1 is poorly concentrated around 
a good approximation of F0. This can 
be remedied by letting X be the aver-
age of many independently such Xs 

obtained independently at random in 
parallel, then instead returning 1/X– 
1. A more efficient remedy was found 
by Bar Yossef et al. [21], and further 
developed (and named as the KMV al-
gorithm that stands for “k minimum 
values”) by Beyer et al. [22]. The algo-
rithm maintains the k minimum hash 
values for k = O (1/ε2). Now let Xk denote 
the kth minimum hash value. Then 

EXk = k/(F0 + 1),

and the returned estimate is thus giv-
en as k/Xk – 1. This algorithm can be 
shown to return a value satisfying the 

Mastering Real-time Big Data  
with Stream Processing Chains
DOI: 10.1145/2331042.2331050

Pervasive applications rely on increasingly complex 
streams of sensor data continuously captured from 
the physical world. Such data is crucial to enable 
applications to “understand” the current context 
and to infer the right actions to perform, be they 
fully automatic or involving some user decisions. 

The continuous nature of such streams, the progressive increase 
of monitored features, the relatively high throughput at which data 
is generated and the number of sensors usually deployed in the 
environment, impose stricter requirements on monitoring networks 
and software, by requiring both single-event granularity and aggregate 
measures computation. The former ensures fine analysis of anomalous 
conditions while the latter grants constant human-addressable 
monitoring of relevant features. We introduce an open source stream-
processing framework, named spChains (http://elite.polito.it/spchains), 
based upon state-of-the-art stream processing engines, which enables 
declarative and modular composition of stream processing chains 
built atop of a set of stream processing blocks. Blocks are predefined 
in an extensible library and designed to be application-independent; 
the library components cover a relevant set of elaborations emerging 
from typical energy monitoring applications. They can readily be 
reused in almost any processing task. On the converse, chains (i.e., 
connected sets of blocks) must be designed according to the specific 
data-processing needs, composing together the available blocks 
and extending the base block library when needed. We demonstrate 
the flexibility and effectiveness of the spChains framework using a 
two-phase experimentation process. In the first phase, performance 
characterization is carried, showing that the current spChains 
implementation can easily handle from 20k to 130k events per second, 
depending on the required processing. Secondly, a real-world trial on 
some commercial applications, is analyzed and results confirm the 
flexibility of the approach and its applicability in typical enterprise-level 
settings. (You can read the full article online at http://xrds.acm.org/
article.cfm?aid=2331050) —Dario Bonino and Luigi De Russis

http://elite.polito.it/spchains
http://xrds.acm.org/article.cfm?aid=2331050
http://xrds.acm.org/article.cfm?aid=2331050
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bute is then  x 2
2 = ∑i xi

2, and thus we 
simply want to estimate the squared 
2-norm of a vector being updated in a 
data stream. In fact this general prob-
lem has a wider range of applicability. 
For example, noting that  x 2

2 is sensi-
tive to heavy coordinates, AT&T used 
2-norm estimation to detect traffic 
anomalies where servers were receiv-
ing too much traffic, signaling poten-
tial Denial of Service attacks (in this 
case xi is the number of packets sent to 
IP address i) [23, 24].

The “AMS sketch” of Alon, Matias, 
and Szegedy [20, 25] provides a low-
memory streaming algorithm for es-
timating  x 2

2. Suppose we had a ran-
dom hash function h:[n] →{–1, 1}. We 
initialize a counter X to 0, and when 
some value v is added to xi we incre-
ment X by v · h(i). Thus at the end of the 
stream, X = ∑i  xi · hi. It can be shown 
that EX2 =  x 2

2 and that the variance 
satisfies E(X2 – EX2)2 ≤ 2 x 4

2. By keep-
ing track of k such counters X1, X2, …, 
Xk each using independent random 
hash functions hi and averaging the 
Xi

2, we obtain an unbiased estimator 
with smaller variance. Standard tools 
like Chebyshev’s inequality then im-
ply that if k = O (1/ε2) then the average 
of the Xi

2 will be within ε  x 2
2 of  x 2

2 
with large constant probability. Note 
that this is a linear sketch using a k 
× n matrix A, where Ai,j = hi( j)/√k  and 
our estimate of  x 2

2 is  Ax 2
2.

pseUdorAndomness
One caveat in many of the algorithms 
presented above is our assumption that 
the hash functions used be random. 

There are tn functions mapping [n] to 
[t], and thus a random such function 
requires at least n log2 t bits to store. 
In applications where we care about 
small-memory streaming algorithms, n 
is large, and thus even if we find an al-
gorithm using sublinear space it would 
then not be acceptable to use an addi-
tional n bits of space or more to store the 
hash function needed by the algorithm.

The above consideration thus push-
es streaming algorithm designers to 
look for hash functions, which are not 
actually fully random, but only “ran-
dom enough” to ensure that the algo-
rithms in which they are being used 
will still perform correctly. At the high-
est level there are two directions one 
can then take to find such hash func-
tions. One is to make some complexity 
theoretic assumptions, for example to 
assume that no efficient algorithm ex-
ists for some concrete computational 
problem, then to construct hash func-
tions that can be proven sufficient 
based on the assumption made. The 
other direction is to construct hash 
functions that are provably sufficiently 
random without making any such as-
sumptions. This latter direction is for 
obvious reasons typically harder to im-
plement but is possible in certain ap-
plications, such as for all the problems 
mentioned above. This area of con-
structing objects (such as functions) 
that look “random enough” for various 
computational tasks is known as pseu-
dorandomness, and the interested 
readers may wish to read further [26]. 
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[17] Demaine, E. D., ĺ opez-ortiz, A., and Munro, J. I. 
Frequency estimation of Internet packet streams with 
limited space. In Algorithms - ESA 2002, lecture notes 
in Computer Science, eds. Rolf Möhring and Rajeev 
Raman. Springer Berlin/Heidelberg, 2002,  348–360.

[18] Karp, R. M., Shenker, S., and Papadimitriou, C. H. A 
simple algorithm for finding frequent elements in 
streams and bags. ACM Transactions on Database 
Systems 28 (2003), 51–55.

[19] Flajolet, P. and Martin, G.n. Probabilistic counting 
algorithms for data base applications. Journal 
of Computer and System Sciences 31, 2 (1985), 
182–209.

[20] Alon, n., Matias, Y., and Szegedy, M. The space 
complexity of approximating the frequency 
moments. Journal of Computer and System 
Sciences 58, 1 (1999), 137–147.

[21] Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, 
D., and Trevisan, l. Counting distinct elements 
in a data stream. In Proceedings of  the Sixth 
International Workshop on Randomization and 
Approximation Techniques, (RAnDoM). Springer-
verlag, london, 2002, 1–10.

[22] Beyer, K. S., Gemulla, R., Haas, P. J., Reinwald, B., and 
Sismanis, Y. Distinct-value synopses for multiset 
operations. Communications of the ACM 52, 10 
(2009), 87–95.

[23] Krishnamurthy, B., Sen, S., Zhang, Y., and Chen, Y. 
Sketch-based change detection: Methods, evaluation, 
and applications. In Proceedings of the Third ACM 
SIGCoMM Conference on Internet Measurement 
(Miami Beach, oct.  27-29, 2003), 234–247.

[24] Thorup, M. and Zhang, Y. Tabulation-based 
5-independent hashing with applications to linear 
probing and second moment estimation. SIAM 
Journal of Computing 41,2 (2102), 293–331.

[25] Alon, n., Gibbons, P. B., Matias, Y., and Szegedy, M. 
Tracking join and self-join sizes in limited storage. 
Journal of Computer and System Sciences 64, 3 
(2002),719–747.

[26] vadhan, S. Pseudorandomness. Foundations and 
Trends in Theoretical Computer Science, to appear.

Biography

Jelani nelson recently finished his Ph.D. in computer 
science at the Massachusetts Institute of Technology 
in 2011. He is currently a postdoctoral researcher in 
theoretical computer science at Princeton University 
and the Institute for Advanced study and will begin as 
an assistant professor of computer science at Harvard 
University in 2013. His research interests are primarily in 
algorithms for processing massive data.

© 2012 ACM 1528-4972/12/09 $15.00

Large ISPs like  
AT&T want to 
monitor IP traffic 
being routed through 
their network to 
understand, for 
example, which 
servers are receiving 
the largest amounts 
of traffic. 

http://hadoop.apache.org/common/docs/r0.17.2/hdfs_design.html
http://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/
http://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/
http://stellar.mit.edu/S/course/6/fa07/6.895/
http://stellar.mit.edu/S/course/6/fa07/6.895/
http://people.cs.umass.edu/~mcgregor/courses/CS711S12/index.html
http://people.cs.umass.edu/~mcgregor/courses/CS711S12/index.html
http://hadoop.apache.org/common/docs/r0.17.2/hdfs_design.html


X R D S  •  F a l l 2 0 1 2 •  V o l . 1 9 •  N o . 120

big privacy:  
protecting  
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for assessing and protecting privacy in large, public data sets.
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A tremendous amount of data about individuals—demographic information, Internet 
activity, energy usage, communication patterns, and social interactions, to mention 
a few—are being collected by national statistical agencies, survey organizations, 
medical centers, and Web and social networking companies. Wide dissemination  

of such microdata (data at the granularity of individuals) facilitates advances in science  
and public policy, helps citizens to learn about their societies, and enables students to 
develop data analysis skills. Often, however, data producers cannot release microdata as 

collected, because doing so could re-
veal data subjects’ identities or values 
of sensitive attributes. Failing to pro-
tect confidentiality (when promised) is 
unethical and can cause harm to data 
subjects and the data provider. Failure 
to protect individuals’ privacy may even 
be illegal, especially in government and 
research settings. For example, if one 
reveals confidential data covered by the 
U. S. Confidential Information Protec-
tion and Statistical Efficiency Act, one 
is subject to a maximum of $250,000 in 
fines and a five-year prison term.  

At first glance, sharing safe micro-
data seems a straightforward task: 
Simply strip unique identifiers like 
names, addresses, and tax identifi-
cation numbers before releasing the 

data. However, anonymizing actions 
alone may not suffice when other 
readily available variables, such as ag-
gregated geographic or demographic 
data, remain on the file. These quasi-
identifiers can be used to match units 
in the released data to other databases. 
For example, computer scientist Lat-
anya Sweeney showed as part of her 
Ph.D. thesis that 97 percent of the re-
cords in publicly available voter regis-
tration lists for Cambridge, MA, could 
be uniquely identified using birth date 
and a nine-digit zip code. By matching 
the information in these lists, she iden-
tified Governor William Weld in an 
anonymized medical database. More 
recently, the company Netflix released 
supposedly de-identified data describ-

ing more than 480,000 customers’ 
movie viewing habits. However, com-
puter scientists Arvind Narayanan and 
Vitaly Shmatikov identified several cus-
tomers by linking to an online movie 
ratings website, thereby uncovering ap-
parent political preferences and other 
potentially sensitive information. 

Arguably the most sensational pri-
vacy breach occurred in 2006 when 
AOL released 20 million search queries 
posed by users over a three-month pe-
riod in order to facilitate research on in-
formation retrieval. They knew the in-
formation in Web searches contained 
potentially identifying and sensitive 
information (including social security 
and credit card numbers) and hence 
attempted to anonymize the data by 
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exercises were done to illustrate con-
cerns over privacy, one can easily 
conceive of re-identification attacks 
for nefarious purposes, especially us-
ing large databases on individuals. A 
nosy neighbor or relative might search 
through a public database in an at-
tempt to learn sensitive information 
about someone who they knew partici-
pated in a survey or administrative da-
tabase. A journalist might try to identi-
fy politicians or celebrities. Marketers 
or creditors could mine large databas-
es to identify good, or poor, potential 
customers. Even more frightening, 
disgruntled hackers might try to dis-
credit organizations by identifying in-
dividuals in public use data.  

The threat of breaches, whether per-

ceived or imminent, has serious im-
plications for the practice and scope 
of data sharing, especially with the 
availability of massive and richly de-
tailed data. These threats have created 
a fascinating area of research for aspir-
ing computer scientists, mathemati-
cal and statistical scientists, and so-
cial scientists. This area of research is 
sometimes referred to as “privacy pre-
serving methods” (computer science) 
or “statistical disclosure limitation” 
(statistical science). It is an area where 
the research challenges are grand and 
interdisciplinary, the opportunities for 
high profile publications and external 
funding are strong, and the potential 
to impact the practice of data sharing 
is genuine and significant.

replacing user identifiers with random 
numbers. Within a couple of hours of 
releasing the anonymized data, two 
reporters from the New York Times un-
covered the identity of user No. 4417749 
based on just her search history: “land-
scapers in Lilburn, GA,” several people 
with last name Arnold, and “numb 
fingers.” This breach had far reach-
ing consequences. Not only were sev-
eral high-ranking officials at AOL fired, 
search companies are now reluctant to 
release search logs and other personal 
information. Even researchers are wary 
of using the now publicly available AOL 
data. Similar re-identification is possi-
ble from social network data, location 
traces, and power usage patterns.

Although these re-identification G
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os to identify particularly risky records 
and make informed decisions about 
data release policies in the face of un-
certainty (the goal of statistical science 
in general). Computing these proba-
bilities is computationally demanding 
and requires innovative methodology, 
especially for big data.

In computer science early efforts 
to quantify confidentiality risk were 
targeted to thwart re-identification at-
tacks by ensuring that no individual’s 
record is unique in the data. This moti-
vated a popular notion of privacy called 
K-anonymity, which requires that no 
individual’s record be distinguishable 
from at least K-1 other records. While 
this seemingly avoids confidential-
ity breaches, intruders (especially ones 
with prior knowledge) still can infer 
sensitive properties. For instance, sup-
pose a hospital releases K-anonymous 
microdata about patients. You know 
your neighbor Bob is in the data. If 
individuals in the anonymous group 
containing Bob all have either cancer 
or the flu, and you know that Bob does 
not have the flu, then you deduce that 
Bob has cancer. K-anonymity has been 
extended in a number of ways to handle 
this shortcoming. One example is L-di-
versity, which requires each group of in-
dividuals who are indistinguishable via 
quasi-identifiers (like age, gender, zip 
code, etc.) not share the same value for 
sensitive attributes (like disease), but 
rather have L distinct, well-represented 
(of roughly same proportion) values.  

The current state-of-the-art dis-
closure metric is differential privacy. 
It eliminates—to a large extent—the 

confidentiality issues in K-anonymity, 
L-diversity, and their extensions. Dif-
ferential privacy can be best explained 
using the following opt-in/opt-out 
analogy. Suppose an agency wants to 
release microdata, a data subject has 
two options: Opt out of the microdata 
so that her privacy is ensured, or opt 
in and hope that an informed attacker 
can’t infer sensitive information using 
the released microdata. A mechanism 
for microdata release is said to guaran-
tee ε-differential privacy if: (i) for every 
pair of inputs D1 and D2 that differ in 
one individual’s record, e.g., D1 con-
tains record t and D2 does not contain 
t, and (ii) for every microdata release M, 
then the probability that the mecha-
nism outputs M with input D1 should 
be close to (within an exp(ε) factor of) 
the probability that the mechanism 
outputs M with input D2. In this way, 
the release mechanism is insensitive to 
any single individual’s presence (opt-in) 
or absence (opt-out) in the data.  

Differential privacy satisfies an im-
portant property called composability. 
If M1 and M2 are two mechanisms that 
satisfy differential privacy with param-
eters ε1 and ε2, releasing the outputs 
of M1 and M2 together satisfies differ-
ential privacy with parameter ε1+ε2. 
Other known privacy measures (like K-
anonymity and L-diversity) do not sat-
isfy composability. Hence, two privacy 
preserving releases using other defini-
tions could result in privacy breaches.  

meThods For proTecTing  
pUblic releAse dATA
Like risk measures, both computer sci-
entists and statistical scientists have 
developed methods of altering or per-
turbing data before release. Indeed, 
sometimes very similar methods are 
developed independently in both com-
munities. Apart from whether a privacy 
protection method results in low dis-
closure risk, there are two important 
considerations when designing a priva-
cy protection method. First, the meth-
od should result in outputs that retain 
useful information about the input. Ev-
ery privacy protection results in some 
loss in utility—after all, we are trying 
to hide individual-specific properties. 
Hence, prudent data disseminators 
assess the quality of candidate data re-
leases on representative analyses and 

In this article, we describe some 
general research themes in this area 
with the aim of pointing out opportu-
nities for students. Keeping with the ar-
ea’s interdisciplinary nature, we pres-
ent perspectives from both computer 
science and statistical science, which 
are our two home departments. There 
are many more topics in big privacy 
that we do not cover for lack of space. 
These include, for example, systems for 
collecting data privately, access control 
in Web and social networking applica-
tions, data security and cryptography, 
and protocols for secure computation. 
These are equally rich and complemen-
tary areas for research that are impor-
tant for secure and confidential use of 
big data.

deFining And meAsUring  
conFidenTiAliTy risks
Both the computer science and statis-
tical science communities have devel-
oped a variety of criteria and methods 
for quantifying confidentiality risks.  
Indeed, a major thrust of research 
funded by the U.S National Science 
Foundation is to integrate these two 
perspectives, taking the best of what 
both have to offer. In reviewing some of 
the risk metrics, we do not attempt to 
cover all approaches. Rather, we cover 
a few important ones that we are most 
familiar with.

In statistical science measures used 
in practice tend to be informal and 
heuristic in nature. For example, a 
common risk heuristic for publishing 
tabular magnitude data for business 
establishments (e.g., tables of total pay-
roll within employee size groupings) is 
that no one establishment should con-
tribute in excess of 20 percent of the cell 
total, and no cell should comprise less 
than three establishments. Cells that 
do not meet these criteria are either 
suppressed or perturbed. The most 
general and mathematically formal 
method of disclosure risk assessment 
is based on Bayesian probabilities of re-
identification, by which we mean poste-
rior probabilities that intruders could 
learn information about data subjects 
given the released data and a set of as-
sumptions about the intruder’s knowl-
edge and behavior. Data disseminators 
can compute these measures across a 
variety of intruder knowledge scenari-

Failing to protect 
confidentiality  
(when promised)  
is unethical and  
can cause harm to 
data subjects and 
the data provider. 
Failure to protect 
individuals’ privacy 
may even be illegal.
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destroys relationships involving the 
swapped and unswapped variables.  

Adding random noise. Agencies can 
protect numerical data by adding some 
randomly selected amount—e.g., a ran-
dom draw from a normal distribution 
with mean equal to zero—to the ob-
served values (or to answers to statisti-
cal queries). Adding noise can reduce 
the possibilities of accurate matching 
on the perturbed data and distort the 
values of sensitive variables.  The de-
gree of confidentiality protection de-
pends on the nature of the noise distri-
bution; e.g., a large variance provides 
greater protection. However, adding 
noise with large variance introduces 
measurement error that stretches 
marginal distributions and attenuates 
regression coefficients. When perturb-
ing query answers, adding noise from a 
heavy tailed distribution, like a Laplace 
distribution, can satisfy differential 
privacy.

Synthetic data. The basic idea of 
synthetic data is to replace original 
data values at high risk of disclosure 
with values simulated from probabil-
ity distributions. These distributions 
are specified to reproduce as many of 
the relationships in the original data 
as possible. Synthetic data approaches 
come in two flavors: partial and full 
synthesis. Partially synthetic data 
comprise the units originally surveyed 
with some subset of collected values 
replaced with simulated values. For ex-
ample, the agency might simulate sen-
sitive or identifying variables for units 
in the sample with rare combinations 

of demographic characteristics; or, the 
agency might replace all data for sensi-
tive variables. Fully synthetic data com-
prise an entirely simulated data set; 
the originally sampled units are not on 
the file. Synthetic data can offer prov-
able privacy with high quality.  For ex-
ample, the U.S. Census Bureau releases 
statistics about individuals’ commute 
patterns (http://onthemap.ces.census.
gov/) using a synthetic data generation 
technique that guarantees a variant of 
differential privacy.

reseArch chAllenges
While recent research has shed much 
light on formal disclosure metrics and 
provably private methods that provide 
useful statistical information, there are 
many intriguing research challenges in 
this area. For instance, most work on 
privacy considers data in which each re-
cord corresponds to a unique individu-
al, and records are typically considered 
independent. One important problem 
is ensuring the privacy of linked and 
relational data, e.g. social networks in 
which people are linked to other peo-
ple. Reasoning about privacy in such 
data is tricky since information about 
individuals may be leaked through 
links to other individuals. Another in-
teresting problem is releasing sequen-
tial releases of data over time. Attack-
ers may link individuals across releases 
and infer additional sensitive informa-
tion that they could not have from a 
single release. Finally, as data becomes 
extremely highly dimensional, we need 
techniques that protect privacy while 
guaranteeing utility. Understanding 
theoretical trade-offs between privacy 
and utility is another important open 
area for research.
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choose policies that offer acceptable 
trade offs on risk and quality. Second, 
a privacy protection method should be 
simulatable: An attacker must be as-
sumed to know the privacy protection 
method. For instance, a method that 
reports the age of an individual (x) as 
[x–10, x+10] is not simulatable, since an 
attacker who knows this algorithm can 
deduce the age of the individual to be x. 

We next present a few important 
types of privacy protection methods.  
We focus here on dissemination of mi-
crodata. An alternative undergoing sig-
nificant research is to design systems 
that release perturbed answers to sta-
tistical queries.

Aggregation. Aggregation reduces 
disclosure risks by turning atypical re-
cords, which generally are most at risk, 
into typical records. For example, there 
may be only one person with a particu-
lar combination of demographic char-
acteristics in a city, but many people 
with those characteristics in a state. 
Releasing data for this person with 
geography at the city level might have 
a high disclosure risk, whereas releas-
ing the data at the state level might 
not.  Unfortunately, aggregation makes 
analysis at finer levels difficult and of-
ten impossible, and it creates problems 
of ecological inferences (relationships 
seen at aggregated levels do not apply 
at disaggregated levels).

Suppression. Agencies can delete 
sensitive values from the released data. 
They might suppress entire variables or 
just at-risk data values. Suppression of 
particular values generally creates data 
that are missing because of their actual 
values, which are difficult to analyze 
properly. For example, if incomes are 
deleted because they are large, esti-
mates of the income distribution based 
on the released data is biased low.

Data swapping. Agencies can swap 
data values for selected records—such 
as switching values of age, race, and 
sex for at-risk records with those for 
other records—to discourage users 
from matching, since matches could 
be based on incorrect data. Swapping 
is used extensively by government 
agencies. It is generally presumed that 
swapping fractions are low—agencies 
do not reveal the rates to the public, so 
that these algorithms are not simulat-
able—because swapping at high levels 

The threat of 
breaches, whether 
perceived or 
imminent, has 
serious implications 
for the practice 
and scope of data 
sharing, especially 
with the availability 
of massive and  
richly detailed data.

http://onthemap.ces.census.gov/
http://onthemap.ces.census.gov/
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T hese days, it seems that we are constantly bombarded by discussions of big data and 
our lack of tools for processing such vast quantities of information. An important class 
of big data is most naturally viewed as samples from a probability distribution over 
a very large domain. Such data occurs in almost every setting imaginable—samples 

from financial transactions, seismic measurements, neurobiological data, sensor nets, and 
network traffic records. 

In many cases, there is no explicit de-
scription of the distribution—just sam-
ples. In order to effectively make use of 
such data, one must estimate natural 
parameters and understand basic prop-
erties of the underlying probability dis-
tribution. Typical questions include: How 
many distinct elements have non-zero 
probability in the distribution? Is the dis-
tribution uniform, normal, or Zipfian? 
Is a joint distribution independent? 
What is the entropy of the distribution? 
All of these questions can be answered 
fairly well using classical techniques in a 
relatively straightforward manner. 

However, unless assumptions are 
made on the distribution—such as 
the distribution is Gaussian or has 
certain smoothness properties—such 
techniques use a number of samples 
that scales at least linearly with the 
size of the domain of the distribu-
tions. Unfortunately, the challenge 

of big data is that the sizes of the do-
mains of the distributions are im-
mense, resulting in a very large num-
ber of samples. Thus, we are left with 
an unacceptably slow algorithm. 

The good news is that there has been 
exciting progress in the development 
of sublinear, sample algorithmic tools 
for such problems. In this article we de-
scribe two recent results that highlight 
the main ideas contributing to this 
progress: The first on testing the simi-
larity of distributions, and the second 
on estimating the entropy of a distribu-
tion. We assume that all of our prob-
ability distributions are over a finite do-
main D of size n, but (unless otherwise 
noted) we do not assume anything else 
about the distribution.

closeness To  
AnoTher disTribUTion
How can we tell whether two distribu-

tions are the same? There are many 
variants of this question that have been 
considered, but let’s begin with a sim-
pler question, motivated by the follow-
ing: How many years of lottery results 
would it take for us to believe in its fair-
ness? In our setting, given samples of 
a single distribution p, how many sam-
ples do we need to determine whether 
p is the uniform distribution?

To properly formalize this problem, 
we need to allow some form of approxi-
mation, since p could be arbitrarily 
close to uniform, though not exactly 
uniform, and no algorithm that takes 
finite samples would have enough in-
formation to detect this. We will use 
the property testing framework: What 
we ask of our testing algorithm is to 
“pass” distributions that are uniform 
and to “fail” distributions that are far 
from uniform. We next need to decide 
what we mean by “far”—many distance 

New algorithms for estimating parameters of distributions  
over big domains need significantly fewer samples.

By Ronitt Rubinfeld
DOI: 10.1145/2331042.2331052 

Taming big  
probability  
distributions
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measures are in common use, but for 
this article we will use the L1 distance 
between two probability distributions 
p and q,  defined as:

p, q1 = ∑
x∈D

p(x)-q(x)

For 0 < ε < 1, we say that p and q are 
ε-close with respect to the L1 distance 
if p, q1 ≤ ε. Denote by UD the uniform 
distribution on D. Then, on input pa-
rameter 0 < ε < 1, the goal of the test-
ing algorithm will be to pass p if it is 
uniform and fail if p,UD1 ≥ ε. If p is in 
the middle—not uniform, but not far 
from uniform—then either “pass” or 
“fail” is an allowable, and not unrea-
sonable, answer.

One natural way to solve this prob-
lem, which we will refer to as the “naive 
algorithm,” is to take enough samples 
of p so that one can get a good esti-
mate of the probability p(x) for each 
domain element x. It is easy to see that 
there are distributions for which such 

a scheme would require at least linear 
in |D|=n samples. 

However, there is a much more effi-
cient O(√n/ε4) sample algorithm, based 
on an idea of Goldreich and Ron [1]. 
(See also Paninski for a more recent 
algorithm, which requires only O(√n/ε2) 
samples [2]). This algorithm does not 
attempt to learn any of the probabilities 
of specific domain elements according 
to the distribution p. Instead, the algo-
rithm counts collisions—the number 
of times that samples coincidentally 
fall on the same domain element. 

Slightly more specifically, for a set 
of k samples x1,…,xk, let i, j ∈ [1..k] be 
two indices of samples. Then we say 
that i and j collide if they output the 
same domain element, i.e., xi = xj. Note 
that the probability that i and j collide 
does not depend on i, j, and is an im-
portant parameter of the distribution 
p, which we will refer to as the collision 
probability Cp. Consider the fraction of 
pairs i, j in the actual sample set that 

collide, it is easy to see that its expec-
tation is exactly Cp. A simple calcula-
tion shows that Cp is minimized when 
p is the uniform distribution, in which 
case CUD = 1/n. One can show that when 
p is far from the uniform distribution, 
then Cp is very different than 1/n. So 
now it should be clear that the colli-
sion probability Cp is a useful statistic 
to estimate. The especially convenient 
property of Cp is that it is a statistic 
that one can estimate with surprising-
ly few samples, since k samples yield (k

2) 
pairs from which to estimate the colli-
sion probability. 

Although these pairs are not in-
dependent, Goldreich and Ron have 
shown that they have nice properties 
[1], yielding an algorithm with sample 
complexity O(√n log n/ε4), which esti-
mates the collision probability. This 
solves our uniform distribution, test-
ing problem. In fact, one cannot do 
much better in terms of n. It is easy 
to see that generalized collision sta-G
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known and the only way we can find 
out anything about them is to view 
samples? Up until now, though the 
analyses are nontrivial, the sample 
complexities are not terribly surpris-
ing to those that have studied “birth-
day paradox”-type analyses of colli-
sions and hashing. 

Here the story takes a fascinating 
turn—in this case, the complexity of 
the problem is quite different from 
n1/2. Why? The reason is that there may 
be elements, which are quite “heavy” 
on which p, q are identical, but whose 
collision statistics are so big that they 
hide what is happening on the rest of 
the domain. Formalizing this lower 
bound reasoning was quite challeng-
ing and eluded researchers for several 
years, but in 2008, Paul Valiant was 
able to prove that Ω(n(2/3) ) samples are 
required for this task [5, 6]. The O(n2/3  
log n poly(1/ε)) algorithm, proposed in 
2000 by Batu et. al. [3, 7], distinguishes 
pairs of distributions p and q that are 
identical from those pairs p, q which 
are ε-far as follows: 

1. First, find the “heavy” domain el-
ements, or those that have probability 
at least 1/n2/3. Using this definition of 
heavy, this set will contain at most n2/3 
domain elements, since the sum of the 
probabilities over all domain elements 
must be 1. The naive algorithm, which 
takes O(n2/3 log n poly(1/ε)) samples of p 
and q and estimates their probabilities 
on each of the heavy elements, is likely 
to give very good estimates of their 
probabilities. 

2. If p and q seem similar, then 
check that they are also similar on the 
rest of the domain by sieving out the 
heavy elements and using a test that 
is based on estimating collision prob-
abilities—this time, not just collision 
probabilities of p and q, but also col-
lisions between samples of p and q. 
Since none of the remaining domain 
elements are heavy, one can show that 
O(n2/3 log n poly(1/ε)) samples suffice for 
this latter task as well.

Such ideas have had further appli-
cations; they have been used to de-
sign algorithms for testing whether a 
distribution is monotone increasing 
or bimodal over the domain [8], or 
whether a joint distribution is inde-
pendent [4]. The sample complexity 
of many of these problems have been 

tistics (including l-way collisions for 
all l) are the only information that 
an algorithm can use to determine 
whether a distribution is uniform. 
More than that, generalized collision 
statistics are the only information that 
an algorithm can use for determining 
whether p has any of a large class of 
properties—namely those properties 
that are independent of the names of 
the domain elements, the so called 
“symmetric properties.” Using this 
observation, one only needs to find a 
distribution which has no collisions 
at all until at least Ω(√n) samples are 
taken, but on the other hand is very far 
from uniform. Such a distribution can 
be constructed by taking the uniform 
distribution over a random subset S of 

half of the domain [3].
What if we want to know whether 

p is the standard normal distribu-
tion? More generally, what if we want 
to know whether p is the same as an-
other distribution q, where q is known 
explicitly by the algorithm—that is, 
q(i) for any domain element i can be 
determined essentially for free? For 
example, this would be the case if q 
is a Gaussian, Zipfian, or exponential 
distribution with known parameters 
of expectation and variance. Batu et. 
al. give an algorithm which solves 
this problem for any q using O(√n log 
n) samples from p to perform O(log n) 
collision probability estimations over 
carefully chosen subdomains of D [4].

Finally, what if both p and q are un-
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Uniform Distribution
In the uniform 
distribution, n equally 
spaced domain 
values are equally 
likely to be observed. 

Zipf Distribution
The Zipf distribution 
has practical 
applications in 
linguistics, finance, 
and modeling rare 
phenomena. The 
probability function is 

 

where p is a positive 
constant and ζ 
denotes Riemann's 
zeta function.

Gaussian Distribution
The Gaussian (or 
normal) distribution 
is often described 
as a bell-curve due 
to the shape of p(x), 
defined as

where μ is the mean 
and σ is the standard 
deviation. This 
distribution is one of 
the most commonly 
used in statistics.
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investigated over distance norms oth-
er than L1 [1, 9, 10], but in many cases 
the same collision-based ideas apply. 
There is much further work on testing 
similarity [9, 11, 12].

A tolerant  test, given parameters 
ε1 < ε2, passes distributions p that are 
ε1-close to q and fails distributions p 
that are not even ε2-close to q. Unfortu-
nately, even for the problem of testing 
whether p is the uniform distribution, 
Valiant has shown for large enough val-
ues of ε1, the task becomes much hard-
er, requiring at least n1 – o(1) samples [5, 
6] (it is known that n/(ε2 log n) samples 
are sufficient [13]). Still, some tiny 
amount of tolerance can be squeezed 
out of the more efficient algorithms. It 
is an interesting direction to see how 
much more can be achieved. 

esTimATing The enTropy  
oF A disTribUTion
The entropy of a distribution is an im-
portant measure of the randomness of 
the distribution and the compressibil-
ity of the data produced by that distri-
bution. Thus, entropy plays a central 
role in statistics, information theory, 
data compression and machine learn-
ing. The entropy of distribution p over 
a discrete domain D is defined as:

H(p)≡  ∑
x∈D 

– p(x)log p(x)

The problems of estimating the en-
tropy of a distribution and the closely 
related measures of KL-divergence 
and mutual information have received 
much attention because of their use-
fulness in analyzing data in machine 
learning and the natural sciences [14, 
15]. How many samples of a distribu-
tion are required in order to get a good 
estimate of the entropy? 

First, we must determine what we 
mean by a good estimate. Let’s begin 
with the setting in which one would 
like an additive estimate of the entro-
py—that is, the algorithm should out-
put a number y such that,

H(p) – ε < y < H(p) + ε 

for given input parameter ε. In such a 
case, one very common estimator for 
the entropy, sometimes referred to as 
the “plug-in estimate,” is based on a 
best guess of what the entire distribu-

tion p looks like. That is, if p(x) is the 
fraction of times that a domain ele-
ment x is seen in a sample, then the 
estimate of the entropy is given by the 
entropy of p, namely,

H= ∑
x∈D

 –p(x) log p(x) 

It is easy to see that for this estimate 
to have good quality, one must take 
enough samples to get a good estimate 
the value of p(x) for most x, which in 
general is only guaranteed to happen 
when the number of samples is at least 
linear in n. 

Other commonly used estimators, 
such as the Miller-Madow corrected es-
timator and the jackknifed naive esti-
mator, are similar in that they require 
a linear number of samples; this is be-
cause they do not adequately account 
for the contribution to the entropy 

from unseen domain elements. 
A major barrier was broken when 

Paninski gave a non-constructive 
proof of the existence of an algorithm 
for estimating the entropy with a num-
ber of samples that is sublinear in the 
domain size [16]. Recently, very excit-
ing results of Gregory and Paul Valiant 
settled the longstanding open ques-
tion of the complexity of this problem 
[13, 17, 18, 19]. On one hand, they give 
an O(n/(ε2 log n))-sample algorithm for 
estimating the entropy of a distribu-
tion over a domain of size n to within 
an additive error of ε. On the other 
hand, they show that this task is not 
doable with fewer than Ω(n/(ε log n)) 
samples (improving on previous re-
sults [6, 20]). In order to show the first 
result, they show linear programming 
can be used to find a distribution that 
is expected to have a similar set of col-
lision statistics to p. Then, this new 
distribution, though likely to be very 
different from p in L1-distance, is simi-
lar to p in at least one important way—
it is likely to have similar entropy. To 
show the second result, their lower 
bound constructs two families of dis-
tributions that have very similar colli-
sion behaviors, yet are very different in 
terms of support size or entropy.

Let us now turn to the setting in 
which a much weaker multiplicative 
estimate of the entropy is sufficient. 
That is, on input parameter γ > 1, the 
algorithm should output a number y 
such that,

H(p) ⁄ γ <y < γ H(p)

In this case, it suffices to have a 
number of samples that is dramati-

One method  
for overcoming  
the lower bound  
is to find specialized 
algorithms for 
distributions that 
have convenient 
properties, such 
as that of being 
continuous, 
monotone,  
or normal. 

figure 2. the L1 distance between p and q is the sum of this quantity  
for each xi in the domain
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cally smaller that the domain size—
algorithms that use only O(n(1 + o(1))/γ2) 
samples can be achieved [21]. (This 
statement is a minor simplification, 
in fact, it only holds for distributions 
that have at least constant minimum 
entropy.)  Furthermore, it is known 
that Ω(n(1/γ2)) samples are necessary 
for this task [5, 6]. Just to be concrete, 
this means that one can approximate 
the entropy to within a multiplicative 
factor of two using only slightly worse 
than O(n1/4) samples, which is signifi-
cantly less than what is required for 
the additive error case. The description 
of the algorithm is very simple—it uses 
the plug-in estimate for any domain el-
ements that have high probability, and 
assumes that the distribution is uni-
form over the rest of the domain.

Similar results can be achieved 
for another closely related and well-
studied task—estimating the support 
size of a distribution. The question of 
estimating the support size of a distri-
bution has been considered since the 
early 1940s, beginning with Fisher and 
Corbet in their estimations of the num-
ber of butterflies in a region (for a large 
number of other reasons to consider 
this problem, see this archived bibliog-
raphy [22]). In recent research, θ(n/log 
n) samples are shown to be both neces-
sary and sufficient to achieve an addi-
tive estimate of the support size [13]. 

sUmmAry And FinAl Words
The study of big data has led the com-
puter science community to make very 
exciting progress on classical statisti-
cal problems. Still, in some settings, 
the minimum number of data points 
required to obtain an acceptable an-
swer is too large to be practical. 

One method for overcoming the 
lower bound is to find specialized algo-
rithms for distributions that have con-
venient properties, such as that of be-
ing continuous, monotone, or normal. 
Such assumptions often lead to dra-
matically better sample complexities.

A second method for overcoming 
the lower bound is to note that in 
some settings it is natural to assume 
the algorithm has access to other 
information in addition to random 
samples, such as the ability to quickly 
determine p(x) for any domain ele-
ment x. For example, when determin-

ing distributional properties of data 
that is stored in sorted order, one 
can still take a random sample of the 
data; but it is also easy to determine 
the number of collisions, or the num-
ber of times a given element appears 
in the data set. This information can 
be used to create algorithms that are 
sublinear in the number required 
samples, significantly reducing the 
computational complexity.

Such new approaches in statistical 
modeling can lead to significantly fast-
er algorithms for handling distribu-
tions on increasingly large domains. 
Moving forward, it is crucial to take 
advantage of these more powerful sta-
tistical models and algorithm—these 
are the tools we need in order to tame 
big data. 
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if you are familiar with “big data,” you are probably familiar with the MapReduce approach 
to implementing parallelism on computing clusters [1]. A cluster consists of many compute 
nodes, which are processors with their associated memory and disks. The compute nodes 
are connected by Ethernet or switches so they can pass data from node to node. 

Like any other programming mod-
el, MapReduce needs an algorithm-de-
sign theory. The theory is not just the 
theory of parallel algorithms—MapRe-
duce requires we coordinate parallel 
processes in a very specific way. A Map-
Reduce job consists of two functions 
written by the programmer, plus some 
magic that happens in the middle:

1. The Map function turns each 
input element into zero or more key-
value pairs. A “key” in this sense is not 
unique, and it is in fact important that 
many pairs with a given key are gener-
ated as the Map function is applied to 
all the input elements.

2. The system sorts the key-value 
pairs by key, and for each key creates 
a pair consisting of the key itself and 
a list of all the values associated with 
that key.

3. The Reduce function is applied, 
for each key, to its associated list of val-
ues. The result of that application is a 
pair consisting of the key and whatev-
er is produced by the Reduce function 
applied to the list of values. The output 
of the entire MapReduce job is what 

results from the application of the Re-
duce function to each key and its list.

When we execute a MapReduce 
job on a system like Hadoop [2], some 
number of Map tasks and some num-
ber of Reduce tasks are created. Each 
Map task is responsible for applying 
the Map function to some subset of the 
input elements, and each Reduce task 
is responsible for applying the Reduce 
function to some number of keys and 
their associated lists of values. The ar-
rangement of tasks and the key-value 
pairs that communicate between them 
is suggested in Figure. 1. Since the 
Map tasks can be executed in parallel 
and the Reduce tasks can be executed 
in parallel, we can obtain an almost 
unlimited degree of parallelism—pro-
vided there are many compute nodes 
for executing the tasks, there are many 
keys, and no one key has an unusually 
long list of values

A very important feature of the Map-
Reduce form of parallelism is that 
tasks have the blocking property [3]; 
that is, no Map or Reduce task delivers 
any output until it has finished all its 

work. As a result, if a hardware or soft-
ware failure occurs in the middle of a 
MapReduce job, the system has only to 
restart the Map or Reduce tasks that 
were located at the failed compute node. 
The blocking property of tasks is essen-
tial to avoid restart of a job whenever 
there is a failure of any kind. Since Map- 
Reduce is often used for jobs that  
require hours on thousands of compute 
nodes, the probability of at least one 
failure is high, and without the blocking 
property large jobs would never finish.

There is much more to the technol-
ogy of MapReduce. You may wish to 
consult, a free online text that covers 
MapReduce and a number of its appli-
cations [4].

eFFicienT mApredUce  
AlgoriThms
A given problem often can be solved 
by many different MapReduce algo-
rithms. We shall start with a real ex-
ample of what can go wrong and then 
examine a model that lets us talk 
about the important tradeoff between 
the communication (from Map to Re-
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duce tasks) and computation (at the 
Reduce tasks).

Reducers. It is convenient to have a 
term to refer to the application of the 
Reduce function to a single key and its 
list. We call this application a reduc-
er. The input size for a reducer is the 
length of the list. Notice that reduc-
ers are not exactly the same as Reduce 
tasks. Typically a Reduce task is given 
many keys and their lists, and thus ex-
ecutes the work of many “reducers.” 
However, there could be one Reduce 
task per reducer, and in fact, there 
could even be one compute node per 
reducer if we wanted to squeeze the ab-
solute maximum degree of parallelism 
out of an algorithm.

Analogously, we can think of a map-
per as the application of the Map func-
tion to a single input element. Nor-
mally, mappers are grouped into Map 
tasks, and each Map task is responsi-
ble for many mappers. It is more com-
mon for us to be able to gain efficiency 
by redesigning the nature of the reduc-
ers than by redesigning the mappers, 
so we shall be concentrating on the re-
ducers in this article.

Communication and computation 
costs. There are three principal sources 
of cost when you run a MapReduce job:

1. There is a map cost of executing 
the mappers. Normally, the input is 
a file distributed over many compute 
nodes, and each Map task executes at 
the same compute node that holds the 
input elements to which it is applied. 
This cost is essentially fixed, and con-
sists of the computation cost of execut-
ing each mapper.

2. Each key-value pair must be 
transmitted to the location of the Re-
duce task that will execute the reducer 
for that key. While by coincidence this 
Reduce task may be located at the 
same compute node as the Map task 
that generated that key-value pair, we 
shall assume for convenience each 
key-value pair is shipped across the 
network that connects the compute 
nodes. The communication cost, or 
cost of moving the data from Map 
tasks to Reduce tasks, is thus propor-
tional to the total number of key-value 
pairs generated by the mappers.

3. Each reducer must execute at the 
compute node to which its key is as-
signed. The computation cost for an al-

gorithm is the sum of the time needed 
to execute each reducer. 

This distinction between commu-
nication cost and computation cost ap-
pears to ignore the computation need-
ed to execute the mappers. However, 
commonly, this cost is proportional to 
the number of key-value pairs gener-
ated, and thus can be included in the 
communication cost. We shall there-
fore not discuss the cost of executing 
the mappers further.

It may not be obvious, but com-
munication cost often dominates the 
computation cost. Typically, compute 
nodes are connected by gigabit Ether-
net. That seems fast if you are down-
loading a song, but when you have to 
move a terabyte, it will take at least 
three hours across a gigabit Ethernet 
connection.

Skew and wall-clock time. We focus 
on communication and computation 
cost because in a public cloud, like 
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figure 1: the structure of a mapreduce job.
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and low wall-clock time.
The study of optimal MapReduce 

algorithms can thus be viewed as the 
study of the function that gives the least 
possible replication rate for a given 
reducer input size. We need to do two 
things: Prove lower bounds on the rep-
lication rate as a function of input size; 
and discover algorithms whose replica-
tion rate matches the lower bound.

An exAmple oF The TrAdeoFF
To see how the grand compromise 
works in practice, I am going to tell a 
story about a real project. At Stanford, I 
coached several teams in the data-min-
ing project course. One of the teams was 
looking at medical records for about a 
million patients, and was trying to dis-
cover unknown drug interactions. They 
were indeed successful not only in veri-
fying known interactions, but in discov-
ering several very suspicious, heretofore 
unknown, combinations of drugs that 
have significant side effects.

To find pairs of drugs that had par-
ticular side effects, they created a re-
cord for each of the 6,500 drugs in the 
study. That record contained informa-
tion about the medical history of pa-
tients who had taken the drug; these 
records averaged about a megabyte 
in length. The records for each pair of 
drugs needed to be compared in order 
to determine whether a particular side 
effect was more common among pa-
tients using both drugs than those us-
ing only one or neither. 

Their initial plan was to use MapRe-
duce with one reducer for each pair of 
drugs. That is, keys would be ordered 
lists of two drugs [i, j] with i < j, and 
the associated values would be the re-
cords for the two drugs. The Map func-
tion would take a drug i with record R 
and turn it into many key-value pairs. 
Each of these had a value (i, R), mean-
ing that R was the record for drug i. But 
the keys were all the lists consisting of 
i and any other drug j. For each of the 
6,500 drugs they therefore created 
6,499 key-value pairs—each about a 
megabyte in size—for a total commu-
nication cost of about 20 terabytes. It 
was no surprise that they were unable 
to do this MapReduce job, even given 
the generous allocation of free EC2 
service that Amazon had provided for 
the class to use.

So they needed to make a compro-
mise between their desire to run as 
many reducers as possible in parallel 
and their need to keep the communi-
cation within bounds. They grouped 
the drugs into 65 groups, numbered 
1 to 65, of 100 drugs each. Instead of 
keys being sets of two drugs, they used 
keys sets of two group numbers. The 
mapper for drug i and record R created 
64 key-value pairs. In each, the value 
was (i, R), as before. The keys were all 
pairs of two groups, one of which is the 
group of drug i and the other of which 
is any other group.

A reducer in the new scheme re-
ceived a key that is a set of two groups, 
and a list of 200 elements (i, R), where i 
is a drug in one of the two groups and 
R is the patient record for that drug. 
The reducer compared each element 
(i1, R1) and (i2, R2) on its list, provided i1 
and i2 were drugs in different groups. 
A small trick that I won’t go into was 
necessary to make sure that drugs in 
the same group were also compared by 
exactly one of the reducers.

As a result, every pair of drugs had 
their records compared exactly once, 
just as in the original scheme, so the 
computation cost was essentially the 
same as before. The input size to a re-
ducer grew by a factor of 100, so the 
minimum wall-clock time was much 
greater under the new scheme. How-
ever, the replication rate shrunk by a 
factor of over 100, so the communica-
tion was around 200 gigabytes instead 
of 20 terabytes. Using the new scheme, 
the various costs balanced well, and 
the job was able to complete easily.

some concreTe TrAdeoFFs
Now, we are going to see some facts 
about particular problems and the 
way reducer input size and replication 
rate are related for these problems. We 
shall look at the problem of finding bit 
strings at Hamming distance 1, and 
then at the problem of finding trian-
gles in a graph. However, we begin by 
looking at the tradeoff implied by the 
previous discussion.

Tradeoff for the medical example. 
We can generalize the two different 
strategies we considered as follows. 
Suppose there are d drugs, and we 
want to group them into g groups. The 
record for each drug is then replicated 

Amazon’s EC2, that is what you pay for 
[5]. You pay by the gigabyte for moving 
data across the network, and you rent 
compute nodes by the hour. However, 
in addition to wanting to minimize 
what we pay, we also want our job to 
finish soon. Thus, the total elapsed 
time before finishing the MapReduce 
job is also important.

As long as no mapper or reducer has 
too large an input size, we can divide 
them among as many compute nodes as 
we have access to, and thus have a wall-
clock finishing time that is roughly the 
total time of the computation and com-
munication, divided by the number of 
compute nodes. However, if we are not 
careful, or the data has a bad form, then 
we are limited in how fast we can finish 
by the phenomenon of skew. 

The most common form of skew 
is when the data causes one key K to 
be produced a significant fraction 
of the time. If, say, half the key-value 
pairs generated by the mappers have 
key K, then the reducer for key K has 
half of all the data communicated. 
The computation time of the reducer 
for K will be at least half of the total 
computation time; it could be more if 
the running time of the Reduce func-
tion grows faster than linearly in the 
size of the list. In such a situation, the 
wall-clock time for finishing cannot 
be less than half the total computa-
tion cost, no matter how many com-
pute nodes we use. From this point 
onward, we shall assume that skew is 
not a problem, although there is much 
evidence that skew does affect the 
wall-clock time significantly in many 
cases; see Kwon et al. for example [6].

The grand compromise. For many 
problems, there is a tradeoff between 
the input size for the reducers and 
the replication rate, or number of key- 
value pairs generated per input ele-
ment. The smaller the input size, the 
more parallelism we can have, which 
leads to a lower wall-clock time. But for 
problems that are not “embarrassingly 
parallel,” lowering the input size for 
the reducers means increasing the rep-
lication rate and therefore increasing 
the communication. The more com-
munication, the slower the job runs 
and the more it costs. Thus, we must 
find just the right input size to compro-
mise between our desire for low cost 
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g – 1 times, which we’ll approximate as 
g times to simplify the formulas. The 
input size for each reducer is 2d/g re-
cords. Conventionally, we use q for the 
maximum allowable input size for a re-
ducer and r for the replication rate. In 
this case, we have r = g and q = 2d/g, so r 
as a function of q is

r = 2d/q

That is, the replication rate is propor-
tional to the number of drugs and in-
versely proportional to the reducer in-
put size.

As long as g divides d evenly, we can 
choose any g we like and have an algo-
rithm that solves the problem. We dis-
cussed only two cases: d = g = 6,500 (the 
original attempt) and d = 6,500, g = 65, 
which worked. However, if the commu-
nication were still too costly at g = 65, 
we could have lowered it further to de-
crease the replication rate yet again. At 
some point, the communication cost 
would cease to be the dominant cost, 
and we could extract what parallelism 
remains to keep the wall-clock time as 
low as possible.

Strings at Hamming distance 1. We 
are now going to take up a problem 
that was analyzed in a recent paper 
on understanding the limits of map- 
reduce computation [7]. Two bit strings 
of the same length b are at Hamming 
distance d if they differ in exactly d 
corresponding bits. For example, 0011 
and 1011 are at Hamming distance 1 
because they differ only in the first bit.

For d = 1 there is an interesting low-
er bound on replication rate as a func-
tion of q, the maximum number of 
strings that can be sent to any reduc-
er. For an algorithm to find all pairs 
of strings at Hamming distance 1 in 
some input set of bit strings of length 
b, every pair of bit strings at distance 
1 must be covered by some reducer; in 
the sense that if they exist in the in-
put set, then both strings will be sent 
to that reducer (perhaps among other 
reducers). The number of possible 
inputs is 2b, and the number of pos-
sible outputs—pairs at distance 1— is 
(b ⁄ 2)2b. To see why the latter count is 
correct, notice that each of the 2b bit 
strings of length b is at distance 1 from 
b other strings; those are the strings 
constructed by flipping exactly one 

of the b bits. So we would expect b2b 
pairs, but that counts each pair twice, 
once from the point of view of each of 
the two strings. Thus the correct count 
of possible outputs is (b ⁄ 2)2b.

There is a theorem that says among 
any collection of q bit strings, there are 
at most (q/2)log2 q pairs at distance 1 
[7]. We’re not going to prove it here, but 
we’ll use it to get an exact lower bound 
on the replication rate r as a function 
of q. First, suppose we use p reducers, 
and the ith reducer has qi≤q bit strings 
that it will receive if they are present in 
the input. Since all the (b ⁄ 2)2b pairs of 
strings at distance 1 must be covered 
by some reducer, we know that

i = 1

p

Σ
That is, the sum of the maximum num-
ber of outputs that each reducer can 
cover must be at least the number of 
outputs. 

We are going to replace log2 qi by 
log2 q in the above inequality. Since q 
is an upper bound on qi, the inequality 
must continue to hold; that is

i = 1

p

Σ
Notice we chose not to replace the 

factor qi by q.
The replication rate r is the sum of 

the number of inputs qi to each reducer 

divided by the total number of pos-
sible inputs, 2b, that is, ∑(i=1)

p qi/2b. We 
can manipulate the inequality above 
so that exactly ∑ (i=1)

p qi/2b appears on the 
left, and everything else is on the right. 
That gives us

i = 1

p

Σqi/2b   b/log2 qr =

This inequality says for the problem of 
finding strings at Hamming distance 
1, the replication rate is proportional to 
b, the string length, and inversely pro-
portional to the logarithm of the maxi-
mum number of inputs that can be as-
signed to one reducer. Figure 2 shows 
the form of the lower bound on r and 
also shows points where we have algo-
rithms that match the lower bound.

The algorithms at the endpoints 
are easy to see. If log2 q = b, then q = 2b, 
which means that one reducer can get 
all the possible inputs. In that case, 
there is no need for any replication; 
that is, if log2 q = b, then r = 1 suffices.

At the other extreme, if log2 q = 1, 
that is, q = 2, then we need one reduc-
er for each possible pair of strings at 
distance 1. Each string s must be sent 
to the b different reducers that corre-
spond to pairs {s, t} where t is one of the 
b strings at Hamming distance 1 from 
s. In terms of key-value pairs, the keys 
are pairs of strings at distance 1. The 
Map function generates from an input 
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figure 2: known algorithms matching the lower bound on replication rate.
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published last year [9]. On a graph with 
m edges, it uses total computation time 
O(m(3/2)), which is the best possible ac-
cording to Alon [10]. This MapReduce 
algorithm makes use of a serial algo-
rithm for finding all triangles in time 
O(m3/2), due to Schank’s Ph.D. work [11], 
and the conversion of that algorithm 
to a MapReduce algorithm using the 
same total computation is from Suri 
and Vassilvitskii [12].

Suppose the m edges of a graph on 
n nodes are chosen so that each pos-
sible edge is equally likely to be chosen. 
If we run the algorithm using enough 
reducers so that the expected number 
of edges at any reducer is q, then the 
replication rate is O(√m/q). That is, each 
edge will be sent as the value of a key-
value pair to that number of different 
reducers. We shall not give the argu-
ment here, but it is shown that Ω(√m/q) 
is also a lower bound on the replication 
rate [7]; i.e., the algorithm mentioned 
gives, to within a constant factor, the 
lowest possible replication rate.

sUmmAry
We have tried to motivate the need to 
study MapReduce algorithms from the 
point of view of how they trade paral-
lelism for communication cost. We 
represent the degree of parallelism by 
the upper limit on the number of in-
puts that one reducer may receive; the 
smaller this limit, the more potential 
parallelism. We represent commu-
nication cost by the replication rate, 
that is, the number of key-value pairs 
produced for each input. Depending 
on your computational resources and 
your network, you may prefer one of 
many different points along the curve 
that represents this tradeoff. As a re-
sult, it is interesting to discover lower 
bounds on the replication rate as a 
function of the reducer input size.

For two problems, finding strings 
at Hamming distance 1 and finding 
triangles in a graph, we gave lower 
bounds on replication rate r as a func-
tion of input size q that are tight. That 
is, there are algorithms for a wide vari-
ety of q values whose replication rate is, 
to within a constant factor, that given 
by the lower bound. 

However, there are problems in 
a variety of domains for which opti-
mal MapReduce algorithms have not 

string s the b key-value pairs with value 
s and key {s, t}, where t is one of the bit 
strings at distance 1 from s. Then the 
reducer for key {s, t} looks at the list 
of values associated with this key, and 
if both s and t are present outputs that 
pair. Otherwise, it outputs nothing. 
(In fact, unless at least one of s and t is 
present on the input, this reducer will 
not even exist.)

The other points shown in Figure 
1 represent variants of the “splitting” 
algorithm [8]. For any integer k ≥ 2 that 
divides b, we can split the positions of 
b-bit strings into k equal parts. Let a 
reducer correspond to one of these k 
segments and a particular bit string of 
length 2(k-1)b/k that can appear in all but 
that segment. A bit string s is sent to 
k different reducers. Start by deleting 
the first of the k segments from s and 
send s to the reducer corresponding to 
segment number 1 and the bits of s in 
all but segment 1. Then, starting from 
s again, drop the second segment and 
send s to the reducer corresponding 
to segment 2 and the bits of s that re-
main. Continue in this way for each of 
the k segments. For example, if b = 6, 
k = 3, and s = 011100, then send s to the 
three reducers:

1. Segment = 1 and string = 1100.
2. Segment = 2 and string = 0100.
3. Segment = 3 and string = 0111.
The replication rate is clearly r = k, 

and the number of bit strings that can 
be assigned to any reducer is the num-
ber of possible strings in any one seg-
ment, that is, q = 2b/k. If we take loga-
rithms, we get log2 q = b/k. Since r = k, 
we find r = b/log2 q is an upper bound as 
well as a lower bound.

Triangle Finding. Another prob-
lem for which we can obtain closely 
matching upper and lower bounds on 
the replication rate as a function of 
the maximum input size for a reducer 
is finding the number of triangles in a 
large graph, such as the graph of a so-
cial network. We shall not go into the 
applications of triangle-finding, but 
intuitively, we expect that closely knit 
communities of friends would have 
many triangles. That is, whenever A is 
friends with both B and C, we would 
expect it is likely that B and C are also 
friends with each other. The most ef-
ficient MapReduce algorithm for find-
ing triangles is from a technical report 

been studied. Analyzing these prob-
lems requires deriving new lower 
bounds, designing algorithms that 
attain them, and choosing parame-
ters to balance the tradeoff between 
communication and computation 
costs on modern computer architec-
tures. By understanding such trad-
eoffs, we can design MapReduce algo-
rithms that are efficient both in terms 
of wall-clock time and in terms of data 
movement. 
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T he world has caught fire with “big data,” which is a collection of tools and 
strategies for processing massive datasets at low cost. At the epicenter of the big 
data movement is Apache Hadoop [1], an open-source distributed data processing 
framework similar to Google’s MapReduce [2]. Hadoop was originally developed  

at Yahoo to ingest and analyze Web-scale datasets and has quickly been adopted by other 
tech companies and industries.

Students working in the big data space get uniquely valuable experiences  
and perspectives by taking industrial internships, which can help further  
their research agendas. 

By Yanpei Chen, Andrew Ferguson, Brian Martin,  
Andrew Wang, and Patrick Wendell 
DOI: 10.1145/2331042.2331054

big data  
and internships  
at cloudera 

Hadoop’s rapid ascent is due in part 
to the burgeoning ecosystem of private 
sector companies. One of these com-
panies is Cloudera, which was founded 
in 2008 by early Hadoop evangelists. 
Today, Cloudera is a leading force in 
Hadoop development, contributing 
code to the core storage and process-
ing layers of the open-source Hadoop 
stack and providing consulting and 
support services for Hadoop. Clou-
dera’s software enjoys broad adoption; 
supporting 80 percent of online travels 
booked and helping half of the For-
tune 50 make sense of big data [3]. Col-
laboration with hundreds of industrial 
partners places Cloudera in a unique 
position to provide forward-looking 
research problem statements and in-
corporate cutting edge research into 
its products. 

When we were invited to contribute 
to XRDS, we decided it would be mean-
ingful for us to talk about why we have 

come to believe industry-academia col-
laboration is essential to big data. This 
is followed by several stories that dis-
cuss our individual internship experi-
ences on big data projects, including 
reflections on how these experiences 
helped refine our research agendas 
and accelerate progress on our disser-
tation work.

big dATA in The big World
Based on joint observations as stu-
dents and Cloudera interns, we believe 
the diversity and scale of big data sys-
tems set them apart from other com-
puter systems and necessitate indus-
try-academia collaboration. 

Enterprises understand the impor-
tance of big data; it is crucial to their 
bottom line. However working across 
multiple industry sectors creates sig-
nificant and sometimes mutually ex-
clusive variations in big data sources 
and system requirements. A priority 

for one customer may be secondary or 
even harmful for another. A series of 
overly specific solutions would result 
in an unwieldy and inefficient prod-
uct portfolio. Additionally, knowledge 
extracted from big data brings about 
rapid innovations in business, scien-
tific, and consumer activities. This, 
in turn, causes rapid evolution in the 
data generated by such activities, both 
in data volume and in the inherent na-
ture of the data. Managing this diver-
sity requires applying scientific princi-
ples to distill the common technology 
requirements and specifying the di-
mensions of customization that allow 
different needs to be systematically 
expressed. Conversely, a cross-industry 
perspective offers academic research-
ers empirical guidance with regard to 
research priorities and complementa-
ry research agendas.

Big data systems often involve 
multi-layered and distributed com-
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feature

the components of the Hadoop soft-
ware ecosystem. More specifically, I 
am interested in providing high-level 
service-level objectives (SLOs) for dis-
tributed storage systems.

Working at Cloudera has been 
an eye-opening experience in many 
ways. Foremost is the incredible per-
spective it provides on how storage 
systems like HDFS and HBase are 
used in practice. Getting to talk di-
rectly with customers and develop-
ers has helped me refine my research 
agenda in terms of problem selection 
and approach. Another valuable ex-
perience has been learning to work 
with the open-source community. Re-
search code is often left to bit-rot af-
ter the associated paper is published, 
but open-source is an opportunity for 
additional impact and a way of publi-
cizing your research. While at Clou-
dera, I have been able to disseminate 
my research ideas within the open-
source community, as well as work on 
directly applying them to a product 
that will ultimately be used by hun-
dreds of companies.

Brian Martin, 2012 Intern 
As a student in machine learning and 
natural language processing, my re-
search involves parallel inference and 
learning in graphical models for large-
scale information extraction. During 
my time at Cloudera I worked directly 
with Josh Wills, Director of Data Sci-
ence, and developed several new sta-
tistics and machine learning tools for 
advanced analytics on Hadoop.

My initial project was to develop a 
tool for calculating distance correla-
tion over giant tables of data (e.g. all 
Chicago crimes and building permits 
in the last decade grouped by loca-
tion or all purchase histories grouped 
by various demographic variables). 
Distance correlation is a recent sta-
tistical measure of dependence, lin-
ear and nonlinear, between variables 
(see Figure 2). This tool will soon be 
available open-source. Additionally, 
I implemented a recently proposed 
solver for large-scale linear regression 
problems using Apache Hadoop Next-
Gen MapReduce (YARN). YARN allows 
for running non-MapReduce applica-
tions on a Hadoop cluster, while play-
ing well with the resource manager.

ponents, while big data itself often 
involves multiple data sources in 
different formats. The recent experi-
ences of large technology companies 
have indicated the sheer scale of such 
systems and data sources can intro-
duce many design and evaluation 
challenges. Realistic system and data 
scale exceeds the scale that can be 
afforded by purely academic systems 
or research prototypes. This creates 
the need for researchers to appreciate 
and address real-life problems at en-
terprise scale. At the same time, the 
scale of the systems and the data de-
mand principled architectures com-
bined with rigorous implementation 
and evaluation processes. 

big dATA inTernships  
AT cloUderA 
The following is a series of stories 
about each co-author’s individual 
internship experience at Cloudera. 
These internships concretely illus-
trate how industry-academia collabo-
ration helped big data research at our 
respective universities. We hope these 
stories will encourage students to con-
sider whether an industrial internship 
makes sense for their own work. 

Yanpei Chen, 2011 Intern 
My internship project was to collect 
and analyze Cloudera Distribution of 
Hadoop (CDH) traces from Cloudera 
customers. We observed that several 
MapReduce “benchmarks,” popular 
even now, were not representative at all 
of real-life use cases. As Cloudera’s cus-
tomers increased their MapReduce ex-
pertise, they voiced similar concerns. 
Therefore, the lack of empirical, real- 
life cluster traces created huge barriers 

for quality assurance and performance 
testing of the core CDH product and 
technology certification for Cloudera’s 
partner vendors. 

The actual process of collecting cus-
tomer cluster traces proved necessarily 
troublesome. Customers were rightly 
concerned about leaking proprietary 
information. With help from Clou-
dera’s engineering, support, market-
ing, and executive teams, we collected 
an unprecedented set of real-life Ma-
pReduce cluster traces from both tech-
nology and traditional enterprises. In-
sights from this data set have led to key 
publications of my dissertation, which 
characterized a new class of MapRe-
duce workloads for interactive analysis 
(see Figure 1). 

Andrew Wang, 2012 Intern
As a part of the Algorithms, Machines, 
and People Laboratory at Berkeley, my 
research revolves around big data and 

This experience put 
me right where the 
“rubber meets the 
road” in large-scale 
data management 
and has led to  
several insights 
about problems 
faced in day-
to-day big data 
deployments.

figure 1. per-job data sizes for a new class of mapreduce workloads for interactive 
analysis, which contains many jobs that manipulate data sizes less than a terabyte. 
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Andrew Ferguson, 2012 Intern 
My Ph.D. work is on software defined 
networks (SDNs) and platforms for 
big data processing. In both of these 
areas, the core technologies were de-
veloped in academic labs and Inter-
net-based companies. However, both 
technologies are now reaching new 
markets with more traditional com-
panies. As new users adapt technolo-
gies, new use cases and new problems 
arise—opening fresh avenues for sys-
tems research. This exposure to new 
types of Hadoop customers drew me 
to Cloudera for the summer.

I encourage students to consider 
interning at a start-up, even if they are 
set on joining the academy after grad-
uation. Numerous faculty members 
start companies during their careers, 
as it can be an effective way to change 
the world through research. And even 
for those who do not start companies, 
the experience will help when advising 
future students on career options and 
selecting their own internships. As stu-
dents, we often have the twin luxuries 
of unstructured time and an ease of 
moving, so pick a city and an interest-
ing company and explore a new side of 
your life and research.

Patrick Wendell, 2012 Intern 
My thesis work is on resource man-
agement for large-scale data process-
ing systems. However, my summer 
internship at Cloudera was off the 
beaten path for most academic engi-
neers. I spent three months travelling 
in the field with Cloudera’s engineers 

and worked directly with customers 
as they assessed, prototyped and de-
ployed Hadoop in live environments. 
This experience put me right where 
the “rubber meets the road” in large-
scale data management and has led 
to several insights about problems 
faced in day-to-day big data deploy-
ments. Additionally, it has provided 
me with a perspective on which types 
of engineering solutions are most 
successful in the wild, which I will 
take back with me as I continue my 
research degree.

The most salient lesson I’ve taken 
from the summer is that when compa-
nies are evaluating a new technology, 
performance, with respect to alter-
native solutions, is but one of many 
criteria considered. Factors like de-
ployment complexity, interoperabil-
ity with existing systems, cost, fitness 
for a particular business problem, 
and ease-of-use combine to influence 
adoption of new technologies. As re-
searchers, we tend to focus on inno-
vativeness and differentiation, rather 
than simplicity and interoperability. I 
increasingly believe that the latter two 
traits are necessary requirements for 
any viable technology.

sUmmAry
Students benefit from experiencing 
real-life, big data problems and hav-
ing access to a broad spectrum of 
industrial engineers, partners, and 
customers. Conversely, Cloudera 
benefits from the industry-academia 
cross-pollination of ideas and the me-

thodical approach to problem solv-
ing brought by interns. We hope our 
stories can encourage big data com-
panies to continue reaching out to 
academia, while helping student read-
ers consider whether an industrial in-
ternship makes sense for their disser-
tation work. 
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I have been able  
to disseminate  
my research ideas 
within the open-
source community, 
as well as work on 
directly applying 
them to a product 
that will ultimately 
be used by hundreds 
of companies.

figure 2. examples of pearson correlation and distance correlation for various  
relationships. Note that pearson correlation only picks up linear dependence,  
giving no dependence for any examples in the bottom two rows. 
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An interview with  
surajit chaudhuri

AdiTyA pArAmesWArAn: in your opinion, 
what does “big data” stand for? what 
are the most important challenges in 
dealing with big data?

sUrAJiT chAUdhUri: “Big data” has 
become a catch phrase and like many 
other catch phrases has multiple 
interpretations. As a researcher 
interested in the data analytics space, I 
view the underlying challenges as that of 
building platforms and tools that enable 
businesses to derive actionable insights 
from raw data dramatically faster and 
finer-grained than is possible today. This 
aspiration maps into a set of concrete 
technical challenges. I described them in 
a short article I prepared for my keynote 
at ACM Principles of Database Systems 
conference (PoDS) earlier this year [1].

Ap: the database community has been 
working on “very large data bases” for 
a while now. what is new now? are we 
simply marketing big data as old wine in 
new bottles?

sc: It is true that the database community 
has always paid close attention to building 
scalable data platforms, but there have 
been big changes quantitatively as well 
as qualitatively over the last few decades. 
let me give you a few examples: As more 
data gets digitally born, we have seen a 
sharp increase in the volume of raw data. 

At the same time, cost of raw storage has 
plummeted. Together, this means that data 
acquisition cost today is really low and that 
leads to a growing increase in data available 
to enterprises. Another example of change 
is increasing interest and opportunities in 
deriving value from customer interactions 
(e.g., query logs) and text data. There is also 
the desire to take business action on fresh 
data rapidly, and the rise of cloud services. 
These are example of changes that are 
big. Thus, our community has a lot of new 
opportunities to impact the technology. 
However, I think we have not acted on these 
trends boldly yet. If I were to look at recent 
research publications, a disproportionately 

large fraction of them are focused on 
solving for MapReduce platforms the 
same problems we addressed for parallel 
database systems. We can and should do 
so much more.

Ap: an argument against big data is that 
while we are now able to collect data more 
cheaply, it is not necessarily “useful” data. 

sc: of course, turning raw data into 
actionable insights is really hard. Indeed, 
the end goal for enterprises is not storing 
and managing lots of raw data—it is to 
get to newer actionable business insights 
faster. our community can do a lot more 
to get to such insights “faster” by giving 
platform support and tools for quicker 
and novel exploration of data. 

Ap: are there examples of how big data 
analysis has made a significant impact on 
consumer or organization value?

sc: There are many examples of using 
data analytics for business value. Using 
transactional and query logs to do finer 
segmentation of customers is a classic 
example that has been used for direct 
mailing campaign as well as deciding 
differentiated pricing structures by retail 
as well as TElCo.

Ap: machine learning is thought to be a 
key component of big data analytics. how 

Surajit Chaudhuri, Distinguished Scientist and head of the Extreme Computing 
Group (XCG) at Microsoft Research, Redmond provides valuable insights for 
revisiting data analytics in the context of big data.

By Aditya Parameswaran 
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do you envision machine learning to be 
used within a database or in commercial 
database systems?

sc: Microsoft SQl Server (and other 
commercial relational databases) 
developed extensible APIs that integrate 
mining with querying paradigm and also 
provided a set of core algorithms for 
machine learning as far back as 2000. 
That line of work led to only limited 
success because for an average developer, 
applying machine learning isn’t easy. I 
am not sure that the situation has yet 
changed dramatically in that regard today. 
It should also be noted that identifying 
the relevant subset of data and preparing 
data so that it is ready for application of 
machine learning is a critical part and is 
often as hard if not harder than the phase 
of actual application of machine learning 
algorithms for deriving insights from 
data. Therefore, not surprisingly, vertically 
integrated use of machine learning in the 
context of high-value analytic applications 
(e.g., credit card fraud) delivered as either 
packaged application or as SaaS (software 
as service) has seen the best successes. 
Supporting the workflow of applying 
machine learning for mere mortals is still a 
big challenge and it is in this facet that we 
need to push if we aspire to see broader 
usage of machine learning.

Ap: how do you visualize the progress 
of query optimization in the last two 
decades? is it worth revisiting query 
optimization in the context of big data?

sc: We have seen steady incremental 
progress in query optimization in the 
last two decades, but I cannot say that 
I have witnessed a big breakthrough. 
Almost all of us who have worked on query 
optimization find the current state of the 
art unsatisfactory with known big gaps in 
the technology. I absolutely think it is worth 
revisiting query optimization in the context 
of big data. like many others, I too believe 
that declarative queries (SQl or other 
flavors of query languages) are essential 
for productivity of application developers 
in the context of big data. There is a lot of 
exploration of newer data platforms in the 
context of big data. This disruption provides 
a great opening to piggyback fresh ideas and 
revisit classical assumptions and constraints 
we have associated with query optimization. 
It is not an easy problem to crack but a 

breakthrough in this technology will get 
everyone’s attention. So, perhaps a perfect 
thesis topic for a courageous Ph.D. student?

Ap: what are your views on the rise of 
NosQl systems and on dropping “aCid” 
guarantees?

sc: Exploration of data platforms that 
question the principles and design of 
known solutions (such as relational 
databases) is healthy. on the other hand, 
taking a religious position against all 
declarative query languages or against 
ACID is not helpful. As we all know, for a 
specific problem, a specialized solution 
can often be built that will be significantly 
more efficient. So, the real success for 
such noSQl platforms should be judged by 
their usage in a broad application area as 
well as their ability to balance programmer 
productivity with opportunities for high 
performance. But, there is no question 
that exploration of noSQl system has 
been great to stir the pot to revitalize 
discussions on architectures and 
algorithms in today’s database systems.

Ap: what is the future of big data 
analytics in your view?

sc: The ability to quickly explore data 
indeed critically depends on crafting the 
right set of tools. The challenge is really 
to identify the right abstractions for 
such explorations and not just exciting 
visual interfaces. This remains a wide-
open challenge. 

Ap: what is the current emphasis of your 
group and how has it been impacted by 
big data?

sc: My group has worked on three core 

areas in the last decade at a considerable 
depth: self-tuning database systems, 
data cleaning, and identifying paradigms 
for flexible exploration of structured and 
text data. In recent years, our agenda 
has been influenced by both big data 
and the advent of cloud services. We 
are trying to identify operators that can 
help connect data that are seemingly 
different through statistical techniques—
this line of work really grew out of our 
experience in working with our Bing team 
using data cleaning technology. We are 
applying machine learning and other 
analytics tools to better understand our 
operational data from cloud services 
to derive actionable insights. We are 
also interested in revisiting our work 
on approximate query processing in 
the context of big data. Finally, we are 
working on the problem of providing 
performance isolation in the context of 
multi-tenant systems.

Ap: in this fast-paced and diverse area, 
how would you advise an undergraduate 
or graduate student to best prepare for a 
research or industry career?

sc: In general, learning outside of one’s 
core research area is increasingly more 
important. That is much easier to do at 
school than when you are working. For 
database researchers, understanding 
of statistics, distributed systems, and 
hardware is more important today than a 
couple of decades ago. I also recommend 
seizing internship opportunities at 
cutting-edge technology companies, 
where there is a lot of exciting 
exploration of newer data platforms. 
More importantly, you also gain an 
understanding of their customer data, 
which is hard to gain access to at school. 
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The end goal for 
enterprises is 
not storing and 
managing lots  
of raw data— 
it is to get to newer 
actionable business 
insights faster.



X R D S  •  f a l l 2 0 1 2 •  V o l . 1 9 •  N o . 140

b ig data is only as valuable as the useful analyses it supports. However, current 
database systems either slow down or become very expensive as the size of the data 
increases. This means that the full value of the data being collected is not being 
exploited. At Facebook, the size of our data has grown as the number of users and 

their interactions with new and existing Facebook products increases. Given this growth, we 
needed a way to empower our analysts and engineers to effectively query these large data  
sets with the same ease as with smaller data sets on existing database systems.

Back in 2008, the Facebook data 
infrastructure team built and open 
sourced Hive [1], a warehousing solu-
tion built on top of Hadoop [2]. Hive sup-
ports queries expressed in an SQL-like 
declarative language named HiveQL [3], 
which are compiled into MapReduce 
jobs executed on Hadoop. In addition, 
HiveQL supports custom MapReduce 
scripts that can be plugged into que-
ries. The language includes a type sys-
tem with support for tables containing 
primitive types; collections like arrays 
and maps; and nested composition of 
these types to create new types. The un-
derlying IO libraries can be extended to 
query data in custom formats. Hive also 
includes a system catalog, Hive-Metas-
tore, containing schemas and statistics, 
which is useful in data exploration and 
query optimization.

Over the years, the Hive warehouse 
has been the primary way that Face-
book analysts and engineers store and 
analyze large amounts of data. Hive is 

used in data analysis Facebook in a va-
riety of ways: 

•	 The Newsfeed team analyzes the 
degree of connection between users to 
rank stories in the Facebook Newsfeed. 

•	 Activity logs are analyzed to gain 
insights on how Facebook services are 
being used. These analyses drive inter-
nal business intelligence applications 
as well as externally available tools 
that provide insights to Facebook ad-
vertisers, application developers, and 
page administrators. 

•	 The Ads team runs complex data 
mining algorithms to optimize the 
kind of advertisements shown to Face-
book users. 

•	 The Security team mines usage 
logs to identify spam and other abuse. 

We have made it easier for even 
non-engineers to use Hive by build-
ing Web-based tools for authoring 
and executing Hive queries (Hipal); 
for authoring, debugging, and sched-
uling complex data pipelines (Dag-

ger); and for generating reports based 
on data stored in Hive and other re-
lational databases like MySQL and 
Oracle (Argus). At the same time, we 
have scaled the Hive warehouse stack 
to manage more than 150,000 tables 
occupying more than 100PB of stor-
age while supporting user queries 
that scan 5PB of compressed data ev-
ery day. 

That said, one of the most common 
complaints from Hive users is that its 
latency is too high for interactive anal-
yses. Even the simplest of queries take 
several seconds or minutes. This laten-
cy significantly affects the productivity 
of analysts. The current workaround 
involves the creation of data pipelines 
that load aggregate data from Hive into 
other RDBMS like MySQL and Oracle, 
and then perform ad-hoc analysis and 
build reports using these RDBMS. Over 
the years, our engineers and analysts 
have written hundreds of such pipe-
lines, which then have to reliably run 

How Facebook is analyzing big data. 
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peregrine: low-latency 
queries on hive  
Warehouse data
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gineers are using Peregrine instead 
of Hive for discovering patterns in 
Hive data. They are able to do quick 
analyses and rapid prototyping of 
queries that eventually need to run in 
Hive data pipelines. In addition, Per-
egrine is being used to directly serve 
aggregate data stored in Hive for our 
reporting systems. Finally, the physi-
cal operator library in Peregrine is 
modular enough that we were able to 
reuse it to build a distributed stream-
ing query processing system called 
PStream that is capable of handling 
several million rows of input data per 
second using a handful of commodity 
machines. 

peregrine qUery lAngUAge
Peregrine’s query language is a sub-
set of HiveQL. Similar to Hive, it sup-
ports simple filters, aggregates, top-
k, percentiles, sub-queries in FROM 
clauses, UNION ALL, and a rich set of 
user-defined functions. The TABLESA-

on a regular basis. However, the over-
head of this workaround for getting 
low-latency access to data has proven 
to be very cumbersome and inconve-
nient for users. To work on decreasing 
the latency of queries in Hive generally, 
in late 2010 we started Peregrine. This 
independent project focuses on sup-
porting low latency queries.

Peregrine is a distributed query en-
gine for ad hoc analysis built on top of 
the Hadoop Distributed File System 
(HDFS) [4] and the Hive-Metastore. It 
is fully compatible with Hive’s data 
formats and metadata and supports 
a subset of HiveQL. At the same time, 
it is able to achieve much lower query 
latencies compared to Hive by combin-
ing an in-memory, serving-tree based 
computation framework with approxi-
mate query processing.

Peregrine has been running in pro-
duction at Facebook for more than 
a year now. We have found, in many 
cases, Facebook data analysts and en-

MPLE clause can be used to explicitly 
limit the amount of input data that is 
scanned and the WITH clause allows 
users to write more readable queries by 
declaring variables for complex expres-
sions that are used multiple times in 
the same query. The WITH clause also 
provides a way for the user to specify 
hints to the optimizer such that it eval-
uates common sub-expressions only 
once during run time.

When users are just exploring data, 
even partial answers are good enough. 
So, in Peregrine, syntactically correct 
queries never fail. Run-time errors like 
node failures, corrupted input data, or 
even users killing their queries are just 
treated as situations where all input 
data was not scanned. In these cases, 
Peregrine returns partial answers and 
clearly indicates what percentage of 
input was scanned. If users want to 
get exact answers, they need to spec-
ify WITH true as mode.exact, which 
causes run time errors to fail queries.D
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feature

peregrine ArchiTecTUre
Peregrine’s architecture is shown in 
Figure 3. Before describing it, we will 
briefly introduce the architecture of 
HDFS, the distributed file system that 
stores all Hive table data. HDFS con-
sists of a central NameNode that man-
ages the file system namespace. In ad-
dition, there are several DataNodes, 
usually one per node in the cluster. 
HDFS files are split into one or more 
blocks that are stored and served from 
a set of DataNodes. Peregrine has a 
single-level serving-tree architecture 
that was inspired by Dremel [5], but is 
simpler. 

Peregrine has a central gateway much 
like Dremel’s root server. The actual 
query processing is done in a cluster of 
worker nodes. This cluster is overlaid 
on the HDFS cluster that stores Hive 
table data, and as such, worker nodes are 
collocated on the same hosts as HDFS 
data nodes to facilitate low-latency node-
local reads. Additionally, all servers 
have been implemented using Apache 
Thrift [6], an RPC framework built and 
open sourced by Facebook. Thrift makes 
it very easy to write highly scalable and 
high performance servers quickly. Its 
communication protocols are also opti-
mized for low latency. 

query execution. Queries sub-
mitted through the client are sent to 
the gateway. The gateway parses the 
query and retrieves column meta-
data and HDFS-file locations from 
the Hive metastore. It then retrieves 
the locations of the corresponding 
HDFS blocks from the NameNode. 
Each block becomes a separate unit 
of processing called a “split.” Each 
split is then sent for local processing 
in a worker that is collocated with the 
HDFS datanode that hosts the split. 
The workers periodically return sta-
tus updates, called “heartbeats,” back 
to the gateway, indicating progress. If 
for any split, there are no heartbeats 
or there is no progress, the gateway 
deems it to have failed and resched-
ules it. At the end of processing (or on 
demand when the user kills the query), 
the workers send partial results back 
to the gateway. The gateway then com-
bines the partial values and returns 
the result to the client. All query exe-
cution is done in memory and partial 
results are transferred to the gateway 

Given that Peregrine only uses 
one-pass algorithms for aggregations 
and stores all intermediate results in 
memory, the sizes of the intermedi-
ate results and the final outputs are 
forced to be small. This limitation im-
plies Peregrine returns approximate 
answers for some types of queries. For 
example, queries containing ORDER 
BY on aggregates (SUM, MIN, COUNT) 
always return approximate answers.  
Also, some aggregate functions like 
distinct counts and percentiles are ap-
proximate and are named accordingly 
(e.g., APPROX_COUNT_DISTINCT 
and APPROX_PERCENTILE). Figure 1 

shows a sample query in a Peregrine 
session where a user has terminated 
the query after some time. Note that, 
in addition to the result of the query 
itself (not shown), there is a lot of in-
formation provided to the user about 
the query processing and the result 
itself. For example, it shows the query 
result is partial because of the failures 
in the query. Similarly, the same que-
ry run with mode.exact (see Figure 2) 
takes close to five times as long to run 
since it has to deal with stragglers. We 
will describe what stragglers are and 
how we deal with them.

figure 1. Query terminated by user using Ctrl-C.

SELECT country, COUNT(*) FROM T1 GROUP BY country;
^C

[Result is partial] [Took 22.2s] [Threads used 3300]
[Rows scanned 4269913519] [251 rows out] 
[Read 275.66 GB / 359.17 GB (76.7484%, 265 failures)]

figure 3. peregrine architecture.

Peregrine Gateway

Hadoop

HDFS 
DataNode

MetaCache

Hive Metastore

HDFS NameNode

Peregrine Clients

Thrift Interface

Command  Line Web UI

Peregrine 
Worker

Peregrine 
Worker

HDFS 
DataNode

figure 2. Query run in exact mode.

WITH TRUE AS mode.exact 
SELECT country, COUNT(*) FROM T1 GROUP BY country;

[Result is exact] [Took 99.4s] [Threads used 3400]
[Rows scanned 5057153726] [251 rows out] 
[Read 359.75 GB / 359.17 GB (100.0%, 0 failures)]
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over the network via Thrift calls.
optimizations. There are a many 

optimizations that we have done in 
Peregrine with the explicit goal of de-
creasing query latency. In this section, 
we describe a couple.

MetaCache. The gateway caches 
both the table-level and the file-level 
metadata in the MetaCache. If mul-
tiple queries are run on the same 
Hive table partitions in quick succes-
sion, which is typically when users are 
interactively analyzing a table, Per-
egrine reuses the metadata from the 
MetaCache instead of fetching it re-
peatedly from the Hive metastore and 
the HDFS NameNode. Such an optimi-
zation is fine since most data in Hive 
is written once and read many times. 
The MetaCache is mostly consistent 
with the Hive metastore—it uses a 
real-time feed of the Hive audit logs 
to invalidate entries for partitions 
that may have been changed by Hive 
queries. As a fail-safe, and to prevent 
arbitrary growth in memory usage, 
the MetaCache automatically purges 
entries that have not been queried for 
a predefined time (typically one hour).

Histograms for stragglers and 
adaptive resizing of failed splits. Once 
90 percent of the data has been pro-
cessed, “stragglers” are identified as 
splits that have been processed for 
over a fixed number of seconds and 
with a rate of progress below the fifth 
percentile. The gateway kills these 
stragglers. Then it further breaks 
down such splits into smaller splits. It 
then sends out these smaller splits for 
workers to reprocess. This addition-
al parallelism speeds up the retries 
and thus decreases the query latency 
caused by stragglers.

UsAge And perFormAnce
Peregrine’s architecture and the op-
timizations demonstrate latencies of 
queries on data stored in HDFS can be 
dramatically decreased as compared 
to Hive. At Facebook, Peregrine has 
gained wide usage over the past year. 
In addition to use for ad hoc queries, 
Facebook engineers and analysts came 
up with novel ways of using Peregrine. 
For example, our Web-based report-
ing tool, Argus, uses Peregrine to fetch 
data directly from the Hive warehouse. 
Before Peregrine, Argus relied on us-

ers to explicitly load data from Hive 
into MySQL or Oracle databases and 
then fetch data from these databases 
to drive reports. Another example is 
our HiveQL query authoring tool, Hi-
pal, which uses Peregrine to fetch data 
samples to show users a preview of 
the data in input tables. In addition, 
Facebook engineers have reused Pere-
grine’s physical operator library to run 
SQL transformations on data in their 
customized stores. We have also built 
a flexible SQL transformation binary 
that has a plug-in architecture for both 
sources and sinks. 

Peregrine currently drives more 
than 30 different internal Web-based 
querying and reporting tools. From a 
small cluster of 10 nodes, it has grown 
to more than 1,000 nodes overlaid on 
top of our ad-hoc Hive cluster. Table 1 
shows usage and performance stats 
of the major sources of queries for a 
single Peregrine cluster in production 
for a period of six months. Given that 
the workload on Peregrine is varied, 
we provide 50th and 90th percentile 
numbers for time taken and input 
scan size.

These numbers give an idea of both 
the scale of usage and the query la-
tencies. It turns out most users doing 
ad-hoc analysis do not need the full 
power of Hive. While Hive provides a 
complex query language, and returns 
exact answers all the time, it cannot 
support the rapid interactions our 
analysts and engineers require. They 
can, however, get by with approximate 
and partial answers as long as the 
queries return quickly. Here’s a quote 
from a Facebook analyst:

“Peregrine sped up my workflows 
considerably when it came out. No more 
waiting for Hive on simple data search-
ing. If it slows down and I have to go back 
to Hive, I’ll slow down as well.”

conclUsion
In this paper, we have shown how a 
low-latency query execution engine 
can be built on top of an existing clus-
ter used for batch processing. Given 
that Peregrine is fully compatible with 
existing Hive data and metadata, it 
was very easy for our users to try it out 
without having to explicitly load data 
into the new query engine. In addition, 
given that Peregrine is driving reports 
there is no need for pipelines that load 
data into MySQL or Oracle for ad-hoc 
analysis and reporting. As part of fu-
ture work, we will build support for in-
dexing and pinning popular data sets 
in memory to improve query latencies 
even further.
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table 1. major sources of queries in peregrine.

query source #queries

Time Taken input scan size

p50 (sec) p90 (sec) p50 p90
Hipal Preview 350k 1 4 1.2KB 1MB

Argus Reports 650k 1 6 88KB 459

Ad-hoc queries 200k 2 70 2.4MB 4.1GB
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Three computer scientists from UC Irvine address the question 
“What’s next for big data?” by summarizing the current state  
of the big data platform space and then describing ASTERIX,  
their next-generation big data management system.
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big data platforms: 
What’s next?

A wealth of digital information is being generated daily, information has great potential 
value for many purposes if captured and aggregated effectively. In the past, data 
warehouses were largely an enterprise phenomenon, with large companies being 
unique in recording their day-to-day operations in databases, and warehousing and 

analyzing historical data to improve their businesses. Today, organizations and researchers 
in a wide variety of areas are seeing tremendous potential value and insight to be gained by 
warehousing the emerging wealth of digital information, popularly referred to as “big data,” 
and making it available for analysis, querying, and other purposes [1]. 

Online businesses of all shapes 
and sizes are tracking customers’ 
purchases, product searches, website 
interactions, and other information 
to increase the effectiveness of their 
marketing and customer service ef-
forts. Governments and businesses 
are tracking the content of blogs and 
tweets to perform sentiment analysis. 
Public health organizations are moni-
toring news articles, tweets, and Web 
search trends to track the progress of 
epidemics. Social scientists are study-
ing tweets and social networks to un-
derstand how information of various 
kinds spreads and/or how it can be 
more effectively utilized for the public 
good. It is no surprise that support for 
data-intensive computing, search, and 
information storage—a.k.a. big data 
analytics and management—is being 
touted as a critical challenge in today’s 
computing landscape.

In this article we take a look at the 

current big data landscape, including 
its database origins, its more recent 
distributed systems rebirth, and cur-
rent industrial practices and related 
trends in the research world. We then 
ask the question “What’s next?” and 
provide a very brief tour of what one 
particular project, namely what our 
ASTERIX project, is doing in terms of 
exploring potential answers to this 
question (and why). 

A biT oF big dATA hisTory
It is fair to say that the IT world has 
been facing big data challenges for 
over four decades—it’s just that the 
definition of “big” has been changing. 
In the 1970s, big meant megabytes; 
over time, big grew to gigabytes and 
then to terabytes. Today, the IT notion 
of big has reached the petabyte range 
for conventional, high-end data ware-
houses, and exabytes are presumably 
waiting in the wings.

In the world of relational database 
systems, the need to scale databases 
to data volumes beyond the storage 
and/or processing capabilities of a 
single large computer system gave 
birth to a class of parallel database 
management systems known as 
“shared-nothing” parallel database 
systems [2]. As the name suggests, 
these systems run on networked clus-
ters of computers, each with their own 
processors, memories, and disks. 
Data is spread over the cluster based 
on a partitioning strategy—usually 
hash partitioning, but sometimes 
range partitioning or random parti-
tioning—and queries are processed 
by employing parallel, hash-based 
divide-and-conquer techniques. 

A first generation of systems ap-
peared in the 1980s, with pioneering 
prototypes from the University of Wis-
consin and the University of Tokyo and 
the first commercial offering coming 
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Web and the resulting need to index 
and query its mushrooming content 
created big data challenges for search 
companies such as Inktomi, Yahoo, 
and Google. The processing needs in 
the search world were quite different, 
however, and SQL was not the answer, 
though shared-nothing clusters once 
again emerged as the hardware plat-
form of choice. Google responded to 
these challenges by developing the 
Google File System (GFS), offering a 
familiar byte-stream-based file view 
of data that is randomly partitioned 
over hundreds or even thousands of 
nodes in a cluster [3]. GFS was then 
coupled with a programming model, 
MapReduce, to enable programmers 
to process big data by writing two 
user-defined functions, map and re-
duce [4]. The MapReduce framework 
applied these functions in parallel 
to individual data instances (Map) 
in GFS files and to sorted groups of 

from Teradata Corporation. The past 
decade has seen the emergence of a 
second major wave of these systems, 
with a number of startups delivering 
new parallel database systems that 
were then swallowed up through ac-
quisitions by the industry’s major 
hardware and software vendors. Be-
cause high-level, declarative language 
(SQL) front relational databases, users 
of parallel database systems have been 
shielded from the complexities of par-
allel programming. As a result, until 
quite recently, these systems have ar-
guably been the most successful utili-
zation of parallel computing.

During the latter 1990s, while the 
database world was admiring its “fin-
ished” work on parallel databases and 
major database software vendors were 
busy commercializing the results, the 
distributed systems world began fac-
ing its own set of big data challenges. 
The rapid growth of the World Wide 

instances that share a common key 
(Reduce)—similar to the partitioned 
parallelism used in shared-nothing 
parallel database systems. Yahoo 
and other big Web companies such 
as Facebook created an Apache open-
source version of Google’s big data 
stack, yielding the now highly popu-
lar Hadoop platform with its associ-
ated HDFS storage layer. 

Similar to the big data back-end 
storage and analysis dichotomy, the 
historical record for big data also has 
a front-end (i.e., user-facing) story 
worth noting. As enterprises in the 
1980s and 1990s began automating 
more and more of their day-to-day 
operations using databases, the data-
base world had to scale up its online 
transaction processing (OLTP) sys-
tems as well as its data warehouses. 
Companies such as Tandem Com-
puters responded with fault-tolerant, 
cluster-based SQL systems. Similarly, G
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feature

1. Open source availability versus 
expensive software licenses.

2. Multiple non-monolithic layers 
and components versus having only a 
top-level query API through which to 
access the data.

3. Support for access to file-based 
external data versus having to first de-
sign, load, and then index tables before 
being able to proceed.

4. Support for automatic and incre-
mental forward recovery of jobs with 
failed tasks versus rolling long jobs 
back to their beginning to start all over 
again on failure.

5. Automatic data placement and 
rebalancing as data grows and ma-
chines come and go versus manual, 
DBA-driven data placement.

6. Support for replication and ma-
chine fail-over without operator inter-
vention versus pager-carrying DBAs 
having to guide data recovery activities.

Some of the cons are:
1. Similar to early observations on 

why database systems’ needs were not 
met by traditional OSs and their file 
systems [7], layering a record-based 
abstraction on top of a very large byte-
sequential file abstraction leads to an 
impedance mismatch.

2. There is no imaginable reason, 
other than “because it is already there,” 
to layer a high-level data language on 
top of a two-unary-operator runtime 
like MapReduce, as it can be quite un-
natural (e.g., for joins) and can lead to 
suboptimal performance.

3. With random data block par-
titioning, the only available parallel 
query processing strategy is to “spray-
and-pray” every query to all blocks of 
the relevant data files.

4. A flexible, semi-structured [8], 
schema-less data model (based on keys 
and values) means that important in-
formation about the data being oper-
ated on is known only to the programs 
operating on it (so program mainte-
nance troubles await).

5. Coupling front- and back-end 
big data platforms to cover the full big 
data lifecycle requires significant use 
of bubble gum, baling wire, and hand-
written ETL-like scripts.

6. While Hadoop definitely scales, 
its computational model is quite 
heavy (e.g., always sorting the data 
flowing between Map and Reduce, 

but later in the distributed systems 
world, large Web companies were 
driven by very expansive user bases 
(up to tens or even hundreds of mil-
lions of Web users) to find solutions to 
achieve very fast simple lookups and 
updates to large, keyed data sets such 
as collections of user profiles. Mono-
lithic SQL databases built for OLTP 
were rejected as being too expensive, 
too complex, and/or not fast enough, 
and today’s “NoSQL movement” was 
born [5]. Again, companies such as 
Google and Amazon developed their 
own answers (BigTable and Dynamo, 
respectively) to meet this set of needs, 
and again, the Apache open-source 
community created corresponding 
clones (HBase and Cassandra, two 
of today’s most popular and scalable 
key-value stores).

TodAy’s big dATA plATForm(s)
Hadoop and HDFS have grown to be-
come the dominant platform for Big 
Data analytics at large Web companies 
as well as less traditional corners of 
traditional enterprises (e.g., for click-
stream and log analyses). At the same 
time, data analysts have grown tired 
of the low-level MapReduce program-

ming model, now choosing instead 
from among a handful of high-level 
declarative languages and frame-
works that allow data analyses to be 
expressed much more easily and writ-
ten and debugged much more quickly. 
These languages include Hive from 
Facebook (a variant of SQL) and Pig 
from Yahoo (a functional variant of 
the relational algebra, roughly). Tasks 
expressed in these languages are com-
piled down into a series of MapReduce 
jobs for execution on Hadoop clusters. 
Looking at workloads on real clusters, 
it has been reported that well over 60 
percent of Yahoo’s Hadoop jobs and 
more than 90 percent of Facebook’s 
jobs now come from these higher-level 
languages rather than hand-written 
MapReduce jobs. MapReduce is essen-
tially being relegated to the role of a big 
data runtime for higher-level, declara-
tive data languages (which are not so 
very different than SQL). 

Given this fact, it is interesting to 
analyze the pros and cons of MapRe-
duce in this role as compared to more 
traditional parallel SQL runtime sys-
tems [6]. Important pros of Hadoop 
compared with parallel SQL systems 
include:

figure 1. asteriX architecture
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and analytics. We call the result a Big 
Data Management System (or BDMS). 
By combining and extending ideas 
drawn from semi-structured data 
management, parallel databases, and 
first-generation data-intensive com-
puting platforms (notably Hadoop/
HDFS), ASTERIX aims to be able to ac-
cess, ingest, store, index, query, ana-
lyze, and publish very large quantities 
of semi-structured data. The design 
 of the ASTERIX BDMS is well-suited to 

always persisting temporary data to 
HDFS between jobs in a multi-job que-
ry plan, etc. [9]).

WhAT’s nexT? 
Given the largely accidental nature of 
the current open-source Hadoop stack, 
and a need to store and manage as well 
as simply analyze data, we set out three 
years ago to design and implement a 
highly scalable platform for next-gen-
eration information storage, search, 

handling use cases that range all the 
way from rigid, relation-like data col-
lections—whose structures are well 
understood and largely invariant—to 
flexible and more complex data, where 
little is planned ahead of time and the 
data instances are highly variant and 
self-describing.

Figure 1 provides an overview of 
a shared-nothing ASTERIX cluster 
and how its various software compo-
nents map to cluster nodes. The bot-

figure 2. example aQl schemas, queries, and results.
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tom-most layer of ASTERIX provides 
storage capabilities for ASTERIX-
managed datasets based on LSM-tree 
indexing (chosen in order to support 
high data-ingestion rates). Further up 
the stack is our data-parallel runtime, 
Hyracks [9], which sits at roughly the 
same level as Hadoop in implemen-
tations of Hive and Pig but supports 
a much more flexible computational 
model. The topmost layer of ASTERIX 
is a full parallel BDMS, complete with 
its own flexible data model (ADM) and 
query language (AQL) for describing, 
querying, and analyzing data. AQL is 
comparable to languages such as Pig 
or Hive, however ASTERIX supports 
native storage and indexing of data 
as well as having the ability to operate 
on externally resident data (e.g., data 
in HDFS). 

The ASTERIX data model (ADM) 
borrowed data concepts from JSON 
and added more primitive types as 
well as type constructors from semi-
structured and object databases. Fig-

ure 2(a) illustrates ADM by showing 
how it might be used to define a re-
cord type for modeling Twitter mes-
sages. The record type shown is an 
open type, meaning that its instances 
should conform to its specification 
but will be allowed to contain arbi-
trary additional fields that can vary 
from one instance to another. The ex-
ample also shows how ADM includes 
features such as optional fields with 
known types (e.g., “sender-location”), 
nested collections of primitive values 
(“referred-topics”), and nested records 
(“user”). More information about 
ADM can be found in a recent paper 
that provides an overview of the AS-
TERIX project [10].

Figure 2(d) shows an example of how 
a set of TweetMessageType instances 
would look. Data storage in ASTERIX 
is based on the concept of a dataset, 
a declared collection of instances of 
a given type. ASTERIX supports both 
system-managed datasets—such as 
the TweetMessages dataset declared 
at the bottom of Figure 2(a)—which 
are stored and managed by ASTERIX 
as partitioned, LSM-based B+ trees 
with optional secondary indexes, and 
external datasets, whose data can re-
side in existing HDFS files or collec-
tions of files in the cluster nodes’ local 
file systems.

The ASTERIX query language is 
called AQL, a declarative query lan-
guage designed by borrowing the es-
sence of the XQuery language, most 
notably its FLWOR expression con-
structs and composability, and then 
simplifying and adapting it to the 

ASTERIX aims  
to be able  
to access, ingest, 
store, index, query, 
analyze, and  
publish very large 
quantities of  
semi-structured data.
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fering several other experimental big 
data programming packages (includ-
ing Pregelix, a Pregel-like layer that 
runs on Hyracks, and IMRU, an itera-
tive map/reduce/update layer that tar-
gets large-scale machine learning ap-
plications [12]).

AsTerix going ForWArd
Currently the ADM/AQL layer of AS-
TERIX can run parallel queries in-
cluding lookups, large scans, parallel 
joins (both regular and fuzzy), and 
parallel aggregates. Data is stored 
natively in partitioned B+ trees and 
can be indexed via secondary indexes 
such as B+ trees, R-trees, or inverted 
indexes. The system’s external data 
access and data feed features are also 
operational. We plan to offer a first 
open-source release of ASTERIX in 
late 2012, and we are seeking a few 
early partners who would like to run 
ASTERIX on their favorite big data 
problems. Our ongoing work includes 
preparing the code base for an initial 
public release, completing our initial 
transaction story, adding additional 
indexing support for fuzzy queries, 
and providing a key-value API for 
applications that prefer a “NoSQL” 
style API over a more general query-
based API. More information about 
the project and its current code base 
can be found on our project website 
(http://asterix.ics.uci.edu/). 

It is worth pointing out ASTERIX is 
a counter-cultural project in several 
ways. First, rather than “tweaking” 
Hadoop or other existing packages, 
we set out to explore the big data plat-
form space from the ground up. We 
are learning a great deal from doing 
so, as it is surprising just how many 
interesting engineering and research 
problems are still lurking in places re-
lated to “things that have already been 
done before.” Second, rather than 
building a highly-specialized system 
to later be glued into a patchwork of 
such systems, we are exploring the 
feasibility of a “one size fits a bunch” 
system that addresses a broader set 
of needs (e.g., by offering data stor-
age and indexing as well as support 
for external data analysis, short- and 
medium-sized query support as well 
as large batch jobs, and a key-value API 
as well as a query-based one).

types and data modeling constructs 
of ADM. Figure 2(b) illustrates AQL 
by example. This AQL query runs over 
the TweetMessages dataset to com-
pute, for those tweets mentioning 
“verizon,” the number of tweets that 
refer to each topic appearing in those 
tweets. Figure 2(c) shows the results of 
this example query when run against 
the sample data of Figure 2(d).

One of the primary application ar-
eas envisioned for ASTERIX is ware-
house-based Web data integration 
[11]. As such, ASTERIX comes “out of 
the box” with a set of interesting ca-
pabilities that we feel are critical for 
such use cases. One is built-in support 
for a notion of data feeds to continu-
ously ingest, pre-process, and persist 
data from external data sources such 
as Twitter. Another is support for fuzzy 
selection and fuzzy (a.k.a. set-similari-
ty) joins, as Web data and searches are 
frequently ridden with typos and/or in-
volve sets (e.g., of interests) that should 
be similar but not identical. Figure 2(e) 
illustrates a fuzzy join query in AQL. 
Yet another built-in capability is basic 
support for spatial data (e.g., locations 
of mobile users) and for queries whose 
predicates include spatial criteria.

Figure 3 shows the nature of the 
open-source ASTERIX software stack, 
which supports the ASTERIX system 
but also aims to address other big 
data requirements. To process que-
ries such as the example from Figure 
2(b), ASTERIX compiles each AQL 
query into an Algebricks algebraic 
program. This program is then opti-
mized via algebraic rewrite rules that 
reorder the Algebricks operators as 
well as introduce partitioned paral-
lelism for scalable execution, after 
which code generation translates the 
resulting physical query plan into a 
corresponding Hyracks job that uses 
Hyracks to compute the desired query 
result. The left-hand side of Figure 3 
shows this layering. As also indicated 
in the figure, the Algebricks algebra 
layer is data-model-neutral and is 
therefore also able to support other 
high-level data languages (such as a 
Hive port that we have built). 

The ASTERIX open-source stack 
also offers a compatibility layer for us-
ers with Hadoop jobs who wish to run 
them using our software as well as of-

http://asterix.ics.uci.edu/
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interactive Analysis  
of big data

b ig data is all the rage. Computer scientists in databases, distributed systems,  
machine learning and visualization have all trumpeted the challenge and 
opportunities of our unprecedented—and exponentially increasing—access  
to data. Across academia, many have heralded the dawn of a “fourth paradigm”  

of data-driven scientific research [1]. Industrial observers see a growing demand for  
“data scientists” skilled in making sense of everything from sensor data to health records 
to copious logs of social and financial transactions. Recent reports indicate that in  
the next decade the demand for skilled analysts will far outstrip the supply [2].

New user interfaces can transform how we work with big data, 
and raise exciting research problems that span human-computer 
interaction, machine learning, and distributed systems.

By Jeffrey Heer and Sean Kandel
DOI: 10.1145/2331042.2331058

But what exactly constitutes “big 
data”? Petabytes? Exabytes? Yot-
tabytes?! (Yes, yottabyte is an actual 
word for 1,024 bytes.) To characterize 
big data, we must consider multiple di-
mensions. Data may be tall: A database 
table or log file might contain billions 
or even trillions of records. Or, data can 
be wide: A single data set might contain 
hundreds or thousands of variables to 
consider. Moreover, data are often di-
verse: Many analyses require integrat-
ing multiple data sources with varied 
data types.

Each of these dimensions intro-
duces challenges for effective analysis.
Processing tall data requires scalable 
distributed systems and may suffer 
from long-running queries that sty-
mie rapid exploration. Analysis of 
wide data may involve a combinatorial 
set of relationships among variables, 
complicating data quality assessment 

and model design. Transforming and 
blending diverse data (e.g., improving 
predictions of internal sales by incor-
porating public weather and popula 
tion demographics data) often entails 
significant manual effort that is both 
difficult and time-consuming.

Another notion of big data with 
particular end-user relevance is data 
that is too large to manipulate on an 
interactive time-scale. In the face of a 
data deluge, what remains relatively 
constant is our own cognitive ability 
to make sense of the data and reach 
reliable, informed decisions. Big data 
is of little help when decoupled from 
sound judgment. Interactive analy-
sis tools can help quell “big data” by 
augmenting our ability to manipulate 
and reason about it. For example, well- 
designed visualizations can leverage 
visual perception to help us identify 
patterns and form new hypotheses. 

Novel interfaces can enable us to itera-
tively transform and model subsets of 
data, rapidly assess initial results, and 
translate the resulting procedures to 
run on scalable backends. Enabling 
such interactive analysis requires re-
search that combines systems, algo-
rithms, and human-computer interac-
tion in new ways.

Why inTerAcTiviTy?
The goal of interactive analysis tools 
is to empower data analysts to formu-
late and assess hypotheses in a rapid, 
iterative manner—thereby support-
ing exploration at the rate of human 
thought. In a recent interview study 
of 35 data analysts at 25 different 
companies [3], we observed a general 
pattern of work shared by most ana-
lysts. This workflow consists of data 
discovery and acquisition; wrangling 
data through reformatting, cleaning, 
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suggest unresponsive tools can sig-
nificantly impact our search strategies 
and task performance [5]. Accordingly, 
interactive systems for big data must 
effectively orchestrate responsive 
client-side interfaces with slower but 
scalable backend processing.

The goal of facilitating interac-
tive analysis raises exciting research 
questions that span systems, statis-
tics, machine learning and human-
computer interaction. How might we 
enable users to transform, integrate, 
and model data while minimizing the 
need for programming? How might we 
build scalable systems that can query 
and visualize data at interactive rates? 
How might we enable domain experts 
to help guide machine learning meth-
ods to produce better models? In the 
remainder of this article, we examine 
a few research projects that attempt to 
address some of these questions.

WrAngling big dATA
One precursor to analysis—particu-
larly with diverse data—is the tedious 
process of reformatting data values or 
layout, correcting erroneous or miss-

and integration; profiling data to ex-
plore its contents, identify salient fea-
tures, and assess data quality issues; 
modeling data to explain or predict 
phenomena; and reporting results to 
disseminate findings. Most of these 
analyses are highly iterative in na-
ture, with analysts moving back and 
forth among these different tasks. 
For example, errors uncovered during 
profiling may reveal the need to ac-
quire additional data, while feedback 
from readers of a report may uncover 
flawed assumptions or suggest im-
proved modeling approaches.

Interactive tools for data analysis 
should make technically proficient 
users more productive while also 
empowering users with limited pro-
gramming skills. In our interviews 
we found that the programming 
skills of professional data analysts 
vary widely. Some primarily work 
within a graphical application like 
Excel or SAS/JMP. Others work with 
scripting languages in analytic en-
vironments such as R and MATLAB. 
Meanwhile, proficient “hackers” use 
a diversity of tools and languages, 

including distributed computation 
models such as MapReduce.

For application users and scripters, 
the lack of interactive tools for tasks 
such as data reformatting and integra-
tion leaves them dependent on corpo-
rate IT departments and induces sig-
nificant delays in analysis workflows. 
On the other hand, the overhead of 
writing programs (in multiple lan-
guages) for routine tasks leaves data 
scientists spending much of their time 
performing tedious data “munging”—
time that could otherwise be spent 
gaining insights from the data.

In addition, significant delays or 
unnecessarily complex interfaces may 
impede not only the pace of analysis, 
but also its breadth and quality. For 
instance, the latency of an interactive 
system can exert surprising effects 
on user activity. A study by Google 
engineers found that adding just 
200ms of latency to search results 
measurably decreased the number 
of searches conducted by users. Even 
more surprisingly, this effect can per-
sist for weeks after full performance is 
restored [4]. These and related results Th
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ing is responsible for up to 80 percent 
of the development time and cost in 
data warehousing projects [6]. Such 
wrangling often requires writing id-
iosyncratic scripts in programming 
languages such as Python and Perl, or 
extensive manual editing using tools 
such as Excel. This hurdle can also dis-
courage many people from working 
with data in the first place.

To assist this process, researchers 
have developed a number of novel in-

ing values, and integrating multiple 
data sources. Analysts must regularly 
restructure data to make it palatable 
to databases, statistics packages and 
visualization tools. For example, one 
analyst we interviewed noted that:

“I spend more than half of my time 
integrating, cleansing, and transforming 
data without doing any actual analysis. 
Most of the time I’m lucky if I get to do 
any ‘analysis’ at all!”

Others estimate that data clean-

teractive tools. Potters Wheel [7] and 
Google Refine (http://code.google.
com/p/google-refine/) are menu-driv-
en interfaces that provide access to 
common data transforms. Other re-
searchers have contributed relevant 
algorithms for programming-by-dem-
onstration [8]. With these methods, 
users first demonstrate desired ac-
tions in a user interface, for example 
selecting text such as addresses or 
phone numbers from larger strings. 
The system then attempts to general-
ize from these examples to produce ro-
bust programs, such as for address or 
phone number extraction [9].

Our work on Wrangler builds on 
these prior efforts to help analysts au-
thor expressive transformations [10]. 
To do so, Wrangler couples a mixed-
initiative user interface with a declara-
tive language for data transformation. 
Mixed-initiative systems combine au-
tomated services with direct user ma-
nipulation: As a user performs a task, 
the system may offer various forms of 
support, including automatic correc-
tions or recommended actions [11]. 
Declarative programming languages 
express the desired result of a compu-
tation (high-level operations or proper-
ties of an output) without describing 
its control flow (e.g., if statements or 
for loops). By decoupling specification 
from execution, a declarative language 
can succinctly model a domain while 
freeing language designers to unob-
trusively optimize processing. With 
Wrangler, user selections on a data 

figure 1. end-user programming in data wrangler. an analyst selects state names 
in a data table, indicating her desire to extract them to a new column. in response, 
an inference engine recommends possible operations (bottom left). highlights in 
the table visually preview the results of a selected extraction rule (right).

DataWrangler
ExportImport

Split data repeatedly on newline into
rows

Split split repeatedly on ','

Promote row 0 to header

Delete empty rows

Extract from Year after 'in '

Extract from Year after ' in '

Cut from Year after 'in '

Cut from Year after ' in '

Split Year after 'in '

Split Year after ' in '

Transform Script

Text

Split

Cut

Columns

Fill

Drop

Rows

Delete

Fill

Promote

Table

Fold

Unfold

Clear

Year extract Property_crime_rate
0 Reported crime in Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3

18 Reported crime in
Arkansas

19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7

24 Reported crime in
California

25 2004 3423.9

Alabama

Alaska

Arizona

Arkansas

California

figure 2. assessing social network data with three different views. the choice of representation impacts the perception 
of data quality issues. (a) a node-link diagram does not not reveal any irregularities. (b) a matrix view sorted to emphasize 
connectivity shows more substructure, but no errors pop out. (c) sorting the matrix by raw data order reveals a significant 
segment of missing data.

(a) (b) (c)

http://code.google.com/p/google-refine/
http://code.google.com/p/google-refine/
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that the data contains multiple clus-
ters, but not much else. Figure 2(b) 
shows the same data as a matrix dia-
gram; the rows and columns represent 
people and filled cells represent a con-
nection between them. Following best 
practices, we automatically permute 
(or “seriate”) the rows and columns of 
the matrix to minimize the distance 
between highly-connected people. One 
can see clusters of friendship commu-
nities along the diagonal, revealing 
more substructure than is apparent in 
the node-link view.

However, for the purposes of data 
cleaning, the “raw” visualization in 
Figure 2(c) is the most revealing. The 
rows and columns are sorted in the 
order provided by the Facebook API. 
We now see a striking pattern: The bot-
tom-right corner of the matrix is com-
pletely empty. Indeed, this is a missing 
data problem that arose because Face-
book enforced a 5,000 item result limit 
per query. In this case, the maximum 
was reached, the query failed silently, 
and the mistake went unnoticed until 
visualized. As this example indicates, 
choices of representation (e.g., matrix-
diagram) and interactive parameter-
ization (e.g., default sort order) can be 
critical to unearthing data quality is-
sues that can otherwise undermine ac-
curate analysis.

The challenges of effective vi-
sualization become more acute as 
the data grow larger. For tall data, 
a multitude of records can lead to 
crowded, uninformative displays. 
Consider the scatterplot in Figure 3; 
with only thousands of points, the 
display becomes cluttered and dif-
ficult to interpret. A scalable alter-

table trigger suggestions of possible 
operations, each of which is actually 
a statement in an underlying declar- 
ative language. As a result, the user 
and system work together to author 
scalable data transformation scripts.

Analysts using Wrangler specify 
transformations by building up a se-
quence of basic operations (see Figure 
1). As users select data within a table 
display, Wrangler suggests applica-
ble operations based on the current 
context of interaction. Meanwhile, 
programming-by-demonstration tech-
niques help analysts specify complex 
criteria such as regular expressions. To 
ensure relevance, Wrangler enumer-
ates and rank-orders possible opera-
tions using a model that incorporates 
user input with the observed frequen-
cy, diversity, and specification difficul-
ty of applicable transform types. Visu-
al previews of transformation results 
help analysts rapidly navigate and as-
sess the space of viable operations.

To support rapid interaction, Wran-
gler works with a sample of a data set 
within its Web-based user interface. 
The result of this wrangling process is 
not just transformed data, but a reus-
able program for data transformation. 
The resulting program is specified in 
a high-level declarative language that 
can be cross-compiled to a variety of 
runtime environments, including Ja-
vaScript (for processing in the browser) 
as well as Python, SQL and MapReduce 
(for server-side processing). By inter-
acting with a sample of data in the 
browser, users can generate programs 
that can process much larger data sets 
on the backend.

As an initial evaluation, we con-
ducted a controlled user study com-
paring Wrangler and Excel across a 
set of data cleaning tasks. We found 
that Wrangler significantly reduced 
specification time: Even with small 
data sets (< 30 rows), median comple-
tion time with Wrangler was still twice 
as fast for all tasks. By producing not 
just data but an executable program, 
Wrangler also enables a level of scal-
ability simply not possible with other 
graphical tools.

Of course, reformatting data is 
just one of many wrangling prob-
lems. Other tasks that can benefit 
from interactive solutions include 

entity resolution (for correctly match-
ing similar but non-identical records) 
[12], schema mapping (for integrat-
ing disparate data sources)[13], and 
anomaly detection and correction 
(for assessing data quality issues)[14]. 
More research is needed into systems 
that leverage user interaction to solve 
problems resistant to automation, 
and which provide procedures that 
can be executed at scale.

visUAlizing big dATA
Once data has been suitably trans-
formed, analysis can begin in earnest. 
Exploratory analysis through visual-
ization is often a critical component 
for assessing data quality and develop-
ing hypotheses.

For an example of data quality as-
sessment, consider the social network 
diagrams in Figure 2. The data consist 
of a social network of friends, extract-
ed from Facebook using their Web 
API. Figure 2(a) visualizes the data as a 
node-link diagram with nodes placed 
via force-directed layout. We can see 

The goal of 
interactive analysis 
tools is to empower 
data analysts to 
formulate and 
assess hypotheses 
in a rapid, iterative 
manner.

figure 3. Normal (left) and binned (right) scatter plots. adapted from [14].
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formant recommendation algorithms 
coupled with the design of usable inter-
action and visualization methods.

going ForWArd
The previous examples only begin to 
scratch the surface, touching on is-
sues that primarily stem from wran-
gling and profiling activities. Ad-
ditional research problems abound 
throughout the lifecycle of data analy-
sis. How might improved data index-
ing, metadata, and search methods fa-
cilitate data discovery? How might we 
design effective interactive systems 
not only for wrangling individual ta-
bles, but for performing data integra-
tion? Or for manipulating text, image, 
or video data? Or creating, assessing, 
and actively guiding machine learn-
ing models for classification or predic-
tion? And how might we best record 
and represent the analysis process to 
aid auditing, sharing and reuse? As 
the diversity, size, and availability of 
relevant data continues to increase, 
the design of novel interactive tools 
to aid analysis will remain an exciting 
and important topic for computer sci-
ence research.
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Interactive tools for 
data analysis should 
make technically 
proficient users more 
productive while 
also empowering 
users with limited 
programming skills.
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how do contagions spread in populations? Who are the best people to vaccinate? 
Which group should we market to for maximizing product penetration?  
Will a given YouTube video, meme, or link go viral? And what happens when  
two products compete? 

One feature these questions have in common is they are all important research problems 
(see the titles listed at the end of this article for further reading). The other is that they  
all can be characterized as problems based on giant graphs (networks) of nodes (people)  
and edges (relationships). Such networks are ubiquitous, from online social networks and 

Many interesting research questions can be explored  
by studying processes running over networks.

By B. Aditya Prakash
DOI: 10.1145/2331042.2331059

propagation and  
immunization  
in large networks

gene-regulatory networks to router 
graphs. Networks effectively model a 
wide range of phenomena by exposing 
local-dependencies while simultane-
ously capturing large-scale structure. 
Questions such as how blackouts can 
spread on a nationwide scale, how so-
cial systems evolve on the basis of indi-
vidual interactions, or how efficiently 
we can search data on large networks 
of blogs or websites, are all related to 
phenomena on networks. Clearly prog-
ress here holds great scientific as well 
as commercial value.

Big data is a natural and neces-
sary part of research in this sphere. 
Although the actions of a particular 
individual or component may be too 
difficult to model, data mining and 
machine learning can be applied to 
large groups or ensembles, in turn 
yielding effective models with the 

ability to predict future events. For in-
stance, modeling the response of every 
individual to a particular marketing 
strategy might be too difficult, but 
modeling the behavior of large groups 
of people based on demographics and 
geography is feasible. Models are use-
ful as they allow us to abstract out the 
process and simulate it on our ma-
chines, and we can then try to explore 
even more complex issues using these 
models. For example, how should we 
distribute resources to control an epi-
demic? How should we manage com-
munities to make them more produc-
tive? And how can we design these 
policies so that they can be implement-
ed on an extremely large-scale? 

Invariably, solving such problems 
involves working with huge amounts 
of data—millions of users, billions of 
tweets, and trillions of network con-

nections—as well as designing algo-
rithms and experiments using gener-
ated models, which can themselves be 
run on large and complex data. Two 
trends have emerged to allow such an 
approach: The increasing ability to 
collect more and more data, and the 
increasing ability to run more and 
more large-scale and complex models. 
In the past, when the amount of data 
available was small and computing 
power was limited, researchers used 
markedly different approaches. Soci-
ologists, for example, used to collect 
small samples and then extrapolate 
to develop very sophisticated models. 
We are now in a position to do the op-
posite. Through the emergence of big 
data, we can develop and test increas-
ingly abstracted models on larger and 
larger sample sizes.

Dynamical processes over net-
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is “below-threshold,” thus speeding-up 
the simulations.

Surprisingly, it can be shown that 
when the underlying contact-network 
does not change over time [1], the 
threshold condition is, 

λ1C < 1 

Where λ1 is the first eigenvalue of 
the connectivity matrix, and C is a vi-
rus-model dependent constant. This 
holds true for (a) any graph; and (b) all 
propagation models in standard lit-
erature, including the AIDS virus HIV 
and more than 25 others from canoni-
cal texts [2]. So, the result we achieve 
decouples the effect of the topology 
and the virus model. What makes the 
result practical is the eigenvalue com-
putation on graphs is linear-time in 

works can give rise to astonishing 
macroscopic behavior, leading to 
challenging and exciting research 
problems. How stable is a predator-
prey ecosystem, given intricate food 
webs? How do rumors spread on 
Twitter/Facebook? How should we 
administer software patches opti-
mally? Herein, we will try to illustrate 
some big-data challenges using two 
problems related to dynamical phe-
nomena (like propagation) on large 
networks: thresholds and immuni-
zation. Their applications are broad, 
and these problems are central to sur-
prisingly diverse areas including cy-
ber security, epidemiology, and public 
health, through to product marketing 
and information dissemination.

Tipping poinTs And Thresholds
Consider the following problem: Given 
a network of who-contacts-whom, will 
a contagious virus “take-over” (cause 
an epidemic) or die-out quickly? What 
will change if nodes have partial, tem-
porary, or permanent immunity? What 
if the underlying network changes 
over time, e.g., if people have different 
connections during the day at work, 
and during the night at home? An im-
portant concept in answering these 
questions is the “epidemic thresh-
old,” which is the minimum level of 
virulence required to prevent a viral 
contagion from dying out quickly. De-
termining the epidemic threshold is a 
fundamental question in epidemiol-
ogy and related areas.

Apart from the fundamental nature 
of this problem, it turns out that it is 
also very helpful in running large-scale 
epidemiological simulations. While it 
is very difficult to model each and ev-
ery person’s response to a disease, it is 
much more feasible to run epidemic 
simulations on huge populations (city 
or nationwide) to understand which 
sections get infected, which should 
be quarantined, and so on. One prob-
lem here is that running big simula-
tions—potentially involving hundreds 
of machines—is very expensive. How 
can we speed up these simulations to 
enable more useful and more frequent 
runs? The epidemic threshold problem 
we described above comes to our need: 
We don’t need to run simulations 
when the disease or virus in question 

the size of the graph, and also can be 
efficiently parallelized on Hadoop [3].

What exactly is λ1? Algebraically, it 
is simply the eigenvalue of the under-
lying adjacency matrix with the larg-
est magnitude. Intuitively though, it 
captures how vulnerable the graph is 
for an epidemic (a concept which will 
prove useful later too). Roughly, it de-
scribes the number of paths between 
pairs of nodes in a graph, discounting 
for longer paths, effectively control-
ling the number of ways the virus can 
spread. Hence, the larger is λ1, the bet-
ter the graph’s connectivity for the vi-
rus (see Figure 1).

Figure 2 demonstrates the result 
of computer simulation experiments 
on a large public dataset representing 
a synthetic population of the city of 
Portland, OR [4]. The dataset is based 

figure 1. why λ1 matters more than number of edges e. Changing connectivity  
and vulnerability of graphs with changing λ1. the clique (largest λ1) is the most 
vulnerable. Note that e is not enough. star and chain have the same number of 
edges (e = 4), but the star is intuitively more vulnerable (it also has a higher λ1).

(a) Chain ( λ1 = 1.73) (b) Chain ( λ1 = 2)

Increasing λ1

(c) Clique ( λ1 = 4)

figure 2. the tipping-point. simulation results on a massive social-contact graph 
portlaNd (31 mil. edges, 1.5 mil. nodes) and the sirs model (temporary immunity 
like pertussis). (a) plot of infected fraction of population versus time (log-log). 
Note the qualitative difference in behavior under (green) the threshold and above 
(red) the threshold. (b) footprint (expected final epidemic size) versus effective 
strength (lin-log). Notice the prediction is exactly at the take-off point.
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on detailed microscopic simulation-
based modeling and integration tech-
niques, and has been used in model-
ing studies on smallpox outbreaks. It 
is a social-contact graph containing 
31,204,286 links (interactions) among 
1,588,212 nodes (people). The simu-
lations were conducted using the so-
called “SIRS” model, which models 
diseases to which we can become 
temporarily immune (like pertussis, 
more commonly known as whooping 
cough). In such cases, an infected per-
son develops immunity, which he or 
she ultimately loses, thereby becom-
ing susceptible to the disease again. 
Figure 2(a) plots infected population 
versus time, showing clear broad dif-
ferences between the curves when the 
disease strength is under and above 
the epidemic threshold (according to 
Equation 1). In particular, as Figure 
2(b) shows, the final epidemic size 
changes abruptly exactly at our pre-
dicted tipping-point (i.e. when λ1C = 1).

FAsT immUnizATion
Consider the problem of prevention 
of hospital-to-hospital transfer of 
drug resistant bacteria. Critically ill 
patients are frequently and routinely 
transferred between hospitals in or-
der to provide necessary specialized 
care. While such inter-hospital trans-
fers are an essential part of routine 
patient care, they also enable the 
transfer from hospital to hospital of 
highly virulent microorganisms resis-
tant to many or all antibiotics. So, giv-

en a fixed amount of medicines with 
partial impact, like bottles of disinfec-
tant, how should they be distributed 
among hospitals?

Due to the scale of this problem, 
any method linear in the size of the 
graph is better. However, an eas-
ily parallelizable algorithm would be 
even better. Since doctors may have 
different resources, each with differ-
ent effectiveness, clinicians want to 
get good allocations quickly so that 
a coherent policy can be constructed 
and deployed. At the same time, the 
policy should not sacrifice accuracy. 
The current practice in allocating 
varying amounts of antidote across a 
network is essentially uniform, with 
hospitals independently tackling in-
fection control. However, this makes 
no use of the connected network we 
are given. Another obvious method 
is to estimate the effect of medicines 

through computer simulations. How-
ever, such simulations are computa-
tionally expensive and can often take 
weeks to run. Given these constraints, 
how can we get a practical and effec-
tive algorithm?

Collaborating with domain experts, 
we studied this problem and devel-
oped a fast and effective linear-time 
algorithm titled SMART-ALLOC [5]. Re-
call from our tipping-point discussion 
the connectivity of the network (in the 
form of λ1) controls the vulnerability 
of a graph to an infection. Hence, we 
just need to decrease this value as fast 
as possible. It turns out that this prob-
lem is NP-hard. So, under the hood, 
SMART-ALLOC tries to drop the eigen-
value in a smart way. In particular, the 
special form of the impact function of 
a resource allowed us to get a provably 
near-optimal greedy solution. SMART-
ALLOC runs in seconds on commod-
ity hardware, as opposed to weeks re-
quired for other approaches. Figure 
3 demonstrates the algorithm on the 
network of US-MEDICARE patient 
transfers.

Crucially, these results show signifi-
cant benefits can be achieved by con-
centrating infection-control resources 
at a carefully chosen subset of nodes, 
rather than doing so in a network-
agnostic fashion or using ad-hoc heu-
ristics. The current practice has been 
largely focused within individual hos-
pitals. Hence, current public-health 
policy is missing an opportunity to 
significantly reduce infection rates 

Through the 
emergence of big 
data, we can develop 
and test increasingly 
abstracted models 
on larger and larger 
sample sizes.

figure 3. smart-alloC method has six times fewer infections (red circles). (a) the us-mediCare network of hospitals  
overlaid on a map. (b) infected hospitals after a year (365 days) under current practice. (c) similarly, under smart-alloC. 
the current practice allocates equal amounts of resource to each hospital.

(a) US-MEDICARE Inter-hospital Connections (b) Infected Hospitals (in red) under current practice (c) Infected Hospitals (in red) under SMART-ALLOC
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with an infection prevention strategy 
that accounts for the potential transfer 
of bacteria along the network of inter-
hospital patient transfers. 

This approach can also be extended 
to other scenarios, like when we can 
completely remove a node (i.e. vacci-
nate it). For example, given a large net-
work, such as a computer communi-
cation network, which k nodes should 
we remove (or monitor, or immunize), 
to make the network as robust as pos-
sible against a computer virus attack? 
Making careful approximations, NET-
SHIELD [6] exploits the submodular 
structure of the set of possible solu-
tions, getting a simple provably near-
optimal algorithm.

Further, the inner-loops of both 
these algorithms use eigenvalue com-
putation on graphs, which, as we have 
already seen earlier in this article, are 
very efficient to compute.

conclUsion
Graphs—also known as networks—
are powerful tools for modeling pro-
cesses and situations of interest in 
real-life, including social-systems, 
cyber-security, epidemiology, and bi-
ology. In this article we reviewed two 
recent developments in studying prop-
agation-like processes on large net-
works: The importance of eigenvalue 
in understanding the tipping-point of 
epidemics, and subsequently leverag-
ing that to design fast and scalable im-
munization policies. There are several 
other extensions, like having compet-
ing viruses [7] or networks that change 
over time [8], which we did not have 
space to describe here.

Really, we have given just a glimpse 
of the types of big-data questions we 
encounter after we have already built 
models. How can we use these models 
for our benefit, to actually manipulate 
something we care about? For exam-
ple, after building models of both dis-
eases and the underlying population, 
how can we study the interactions 
between them? How can we design 
policies to do effective immunization? 
All of these questions have to be an-
swered in the context that we are try-
ing to both understand and manage 
real-life processes on a societal-scale. 
These are pretty exciting times for re-
search in networks.
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On algorithms for parallel machine learning,  
and why they need to be more efficient.

By John Langford
DOI: 10.1145/2331042.2331060

p arallel machine learning is a very exciting topic. One can potentially use massive 
quantities of data about the real world to predict useful things. For example, can a 
computer tell whether or not a particular email is unwanted spam? Can a computer 
determine which search result is best? Can a computer recognize what is pictured? 

Parallel machine learning on big data provides a means to explore and potentially answer 
these questions. 

Nevertheless, serious caution is in order. Efforts to create effective parallel machine 

learning algorithms have existed since 
at least the 1980s, but with a low suc-
cess rate. Reasons include:

1. The parallel algorithm is com-
pared with a slow but easily paral-
lelized sequential algorithm. This 
means that, in practice, people just 
use the sequential algorithm. A ca-
nonical example of this is batch 
gradient descent (slow and easily 
parallelized) rather than stochastic 
gradient descent.

2. There is an investment decision 
about where time should be spent. The 
choice is either create a faster (or bet-
ter) sequential learning algorithm or 
a parallel learning algorithm. In the 
past, it was almost always better to 
spend time on the faster sequential 
learning algorithm.

3. Parallel algorithms are often 
hard to use, with extra libraries and ad-
ditional CPUs required to see signifi-
cant benefits. Not many people have 

access to these components, and the 
overhead of setup can be significant, 
even for those who do have access.

4. The actual need for parallel 
machine learning is fairly small. 
Most machine learning problems use 
small amounts of data that are eas-
ily represented and manipulated on 

a single machine. If a learning algo-
rithm is excessively slow given even 
a modest amount of data, then it’s 
probably the wrong learning algo-
rithm for the dataset.

5. Even when the amount of data is 
not small, an arsenal of simple tricks 
can make sequential algorithms trac-
table. Such tricks are easy but are 
not systematically taught, leading to 
chronic overlook. The canonical ex-
ample of a simple trick is downsam-
pling—when you want to learn a linear 
predictor on 100 parameters and have 
access to 1 billion samples, you should 
discard all but 0.01 percent of the data 
and employ a simple single-machine 
learning algorithm.

How can we overcome all of these 
difficulties? The good news is that 
they are not without solution. Nowa-
days, one core difference is the sys-
tematic digitization and storage of 
many forms of data, providing us with 

parallel  
machine learning  
on big data

The generally high 
barrier to entry 
makes it difficult to 
develop new parallel 
learning algorithms, 
so it is critical that 
attempts to do  
so are done with  
the proper support.
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extremely large datasets. However, 
there has been a failure to scale up 
processor speeds. The response on the 
computer architecture side has been 
to provide more, rather than faster, 
CPUs, slowly addressing difficulty No. 
3. Parallelism is now routine, and soft-
ware techniques for using it are im-
proving in viability.

Difficulty No. 4 is addressed by not-
ing that some of the big datasets re-
ally matter. Measured in dollars, good 
solutions to the “ad display problem” 
(and high frequency trading in gen-
eral) are easily worth many billions. 
Measured in time, a good spam filter 

or optimized search engine can save 
millennia of time per day.

Difficulty No. 5 is addressed by not-
ing that many of these problems are 
inherently complex. What is the in-
herent complexity of the function that 
always returns the best answer given 
any question by anyone anywhere? If 
a significant portion of that function 
is parameterized and the parameters 
are learned, we want significant quan-
tities of data directly informing those 
parameter choices.

This leaves difficulties No. 1 and No. 
2, both of which can be dealt with by 
researchers.

ToWArd more  
eFFicienT AlgoriThms
Recently, my colleagues and I edited a 
book surveying the state of the art in 
parallel machine learning [1]. Based 
on this, we created a survey tutorial, 
which provides a high-level view of the 
state of public research alongside a 
summary of the book’s contents [2]. Of 
particular interest to me are the quan-
tifications of gross computational per-
formance in Part 3, where we quanti-
fied the computational performance 
of each algorithm while neglecting the 
predictive performance. The core unit 
of interest was a feature (i.e., a nonzero G
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entry in a data matrix), and we mea-
sured algorithms according to their 
features/second. 

Looking through the results, we 
saw two things. First, the notion of 
“large scale” is broadly varying over 
many orders of magnitude. This is 
important because, in any discussion 
about parallel learning, it is critical 
to nail down exactly what is meant by 
large scale—use of the term tends to 
vary radically by area and background 
within machine learning. Second, 
with the exception of one system (dis-
cussed later in this article), the most 
efficient public learning systems top 
out at 107 features/second. (There are 
several private machine-learning sys-
tems, but we could not evaluate them 
without access).

Our system, Vowpal Wabbit, man-
aged 5 ∗ 108 features/second on a 2.1 
terafeature dataset using 1,000 nodes 
[3]. Many tricks were used to achieve 
this result. The principal ones includ-
ed an efficient online learning algo-
rithm, which reached a near optimal 
solution in a single pass over the data, 
and an efficient batch-learning algo-
rithm (L-BFGS), which transformed 
the near optimal solution to an opti-
mal solution. We also applied hash-
ing to features to reduce the param-
eter dimensionality, and made use of 
three other techniques: An efficient 
implementation with dataset caching 
to minimize network use; a system for 
moving computation to data rather 
than vice-versa; and a system for effi-
cient synchronization of learning algo-
rithm state (see Agarwal  et al. for more 
detail on these tricks [4]). This “many-
things-right structure” appears nec-
essary for a high performing system, 
complicating research into parallel 
learning algorithms. 

In addition to the “many-things-
right” aspect of the learning algo-
rithm, access to interesting data and 
sufficient hardware and software 
support to use the algorithms are re-
quired. With respect to software, Ha-
doop (http://hadoop.apache.org/) is 
perhaps the most common adequate 
open data processing platform, and 
the most commonly utilized hardware 
is the x86 processor. Working with 
these minimizes the difficulty in start-
ing up and will make your work more 

widely useful. The generally high bar-
rier to entry makes it difficult to devel-
op new parallel learning algorithms, 
so it is critical that attempts to do so 
are done with the proper support.

It is also important to note that 
the first four tricks utilized in Vow-
pal Wabbit (were developed individu-
ally and without reference to parallel 
learning. Restated, improvements in 
core learning algorithms, represen-
tation, and learning systems contrib-
ute substantially to the effectiveness 
of a parallel learning algorithm, and 
these are much easier to work on indi-
vidually, particularly after their role in 
the design of a high performance sys-
tem is understood. 

condUcTing pArAllel  
AlgoriThms reseArch
What else is required for successful 
research in this area? When working 
on a parallel machine-learning algo-
rithm, it is very important that one 
is able to perceive and be dissatisfied 
with defects. For instance, online 
learning is a good algorithm, but it 
can be slow to converge when work-
ing on poorly normalized datasets. 
L-BFGS is a good batch-learning algo-
rithm, but it can be particularly slow 
to converge initially. Standard dic-
tionary building approaches are per-
fect at not losing information, but are 
also very RAM intensive. 

Furthermore, the standard text for-
mats that learning algorithms use as 
inputs are relatively readable but are 
also relatively difficult to parse. Mov-

ing data to the program is standard, 
but can often be inefficient by a factor 
of 1,000. And, although MapReduce is 
an effective mechanism for aggregat-
ing data, we really need to pair it with 
broadcast of that aggregation (an All-
Reduce operation) and the operation 
can be a factor of 1,000 or so more effi-
cient at hardware limits. [For more on 
MapReduce see Jeff Ullman’s article 
on page 30.]

In a spirit of dissatisfaction, it 
seems important to realize and con-
front other radical inefficiencies that 
exist in machine learning algorithms 
today. Let us round off this article with 
two examples, both of which provide 
useful directions for future research. 

First, when predicting one of k 
choices, conventional approaches re-
quire Ω(k) computation (or worse) while 
the lower bound is Ω(log k). Although 
we have various logarithmic time ap-
proaches, they are relatively nonstan-
dard and have caveats that make them 
difficult to apply in various settings. 
Can these caveats be removed?

Second, learning on nonlinear 
representations tends to be radically 
less efficient than learning on a lin-
ear representation. Is it possible to 
learn an effective nonlinear repre-
sentation quickly enough to effec-
tively use large quantities of data? 
The goal here would be a learning 
algorithm only a constant factor 
slower than linear learning while still 
providing the representational power 
of a boosted decision tree, for example.
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T he amount of data generated by next-gen sequencing (NGS) machines is now doubling 
every five months and the trend is expected to continue for the next few years [1].  
In contrast, the number of transistors on a chip only doubles every two years (Moore’s 
law), with chip performance doubling at a slightly faster rate of 18 months (attributed 

by Intel executive David House). Equivalently, the doubling time for drive capacity is also  
about 18 months. Hence, the growth rate of sequence data generation is outpacing that of 
hardware capabilities by a factor of approximately four every year. Without human ingenuity,  
it is apparent that not only will we be restricted to analyzing an ever-smaller fraction of  
the data generated, we may not even have the capacity to store all the data generated. 

An invitation to the digital science of life.

By Cliburn Chan
DOI: 10.1145/2331042.2331061

big data in  
computational  
biology

While the explosion in data generat-
ed by sequencing machines has gener-
ated the most attention, parallel devel-
opments are occurring in all fields of 
biomedicine. Epigenomics, transcrip-
tomics, proteomics, metabolomics, 
functional genomics, structural biolo-
gy, single cell analysis, and biomedical 
imaging have similar explosive growth 
in data generation. With the transition 
to electronic health records, clinical 
data analysis will also be joining the 
rich data party. Interestingly, increas-
ingly large data sets are also being gen-
erated by computer simulations, which 
often have to be stored and analyzed in 
the same way as biological assay data. 
For example, agent-based simulations, 
which are increasingly popular in the 
study of complex adaptive systems 
such as the brain or immune system, 
simulate individual entities (cells, 
people) as autonomous entities and 

track the properties of these agents 
over time. Said simulations can gener-
ate massive amounts of data. In order 
to meet the challenges of big data in 
biology and medicine, fundamental 
innovations in data structures and 
algorithms will be critical. The same 
can be said about breakthroughs in 
database technologies, bioinformat-
ics, machine learning, and systems bi-
ology. This is a great time for students 
of computer science with an interest 
in biology and medicine to become in-
volved with opportunities that are as 
vast as the challenges presented.

Uses oF big dATA
How can we use big data in biomedi-
cine? Grossly oversimplifying, big data 
is currently used for understanding 
disease risk in individuals, and to a 
lesser extent, for providing insight into 
disease mechanisms. An example of 

how big data is used for linking risk of 
disease to personal biomedical data 
are genome-wide association studies 
(GWAS) that make use of single-nucle-
otide polymorphisms (SNP) arrays to 
probe for hundreds of thousands to 
millions of genetic variants. In typical 
case-control studies, variations in the 
frequencies of SNPs are then used to 
find SNPs associated with the disease 
being studied. Similar association 
studies are widely used for data from 
other genomic assays such as full se-
quence reads, expression arrays, pro-
teomics, and metabolomics. The ulti-
mate goal of this research is to create a 
database of disease signatures that can 
be used to predict the risk of disease 
in an individual, and then customize 
appropriate prevention or therapeu-
tic efforts for personalized medicine. 
One caveat with the possibility of such 
massive data mining is a high risk of 
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false positive results. Fortunately, well-
established statistical methods that 
limit such false positives are available 
(e.g. permutation resampling methods 
to control the family-wise Type 1 error 
rate), but the lessons learned by bio-
statisticians may not have fully filtered 
down to all research communities. A 
notorious poster reports on the use 
of standard functional brain imaging 
analysis methods to demonstrate “a 
dead salmon perceiving humans can 
tell their emotional state” [2].

The use of big data for providing in-
sight into disease mechanisms is less 
mature; this is a challenging problem 
for which the appropriate mathemati-
cal and statistical framework for anal-
ysis is less defined. Understanding 
disease mechanisms from big data 

requires tight feedback loops between 
experimental research and computa-
tional analysis. Cohesive inter-disci-
plinary teams that can perform such 
work are rare. Finally, the nature of the 
current data being generated is often 
highly homogeneous (e.g. DNA strings) 
and not ideal for mechanism discov-
ery that may require linking multiple 
types of data over several time points. 
Although mechanistic models based 
on rich data may be used in the future, 
the analysis of big data has already re-
vealed several surprising challenges 
to our biological knowledge. One sur-
prise was the discovery that non-cod-
ing DNA (accounting for more than 90 
percent of our DNA and sometimes de-
rogatively labeled “junk” DNA) is high-
ly evolutionarily conserved, suggesting 

essential, albeit unknown functional-
ity [3]. Borrowing terminology from 
cosmology, such DNA is often known 
as “dark matter,” after the missing 
matter hypothesized to be necessary 
for the observed large-scale dynamics 
and structure of the universe. Another 
surprise was that the more than 1,200 
genetic variants discovered in GWAS 
studies account for only a small frac-
tion of the total heritability. Presently, 
it remains unknown if the “missing 
heritability” is due to rare variants not 
detected by GWAS studies or an arti-
fact of our current statistical models 
for estimating heritability [4]. 

boTTlenecks in big dATA AnAlysis
The first bottleneck in big data analysis 
is data storage and retrieval. Given that vi
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the rate of growth for storage capacity 
is not likely to suddenly increase, at-
tention has focused on more efficient 
ways of data compression. An interest-
ing direction is in the use of probabilis-
tic data structures and algorithms that 
can store data with dramatic increases 
in compression efficiency in exchange 
for only a small loss in certainty. For 
example, Bloom filters that guarantee 
a specified level of false positives and 
zero false negatives can be construct-
ed to store sequence data. A variety 
of ingenious proposals for compress-
ing NGS data were submitted to the 
Sequence Squeeze competition spon-
sored by the Pistoia Alliance (http://
www.sequencesqueeze.org).

Simply storing big data is subop-
timal—given the cost of generating 
it, ideally, big data should be freely 
shared and reused by different inves-
tigators. Funding agencies and top 
journals require big data be deposited 
in online repositories before publica-
tion, making the data publicly acces-

sible in principle. However, the data 
in public repositories may be poorly 
annotated and linking informa-
tion from distinct databases might 
be impossible because of different 

data schemas and lack of unifying 
metadata. To address this issue, data 
standards in the form of minimal in-
formation requirements have been 
published for several data types (e.g. 
MIAME; minimal information about 
microarray experiments) and there is 
a drive to create standard vocabular-
ies in the form of biomedical ontolo-
gies to allow data sharing across data-
bases and machine processing.

Even if the data can be stored and 
retrieved efficiently, big data is often 
too large to fit into available RAM, and 
languages that support generators 
are likely to be increasingly popular 
for the analysis of big data. This ex-
plains why there is a critical need for 
online algorithms that can efficiently 
process an input piece-by-piece. In 
the fields of statistical and machine 
learning, Bayesian models with con-
jugate priors are great examples of an 
online algorithm. Since the prior fam-
ily is closed under Bayesian updating, 
and as data streams in, we can recur-
sively apply Bayes’ theorem to update 
the posterior distribution. 

Machine learning is a field central 
to the analysis of big data. The infor-
mation-processing rate of the human 
brain is severely constrained, neces-
sitating the use of algorithms that can 
summarize the data and reduce the 
number of interesting features to a 
manageable level. Probabilistic graph-
ical models with a foundation in Bayes-
ian statistics play an increasing role in 
big data machine learning algorithms 
due to their ability to learn structure as 
well as parameters, ease of construct-
ing hierarchical (“mixed effects”) mod-
els, and natural fit to online process-
ing requirements. Another advantage 
of Bayesian probabilistic models is 
their declarative nature, allowing al-
gorithms developed for applications 
such as text mining by Yahoo or social 
network modeling by Facebook to be 
easily adaptable to biomedical data (or 
vice versa).

Finally, the ability to visualize or 
summarize big data is crucial to sci-
entific discovery and insight, since the 
optic cortex takes up a larger share 
of our brain than any other sensory 
modality. Most investigators still rely 
on variations of pie and bar charts or 
scatter and line plots to visualize their C
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Without human 
ingenuity, it is 
apparent that  
not only will  
we be restricted  
to analyzing  
an ever-smaller 
fraction of the data 
generated, we may 
not even have the 
capacity to store all 
the data generated.

figure 1. a spanning-tree progression analysis of density-normalized events 
(spade) visualized using Cytobank [5]. 
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data, but these classical techniques are 
woefully inadequate to reveal the com-
plexities of massive high-dimensional 
data sets. Innovative methods for 
scientific visualization and teaching 
are required, perhaps building on the 
availability of open source visualiza-
tion and animation libraries such as 
Processing (http://processing.org). 

big dATA And single cell AnAlysis
Innovations in data generation have 
affected the field of single cell analy-
sis and in particular, flow cytometry 
assays—a topic discussed less in the 
context of big data, but which is be-
lieved to become increasingly promi-
nent. Essentially all of the “-omics” 
assays previously described are indis-
criminately applied to tissue samples 
with thousands or millions of cells. 
As such, they report features of cells 
summed or averaged over many dif-
ferent cell types. However, the pro-
cess of averaging loses information 
about individual cell differences and 
obscures the complexity of a biologi-
cal response coordinated among het-
erogeneous cell types. For example, 
the immune response to a pathogen 
or tumor involves the orchestration of 
a large variety of immune cells often 
driven by low frequency but potent 
antigen-specific T lymphocytes. As 
such, there is a need for assays that re-
port on single cells rather than aggre-
gate properties of cell populations. 
Similarly, the malignant cells in a tu-
mor are typically extremely heteroge-
neous due to genomic instability and 
reside in a complex microenviron-
ment comprising of stromal cells and 
infiltrating anti-tumor and subverted 
protumor immune cells. 

In order to exploit these weak signals 
for association analysis, or to capture 
the rich network of cell types involved 
in a physiological or pathological pro-
cess, we need to measure properties 
of individual cells. Flow cytometry is 
perhaps the exemplar of multiplexed, 
single-cell analysis and its importance 
is amplified by its use in fluorescent ac-
tivated cell sorting (FACS) that enables 
the application of derivative assays 
such as single cell polymerase chain re-
action (PCR). Flow cytometry measures 
the emissions (“colors”) of multiple flu-
orescent reporters bound to different 

cell surfaces and intracellular proteins 
of single cells in solution as they stream 
past multiple interrogating lasers. This 
technology has been in research and 
clinical use for several decades now. 
However, there has been a dramatic in-
crease in the power of flow cytometry in 
the past decade—nearly all flow cytom-
eters were restricted to three or four 
colors; the current generation of flow 
cytometers is capable of measuring 
17 colors. A recently developed variant 

(mass cytometry) based on mass spec-
trometric rather than optical detection 
has pushed the number of measurable 
parameters to 40-plus. Cytometers that 
combine fluorescent labels with single 
cell imaging (image cytometers) can 
measure hundreds of parameters per 
cell if imaging features are included. 
Thus, the trend toward increasing the 
number of measurable parameters is 
certain to continue. Critically, current 
cytometers can capture single cell fea-

figure 2. Cell subset identification with a hierarchical dirichlet process gaussian 
mixture model with a consensus modal clustering strategy for gaussian  
component merging. the model was fitted to data from 21 flow cytometry data 
samples (only four are shown for illustration), comprising a total of 7,255,967 
events in nine dimensions.

figure 3. sampled events from 10 largest clusters from the model fit shown in 
figure 2 are illustrated using traditional multivariate statistical graphics, namely 
the parallel coordinates and andrews plots.

Parallel coordinates plot

FSC SSC CD3 CD8 Tet –4 –3 –2 –1 0 1 2 3 4

Andrews plot

http://processing.org
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of cells in the multivariate feature 
space and ways to summarize relevant 
features of the density that map to bi-
ological cell subsets. Figures 2 and 3 
illustrate recent work in the develop-
ment of hierarchical mixture models 
that “borrow strength” across mul-
tiple samples to sensitively find con-
sistent cell subset assignments across 
data samples. Specifically, we fit Hier-
archical Dirichlet process Gaussian 
mixture models (HDPGMM) to flow 
cytometry data using Markov Chain 
Monte Carlo (MCMC) methods cod-
ed in Python, exploiting large-scale 
parallelism with message passing 
interface (MPI) and fine scale paral-
lelism with GPU programming via the 
Compute Unified Device Architecture 
(CUDA) API. The advent of GPU com-
puting has transformed our research, 
converting a research method appli-
cable to toy data sets into a practical 
approach for automating flow cytom-
etry data analysis that we are actively 
developing for several large projects 
in cancer vaccination, HIV/AIDS bio-
marker discovery, and solid organ 
transplantation immune monitoring. 
We owe a debt of gratitude to video 
gamers around the world for spurring 
the development of commodity mas-
sively parallel processing, a testament 
to the unlikely origins of advances in 
scientific computing.

The FUTUre oF  
compUTATionAl biology
In closing, I would like to reiterate that 

it is a great time for students of com-
puter science with an interest in biol-
ogy and medicine to join the big data 
party. While the big-data deluge in 
biology seems overwhelming, this is 
just the beginning. To a large extent, 
today’s big data in biology and medi-
cine is merely about building a parts 
list of the sequences, proteins, me-
tabolites, and cells involved in various 
pathophysiological processes of stag-
gering complexity. We have barely 
begun to investigate the dynamics of 
how the parts change over time or the 
combinatorics of how the parts inter-
act with each other. Essentially, we 
have little knowledge on how to link 
the molecular to cellular to tissue to 
individual levels, which will doubt-
lessly require new developments 
in multi-scale modeling. On the re-
lated computer-engineering front, 
the fields of DNA computing, natural 
algorithms (algorithms inspired by 
biological processes), and synthetic 
biology (construction of programma-
ble genetic circuits) are wide open for 
innovative research. Digital and com-
putational biology is changing how 
we understand life itself and there is 
much work to be done and much fun 
to be had. 
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tures on millions of cells in minutes, 
providing information as to the pheno-
type, activation, functional, regulatory, 
and cell-cycle status of each cell while 
assuring robust statistics due to the 
large total population size assayed. 

Used with laboratory robotics, flow 
cytometers now routinely measure 
samples from 96- or 384-well plates, 
with each sample potentially provid-
ing data on tens or hundreds of param-
eters on thousands to millions of cells. 
In particular, imaging cytometers can 
record photographic images of each 
cell from six different perspectives and 
generate up to 1GB of data per sample. 
Such data has traditionally been stored 
locally on a disk in individual labora-
tories, either in an ad-hoc fashion or 
using a laboratory information man-
agement system (LIMS). More recently, 
sharing data via centralized (http://
flowrepository.org/) or cloud based re-
positories (http://www.cytobank.org/) 
is gaining in popularity. Standards for 
describing flow cytometry experiments 
(e.g. Minimal information about Flow 
cytometry experiments or MiFlowcyte) 
and Minimal Information About T cell 
Assays (MIATA)) have been published, 
although adoption of these standards 
is still sporadic. Recent efforts at devel-
oping ontologies for flow cytometry are 
also being addressed by the National 
Center for Biomedical Ontology, which 
has recently co-organized a workshop 
on ontology-based research in immu-
nology and infectious disease (http://
tinyurl.com/84p3vdq). Innovative uses 
of visualization for data interpretation 
are also being developed (see Figure 1). 
It is clear that the field of flow cytom-
etry is recapitulating the informatics 
developments in genomics. 

Traditionally, flow cytometry as-
says are analyzed using gating in 
which cell subsets are visually identi-
fied using serial 2-dimensional pro-
jections and isolated using polygonal 
or elliptical boundaries called gates. 
However, statistical/machine learn-
ing methods have also been increas-
ing in popularity in flow cytometry 
due to the unwieldiness and complex-
ity of manually evaluating new data 
sets with tens to hundreds of dimen-
sions. Our research focuses on the use 
of non-parametric Bayesian mixture 
models to represent the distribution 

The advent of GPU 
computing has 
transformed our 
research, converting 
a research method 
applicable to toy 
data sets into a 
practical approach 
for automating  
flow cytometry  
data analysis.

http://flowrepository.org/
http://www.cytobank.org/
http://tinyurl.com/84p3vdq
http://flowrepository.org/
http://tinyurl.com/84p3vdq
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So, I scrambled around a bit, and ended 
up getting an internship at the Center for 
Disease Control [CDC] instead.”

This “scrambled” together internship 
marked the beginning of many years of 
work for the CDC and the World Health 
organization (WHo). First working in 
Atlanta, and then in Geneva, Dean spent a 
lot of time working on what progressively 
grew into a larger and larger system for 
tracking the spread of infectious disease. 
These experiences—including a year 
working full-time between his graduation 
from undergraduate and his arrival at 
graduate school—helped fuel his eventual 
choice of a thesis topic. When Dean 
took an optimizing compilers course, he 
wondered if he could teach compilers to 
do the optimizations he had done at the 
WHo. He ended up working with Craig 
Chambers, a new faculty member who 
had started the same year Dean started 
as a grad student. “It was great, a small 
research group of three or four students 
and him. We wrote this optimizing 
compiler from scratch, and had fun and 
interesting optimization work.” When he 
finished his Ph.D. thesis, he went to work 
at Digital Equipment Corporation and 
worked on low-level profiling tools for 
applications.

Dean likes doing something different 
every few years. After working on 
something for a while, he’ll pick an 
adjacent field and then learn about that 
next. But Dean was careful to emphasize 
that while this strategy worked for him, 
he also thinks it is important to have 
different types of researchers; to have 
people who are willing to work on the 
same problem for decades, or an entire 
career—these people have a lot of in-depth 
knowledge in this area. “There’s room 
in the world for both kinds of people,” 
he explains. But, as he has moved from 
topic to topic, it turns out Dean has come 
back around again. His current project 
at Google on parallel 
training of neural 
networks was his 
undergraduate senior 
thesis topic. “Ironic,” 
says Dean.

Edward Z. Yang will be a first year Ph.D. student at 
Stanford University this fall. In his spare time, he enjoys 
playing the oboe and British change ringing. 
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True fact: As a high school student,  
Jeff Dean wrote a statistics package that, 
on certain functions, was 26 times faster 
than equivalent commercial packages. 
These days, Dean works at Google, 
helping architect and optimize some of 
the biggest data-crunching systems 
Google employs on a day-to-day basis. 
These include the well-known MapReduce 
(a programming model for parallelizing 
large computations) and BigTable (a 
system which stores almost all of 
Google’s data).  Dean’s current project is 
infrastructure for deep learning via neural 
networks, a system with applications for 
speech/image recognition and natural 
language processing.

While Dean has become a public face 
attached to much of Google’s internal 
infrastructure projects, he stresses 
the fact that these projects require a 
mix of areas of expertise. Any given 
project might have team members with 
backgrounds in networking, machine 
learning, and distributed systems. 
Collectively, a project can achieve 
more than any person individually. The 
downsides? With all of the different 
backgrounds, you really need to know 
when to say: “Hold on, I don’t understand 
this machine learning term.” However, 
he explains, working on these teams is 
lots of fun; you get to learn about a sub-
domain you might not have known very 
much about.

Along with a different style of solving 
problems, Google also has different 
research goals than academia. Dean 
gave a particular example of this: When 
an academic is working on a system, 
they don’t have to worry about what 
happens if some really rare hardware 
failure occurs—they simply have to demo 
the idea. But Google has to worry about 
these corner cases; it is what happens 
when one of your priorities is building 
a production system. There is also a 

tension with releasing results to the 
general public. Before the publication 
of the MapReduce paper, there was an 
internal discussion about whether or 
not to publish. Some were concerned 
the paper could benefit Google’s 
competitors. In the end, though, Google 
decided to release the paper, and you 
can now get any number of open source 
implementations of MapReduce.

While Dean has been at Google 
for more than a decade, the start of 
his career looked rather different. He 
recounts how he ended up getting his 
first job. “I moved around a lot as a kid; I 
went to 11 schools in 12 years in lots of 
different places in the world. We moved 
to Atlanta after my sophomore year in 
high school, and in this school, I had to do 
an internship before we could graduate. 
I knew I was interested in developing 
software. So the guidance counselor 
of the school said, ‘oh, great, I’ll set up 
something?’ and she set up this boring 
sounding internship. I went to meet 
with them before I was going to start, 
and they essentially wanted me to load 
tapes into tape drives at this insurance 
company. I thought, ‘That doesn’t sound 
much like developing software to me.’ 

Jeff dean  
big data at google 
by edWArd z. yAng 
DOI: 10.1145/2331042.2331062
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editor’s Note: In line with this issue’s 
theme of “big data,” our featured 
lab is the Centre for Advanced Spa-
tial Analysis (CASA) at University 
College London. The research center 
focuses on digital technologies in 
geography, space, and the built 
environment. With the recent Lon-
don Olympics, CASA is sure to have 
plenty of opportunity to collect and 
analyze big data. Martin Dittus, 
shares his experience at CASA. 

 —Jeff Koh

currently I am part of a group 
of postgraduate students at 
the Centre for Advanced Spa-
tial Analysis (CASA), a research 

center at University College London. 
CASA offers a Master of Research pro-
gram that is led by an interdisciplinary 
team of researchers and practitioners 
who are grounded in advanced spatial 
analysis. At CASA I am part of an inter-
national group of people, where our ac-
ademic and professional backgrounds 
are spread across multiple disciplines 

including computer science and soft-
ware engineering, architecture and the 
built environment, cartography and 
geography, physics and mathematics, 
public policy, and foreign relations. 
This diverse group represents quite a 
wealth of problem domains that CASA 
attempts to bridge.

CASA was founded in 1995 and forms 
part of the UCL’s Bartlett Faculty of the 
Built Environment, with an overall fo-
cus on cities. It is active in a large spec-
trum of research topics, including the 
analysis of urban transport flows using 
complexity science, agent-based mod-
els, and other techniques; the develop-
ment of public participation mapping 
projects that allow scientists and hob-
byists alike to easily gather survey data 
and present it as beautiful online maps; 
the analysis of surnames as descriptor 
of place; the use of QR codes to track 
the history of any object; an attempt to 
model the global dynamics of trade, mi-
gration, security, and development aid; 
a spatial flow analysis of the London ri-
ots; and much more. The data for such 
studies comes from a variety of sources. 
Base maps are equally likely to be pro-
vided by OpenStreetMap, the UK Ord-
nance Survey, or Google; and data may 
come from government bodies, indus-
try partners, the Twitter fire hose, and 
many other public and private sources.

So far as an MRes student, I have 
been afforded an enchanting combi-
nation of rigorous science and playful 
use of new technologies, with plenty of 
scope to make my own things happen. 
Some of my work entails aspects of GI-
Science, cartography, spatial modeling, 
and urban planning as well as data visu-
alization fundamentals, collaborative 
data gathering problems, a fair amount 
of playful and explorative project work, 
and beyond. As a new student I am 
amazed at the proposition to “just fol-
low your interests” as a recommended 
approach to selecting my dissertation 
topic; this is not something you would 
often be told as a professional software 

The Centre for Advanced 
Spatial Analysis at  
University College London
London, UK

“london population density.” a simple choropleth map, made more iconic  
and relatable by the inclusion of openstreetmap building and road data.
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Big data is a broad term that comprises a number of challenges 
including the analysis, search, storage, and capture of very 
large and/or high-dimensional data sets.  Relatively recent 
cultural trends along with many technological advances have 
led to dramatic increases in the area of capture.  One specific 
domain that has seen fantastic technological advances is the 
capture of DNA sequence data.  The process of sequencing DNA 
involves translating an organism’s DNA into the sequence of 
nucleobases  (bases) of which it is composed.  While the methods 
for sequencing DNA have changed over the years, almost all have 
involved some process of breaking the DNA into small fragments 
and identifying the sequence of bases for each fragment using 
chemical markers.  These small fragments are then reassembled 
into one large sequence.  Early methods required extraordinary 
amounts of manual labor and were very expensive, but in 1987 the 
first automated DNA sequencer was introduced.  These machines 
continued to get faster and cheaper at an incredible rate.  In fact, 
the task of sequencing the human genome, a sequence of more 
than 3 billion base pairs, began in 1990 and a rough draft was 
completed in 2001. Using more modern sequencers, this task could 
be completed in under a week and at a tiny fraction of the cost.  
With the help of automated DNA sequencers, increasingly massive 
quantities of genetic data are becoming available for all kinds of 
biological and medical research with each passing year.

 —Finn Kuusisto

Automated  
DNA Sequencers

the time that twitter users are happiest,  
according to an analysis of 300 million tweets.

the amount of data generated by  
the large hadron Collider each year. 

6:00esT15pb

developer (my previous job), and it is 
this kind of freedom that inspires me to 
work harder.

Data visualization has always been 
an important aspect of CASA’s research 
output. With this in mind, I spend much 
time and effort on the visual representa-
tion of my findings, and this is reflected 
well in the structure of our course. Build-
ing on an introduction to Geographic 
Information Science, an applied class in 
digital visualization techniques, a wide 
range of software packages and tech-
niques, and an optional introduction 
to the Processing language for people 
without previous programming expe-
rience, I am frequently encouraged to 
produce visual representations to illus-
trate and explore a particular scenario 
or data set. Professors and peers in class 
then review my work. I learned a lot just 
from watching others, and from having 
my own work critiqued.

One commonality is the heavy reli-
ance on computational methods, be it 
in the acquisition of data, the analysis, 
or the presentation of insights. I get to 
use the modern classics like R, ArcGIS, 
3D Studio Max, and Processing just as 
much as experimenting with more re-
cent tools like CityEngine, Unity, and 
Lumion. In more than one group proj-
ect my colleagues and I were making 
use of online collaboration softwares 
to produce and refine documents 
while we were meeting. This works 
well when everyone is in the same 
room, but this has also helped me 
bridge physical distances. After hav-
ing experienced the benefits of docu-
ment editors with live collaboration 
modes (like Google Docs, Piratepad, 
or Prezi), single-person editors seem 
almost obsolete now. Such multi-mod-
al teamwork takes a bit of practice, but 
once it flows it feels magical.
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Cost per Mega base  
of DNA
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Cost per  
Human-sized Genome

$95,263,072.00 $10,497.00

GenBank Sequence  
Database Size (bases)
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Completely Sequenced 
Genomes in GenBank

~50 ~1,900
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Finding yourself Using geolocation  
and the google maps Api
by colin J. ihrig

Today, many websites are able 
to access a visitor’s physical 
location and generate pages 
specifically tailored to their 

surroundings. Some examples might 
include providing driving directions or 
locating nearby landmarks. The process 
by which a site determines a user’s 
physical location is called geoloca-
tion. The World Wide Web Consortium 
(W3C)—a standards organization for 
the Web—has created a geolocation API, 
which defines a JavaScript interface 
that can be utilized in modern HTMl5 
capable browsers [1].

In this tutorial we will create an 
example Web page that uses geoloca-
tion, in conjunction with Google’s Maps 
API [2], to generate and display driving 
directions on a map and in textual for-
mat. When the page is loaded, the user’s 
current physical location is displayed on 
a map. When the user clicks on the map, 
driving directions are generated start-
ing from the current location and ending 
at the clicked location on the map.

geolocation prerequisites
The geolocation API is not yet supported 
by all browsers. In order to run the 
example, you will need a browser that 
supports geolocation. our example uses 
Firefox 12.0, which can be downloaded 
for free from Mozilla. Another thing to 
note is the issue of privacy arising from 
sharing a user’s physical location. When 

the example page is loaded, you will 
notice that the browser must first get 
explicit consent from the user before 
sharing their location. Figure 1 shows 
the dialog box used by Firefox to get the 
user’s consent.

web page setup
First, we need to create the HTMl file 
that will contain the map and directions. 
listing 1 shows the HTMl source for our 
example page. The DOCTYPE on line 1 
instructs the browser to render the page 
according to HTMl5 standards [3]. In 
the document’s head, two external Ja-
vaScript files are included. The first file, 
included on lines 6-8, is the Google Maps 
API. This is the file that provides the 
mapping functionality. luckily, Google 
has already done most of the hard work 
with this file. notice the source URl 
takes a parameter named sensor. For 
our purposes this is set to false. line 9 
includes a second JavaScript file, hel-
loWorld.js, which we will create later. 
This is where our application’s function-
ality is going to be implemented.

Two <div> elements are defined in 
the page’s body on lines 12-15. The ele-
ment named map _ canvas is where the 
map is going to be displayed, while the 
dir _ panel element will show the cor-
responding text directions. The style 
attributes of the <html>, <body>, and 
<div> elements ensure the document is 
sized and displayed properly.

geolocation lookup
The next step is to actually create the 
helloWorld.js file. First, we need 
to add a function that will perform a 
geolocation lookup when the page is 
loaded. listing 2 shows the JavaScript 
code that implements this functionality. 
on line 1, an anonymous function is at-
tached to the page’s load event. This en-
sures that our code is called each time 
the page is loaded. The if statement 
on line 2 determines whether or not the 
browser supports geolocation by check-
ing for the existence of the navigator.
geolocation object. If geolocation 
is not supported then the error message 
on line 8 is shown.

If the browser does support geoloca-
tion then the getCurrentPosition() 
function is called on line 3. As the name 
implies, this function attempts to 
determine the user’s physical location. 
The getCurrentPosition() function 
takes two callback functions as argu-
ments. The first argument is a function 
that is executed if the user’s location 
is determined successfully. In this 
example, the success callback function 
is named showMap(). We’ll return to 
showMap()shortly.

During a geolocation lookup, any 
number of things can go wrong, resulting 
in a lookup failure. The second callback 
function passed to getCurrentPosi-
tion() is used to handle lookup failures. 
lines 4-6 show the error callback func-
tion for the example page. For this ex-
ample, a simple error message is shown 
if the user cannot be located.

displaying the map
If geolocation succeeds, the showMap() 
function is called. The code for 
showMap() is shown in listing 3. The 
first thing to point out is the position 
argument. This is an object that 
contains the user’s physical location 
defined in terms of latitude and 
longitude. The variable assignments 

hello world

figure 1. firefox requesting permission to share the user’s location.

hello world

http://www.cjihrig.com
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on lines 2 and 3 are used to store the 
these coordinates. The latlng variable, 
declared on line 4, is an object in the 
Google Maps API that represents the 
user’s location.

The variable mapOpts, declared on 
lines 5 and 6, is a JavaScript object 
literal. The Maps API makes extensive 
use of JavaScript objects for passing 
arguments due to their simplicity and 
flexibility. In our example, mapOpts 
is used to create a hybrid, style map 
(street names overlaid on satellite im-
agery), which is centered on the user’s 
coordinates and zoomed in by a factor 
of 15. The canvas variable on line 7 cor-
responds to the <div> element where 
the map will be displayed. The map is 
created on line 8. lines 9 and 10 create 
a marker on the map at the user’s loca-
tion. Since the map is centered on the 
user’s location, the marker appears in 
the middle of the map.

next, we will allow the user to gener-
ate driving directions by clicking on 
the map. First, we need to create two 
Maps API objects, a DirectionsSer-
vice and a DirectionsRenderer. 

1: <!DOCTYPE html>
2: <html style=”height:100%; width:100%;”>
3:   <head>
4:     <title>Geolocation and Google Maps Example</title> 
5:     <meta charset=”UTF-8” /> 
6:     <script 
7:       src=”http://maps.googleapis.com/maps/api/js?sensor=false”>
8:     </script>
9:     <script src=”helloWorld.js”></script>
10:   </head>
11:   <body style=”height:100%; width:100%; margin:0; padding:0;”>
12:     <div id=”map_canvas” 
13:          style=”float:left; width:75%; height:100%;”></div>
14:     <div id=”dir_panel” 
15:          style=”float:right; width:25%; height:100%;”></div>
16:   </body>
17: </html>

listing 1. html source for the example page.

1:  window.addEventListener(‘load’, function() {
2:    if (navigator.geolocation)
3:      navigator.geolocation.getCurrentPosition(showMap, 
4:        function(error) {
5:          alert(‘Cannot determine your location!’);
6:        });
7:    else
8:      alert(‘Your browser does not support geolocation!’);
9:  });

listing 2. Javascript function to perform geolocation lookup.

figure 2. example of the finished web page.
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The DirectionsService declared 
on line 11 provides routing directions, 
while the DirectionsRenderer on line 
12 displays the directions on the map 
and in the directions panel. on line 13, a 
reference to the dir _ panel element 
is stored in the panel variable. lines 15 
and 16 tell the DirectionsRenderer 
where to display the graphical and tex-
tual directions, respectively.

The final step in the example is to 
add an event listener to the showMap() 
function. This will allow the directions 
to update automatically when the user 
clicks on the map. To do this, the ad-
dListener() function is called on line 
17. The arguments passed to addLis-
tener() are the map object, the type of 
event (click in this case), and a func-
tion that processes the event. on line 
18, the event handler calls the route() 
function of the DirectionsService. 
The first argument passed to route() 
is an object literal containing the user’s 
current location, the travel destination 
stored in the latLng field of the event 
argument, and the travel mode, which is 
driving in our example. The second argu-
ment passed to route() is a function 
that handles the routing information 
returned by the DirectionsSer-
vice. on lines 21 and 22, this function 

checks that the directions were properly 
created and then tells the Direction-
sRenderer to display them.

Conclusion
By following the steps outlined in this 
tutorial you have just created a non-
trivial, location aware Web page. By 
utilizing Google’s Maps API, we were 
able to create the page in approximately 
50 lines of HTMl and JavaScript code. 
Figure 2 shows the example page used 
to navigate downtown Pittsburgh, PA. If 
you would like to use the example page 
while on the go, it is available online at 
http://www.cjihrig.com/development/
html5/map.htm.
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1: function showMap(position) {
2:   var latitude  = position.coords.latitude;
3:   var longitude = position.coords.longitude;
4:   var latlng    = new google.maps.LatLng(latitude, longitude);
5:   var mapOpts   = {zoom: 15, center: latlng,
6:                    mapTypeId: google.maps.MapTypeId.HYBRID};
7:   var canvas    = document.getElementById(‘map_canvas’);
8:   var map       = new google.maps.Map(canvas, mapOpts);
9:   var marker    = new google.maps.Marker({position: latlng, 
10:                                           map: map});
11:   var dirServ   = new google.maps.DirectionsService();
12:   var dirDisp   = new google.maps.DirectionsRenderer();
13:   var panel     = document.getElementById(‘dir_panel’);
14:
15:   dirDisp.setMap(map);
16:   dirDisp.setPanel(panel);
17:   google.maps.event.addListener(map, ‘click’, function(event) {
18:     dirServ.route({origin: latlng, destination: event.latLng,
19:                    travelMode: google.maps.TravelMode.DRIVING}, 
20:       function(result, status) {
21:         if (status === google.maps.DirectionsStatus.OK)
22:           dirDisp.setDirections(result);
23:       });
24:     });
25: }

listing 3. Javascript function to display a map and driving directions.

http://www.cjihrig.com/development/html5/map.htm
http://www.cjihrig.com/development/html5/map.htm
http://www.acm.org/jocch
http://www.acm.org/subscribe
http://www.w3.org/TR/geolocation-API
https://developers.google.com/maps/documentation/javascript
http://www.cjihrig.com/blog/the-html5-doctype
https://developers.google.com/maps/documentation/javascript


ACM, Intel, and Google congratulate 

JUDEA PEARL 

for fundamental contributions to artificial intelligence  

through the development of a calculus for probabilistic  

and causal reasoning.

“Dr. Pearl’s work provided the original paradigm 

case for how to do statistical AI. By placing 

structured knowledge representations at the heart 

of his work, and emphasizing how these represen-

tations enabled efficient inference and learning, 

he showed the field of AI how to build statistical 

reasoning systems that were actually telling us 

something about intelligence, not just statistics.”   

Limor Fix 

Director, University Collaborative Research Group 

Intel Labs

For more information see www.intel.com/research.

by the community ◆ from the community ◆ for the community
tHE ACM A. M. turing AwArd

“Judea Pearl is the most prominent advocate for proba-

bilistic models in artificial intelligence. He developed 

mathematical tools to tackle complex problems that 

handle uncertainty. Before Pearl, AI systems had more 

success in black and white domains like chess. But robot-

ics, self-driving cars, and speech recognition deal with 

uncertainty. Pearl enabled these applications to flourish, 

and convinced the field to adopt these techniques.”

Alfred Spector

Vice President, Research and Special Initiatives 

Google Inc. 

For more information, see http://www.google.com/corporate/ 
index.html and http://research.google.com/. 

Financial support for the ACM A. M. Turing Award is provided by Intel Corporation and Google Inc. 

http://www.intel.com/research
http://www.google.com/corporate/index.html
http://www.google.com/corporate/index.html
http://research.google.com/


76

end

X R D S  •  f a l l 2 0 1 2  •  V o l . 1 9 •  N o . 1

eveNts

conFerences 

Fifth Balkan Conference  
in Informatics (BCI)
University of Novi Sad 
Novi Sad, Serbia
September 16-20, 2012  
http://bci2012.bci-conferences.org

International Conference on 
Emerging Intelligent Data  
and Web Technologies (EIDWT)
University Politehnica of 
Bucharest 
Bucharest, Romania
September 19-21, 2012  
http://voyager.ce.fit.ac.jp/~eidwt2012/
index.html 

International Conference 
on Information Technology, 
E-Government and Applications 
(ICITEA)
Hotel BurJuman Arjaana 
Abu Dhabi, UAE 
September 20-21, 2012  
http://www.icitea.com/callforpapers12.php 

Research In The Large: App Stores, 
Wide Distribution, and Big Data 
Westin St.Francis Hotel 
San Francisco, CA 
September 21, 2012 
http://large.mobilelifecentre.org/2012 

Applied Statistics 2012 (AS) 
Hotel Ribno 
Bled, Slovenia 
September 23 -26, 2012 
http://conferences.nib.si/AS2012 

OSS, BSS World Summit 
Sheraton, The Park Lane Hotel
London, UK 
September 25-26, 2012  
http://www.ossbssworld.com/
programme.html 

11th International Conference on 
Information Systems and Industrial 
Management (CISIM) 
Palazzo Ca’Dolfin, Dorsoduro
Venice, Italy 
September 26-28, 2012  
http://www.dsi.unive.it/CISIM 

IEEE International Conference on 
Advanced Computational Intelligence 
(ICACI) 
Jintailong International Hotel 
Nanjing, Jiangsu, China 
October 18-20, 2012  
http://www.iwaci.org 

2012 IEEE Symposium on e-Learning, 
e-Management,  and e-Services (IS3E)
Grand Seasons Hotel 
Kuala Lumpur, Malaysia 
October 21-24, 2012  
http://computer.ieeemy.org/is3e 

Sixth International Conference on 
New Trends in Information Science, 
Service Science, and Data Mining 
(NISS, ICMIA and NASNIT) 
Taipei, Taiwan
October 23-25, 2012  
http://www.aicit.org/issdm/ 
home/index.html 

Conference on Intelligent Data 
Understanding (CIDU)
National Center for Atmospheric 
Research 
Boulder, CO 
October 24-26, 2012  
https://c3.nasa.gov/dashlink/events/1 

Fifth Romania Tier 2 Federation 
Conference: Grid, Cloud, and High 
Performance Computing in Science 
(RO-LCG 2012)
National Institute for Research 
and Development of Isotopic and 
Molecular Technologies
Cluj Napoca, Romania
October 25-27, 2012  
http://www.itim-cj.ro/rolcg2012 

The Eleventh International 
Symposium on Intelligent  
Data Analysis (IDA)
Finlandia Hall
Helsinki, Finland 
October 25-27, 2012  
http://ida2012.org 

2012 Third International Conference 
on E-business, Management and 
Economics (ICEME) 
Hong Kong 
October 27-28, 2012
Cost: Students $300  
http://www.iceme.org/index.htm 

Eight IEEE International Conference 
on eScience (eScience 2012) 
Hyatt Regency Chicago
Chicago, IL 
October 8-12, 2012  
http://www.ci.uchicago.edu/
escience2012/index.php 

Big Data Europe
Holiday Inn Vienna-South
Vienna, Austria
October 9-10, 2012
http://www.big-data-europe.com   

International Conference on  
Cyber-Enabled Distributed Computing 
and Knowledge  
Discovery (CyberC) 
Sanya, China 
October 10-12, 2012  
http://www.cyberc.org 

First International Workshop  
on Dependability Issues  
in Cloud Computing (DISCCO) 
Irvine, CA 
October 11, 2012  
https://sites.google.com/site/ 
discco2012/home 

IEEE Symposium on  
Large, Scale Data Analysis  
and Visualization (LDAV) 
Seattle, WA 
October 14-15, 2012  
http://www.ldav.org 

IEEE Symposium on  
Biological Data  
Visualization (BIOVIS) 
Seattle, WA 
October 14-15, 2012  
http://www.biovis.net/about 

ACM Symposium on  
Cloud Computing (SOCC)
San Jose Marriot 
San Jose, CA 
October 14-17, 2012  
http://www.socc2012.org/home 

Second International eConference 
on Computer and Knowledge 
Engineering (ICCKE)
Mashhad, Iran 
October 18-19, 2012  
http://iccke2012.um.ac.ir 

http://bci2012.bci-conferences.org
http://voyager.ce.fit.ac.jp/~eidwt2012/index.html
http://voyager.ce.fit.ac.jp/~eidwt2012/index.html
http://www.icitea.com/callforpapers12.php
http://large.mobilelifecentre.org/2012
http://conferences.nib.si/AS2012
http://www.ossbssworld.com/programme.html
http://www.ossbssworld.com/programme.html
http://www.dsi.unive.it/CISIM
http://www.ci.uchicago.edu/escience2012/index.php
http://www.ci.uchicago.edu/escience2012/index.php
http://www.big-data-europe.com
http://www.cyberc.org
https://sites.google.com/site/discco2012/home
http://www.ldav.org
http://www.biovis.net/about
http://www.socc2012.org/home
http://iccke2012.um.ac.ir
http://www.iwaci.org
http://computer.ieeemy.org/is3e
http://www.aicit.org/issdm/home/index.html
http://www.aicit.org/issdm/home/index.html
https://c3.nasa.gov/dashlink/events/1
http://www.itim-cj.ro/rolcg2012
http://ida2012.org
http://www.iceme.org/index.htm
https://sites.google.com/site/discco2012/home
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Big Data Innovation
Boston, MA 
September 13-14, 2012

Have you ever thought, how big 
organizations and multinationals 
cope with huge volumes of data, 
which they have to store, analyze, 
and process every single day? 
How are the researchers trying to 
develop trend-setting platforms to 
exceed the limits of exabytes and 
zettabytes? 

Well, we are in the world of high 
performance computing—the 
world of large and complex data 
sets—often known as “big data.” If 
you are interested in delving into 
and learning about business data 
analytics, stock market predictions 
and analysis of business trends, 
and the current research going 
on in this field, then the Big Data 
Innovation Conference in Boston is 
your ideal destination. 

As promised by the organizers, 
the conference will be an ideal 
platform for persons involved in 
the field of big data with more than 
35 keynote presentations from 
big multinationals, interactive 
breakout sessions, and open 
discussions ranging from analytics 
to the architecture of future data 
systems.

 For more details visit, http://
analytics.theiegroup.com/bigdata-
boston.  

 —Arka Bhattacharya

2012 International Symposium  
on Information Theory  
and its Applications (ISITA)
Hawaii Convention Center 
Honolulu, HI
October 28-31, 2012  
http://www.isita.ieice.org/2012 

ACM International Conference 
on Information and Knowledge 
Management (CIKM) 
Sheraton Maui Resort & Spa 
Maui, HI 
October 29-November 2, 2012
http://www.cikm2012.org 

ACM Multimedia 2012 (ACMMM) 
Nara Prefectural New Public Hall 
Nara, Japan 
October 29- November 2, 2012
http://www.acmmm12.org 

2012 Second IEEE International 
Conference on Cloud Computing  
and Intelligence Systems (CCIS) 
Dragon Hotel 
Hangzhou, China
October 30-November 1, 2012
Cost: Students $450 
http://conference.bupt.edu.cn/ccis2012

Big Data Europe
Paris, France
November 6-7, 2012
http://www.big-data-europe.com   

2012 International Conference 
on Knowledge, Information, 
and Creativity Support Systems 
(KICSS) 
Monash Conference Centre 
Melbourne, Australia 
November 8-10, 2012  
http://gnn.infotech.monash.edu.au/
kicss2012/DropBox/site.content  

The International Conference for  
High Performance Computing, 
Networking, Storage and Analysis (SC 12)
Salt Lake City, UT 
November 10-16, 2012
Cost: Students $150 (advanced), $200 
(late), $225 (onsite) 
http://sc12.supercomputing.org 

IEEE Asia Pacific Cloud Computing 
Congress (APCloudCC 2012)
Shenzen, China 
November 14-17, 2012
Cost: Students $360 (before Sept 16), 
$425 (after) 
http://www.apcloudcc.org 

Big Data Europe
Frankfurt, Germany
November 20-21, 2012
http://www.big-data-europe.com   

2012 Third International Conference 
on Emerging Applications  
of Information Technology (EAIT) 
Indian Statistical Institute
Kolkata, India 
November 29-December 1, 2012
https://sites.google.com/site/csieait2012

IEEE International Conference on 
High Performance Computing (HiPC)
Le Meridien Hotel
Pune, India  
December 18-21, 2012  
http://www.hipc.org/hipc2012/index.php 

International Symposium  
on High Performance  
Computer Architecture (HPCA) 
Shenzen, China 
February 23-27, 2013  
http://carch.ict.ac.cn/~hpca19/index.html 

28th ACM Symposium  
on Applied Computing (SAC) 
Institute of Engineering of the 
Polytechnic Institute of Coimbra 
(ISEC-IPC) 
Coimbra, Portugal  
March 18-22, 2013  
http://www.acm.org/conferences/ 
sac/sac2013  

conTesTs & evenTs

VisWeek 2012
With the world of information 
being flooded by high-dimensional, 
specialized data, there is an 
everlasting void in the space of 
information visualization. VisWeek 
2012 is a unique event to feed the 
need. The weeklong event brings 
together researchers and practitioners 
from academia, industry, and 

77

http://www.isita.ieice.org/2012
http://www.apcloudcc.org
http://www.cikm2012.org
http://www.big-data-europe.com
http://www.acmmm12.org
https://sites.google.com/site/csieait2012
http://conference.bupt.edu.cn/ccis2012
http://www.hipc.org/hipc2012/index.php
http://www.big-data-europe.com
http://carch.ict.ac.cn/~hpca19/index.html
http://gnn.infotech.monash.edu.au/kicss2012/DropBox/site.content
http://gnn.infotech.monash.edu.au/kicss2012/DropBox/site.content
http://www.acm.org/conferences/sac/sac2013
http://sc12.supercomputing.org
http://www.acm.org/conferences/sac/sac2013
http://analytics.theiegroup.com/bigdata-boston
http://analytics.theiegroup.com/bigdata-boston
http://analytics.theiegroup.com/bigdata-boston
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government. VisWeek 2012 will host 
three major events: IEEE visualization 
(23nd IEEE SciVis), IEEE Information 
visualization (18th IEEE InfoVis) and 
IEEE visual analytics science and 
technology (7th IEEE VAST). 
 VisWeek 2012 will be held October 
14-19, 2012 in Seattle. 
http://visweek.org/

MASSIVE 2012
The Fourth Workshop on Massive Data 
Algorithmics 2012 (MASSIVE 2012) will 
be held as a part of ALGO 2012. The 
University of Ljubljana, Slovenia will 
host the workshop on September 
13, 2012. The workshop aims to 
integrate interested practitioners 
from academia and industries. 
Scope of the workshop includes 
fundamental as well as specialized 
problems graphics, database, 
statistics, bioinformatics etc. 
http://analytics.theiegroup.com/
bigdata-london

grAnTs, scholArships & 
FelloWships

NSF Innovation Corps Program
Website: http://www.nsf.gov/pubs/2011/
nsf11560/nsf11560.htm
Deadline: September 15, 2012
Benefits: Up to $50,000; $5 million in 
total awards
Eligibility: Must be a recipient of an 
NSF award within the last five years.
Explanation: The Innovation Corps 
program seeks to give support to 
transform research into applied 
products and services. This support 
includes both a monetary grant and 
mentoring, to the end that the project 
can attract funding from outside 
investors.  Innovation Corps will 
determine whether a viable product 
or service can be produced with the 
research, create a transition plan, 
and develop a demonstration of the 
product for investors.

Hertz Fellowship
Website: http://www.hertzfoundation.
org/dx/fellowships/application.aspx
Deadline: Fall 2012
Benefits: Tuition is covered, includes 
a $31,000-$35,000 stipend for up to 
five years.

Eligibility: Citizens or permanent 
residents of the U.S. who are “willing 
to morally commit to make their skills 
available to the United States in time 
of national emergency.”
Explanation: The Hertz Foundation 
awards 15-20 fellowships to students 
pursuing a Ph.D. in the applied 
physical, biological, and engineering 
sciences. The foundation is 
interested in funding candidates 
who will be able to make an impact 
by applying science to real-world 
human problems.

AAUW International Fellowship
Website: http://www.aauw.org/learn/
fellows_directory/index.cfm
Benefits: 49 fellowships totaling 
$978,000 were awarded last year.
Deadline: Applications available 
August 1
Eligibility: Women who are not U.S. 
citizens or permanent residents.
Explanation: The fellowship 
can support both graduate and 
postgraduate study, there are 
fellowships available for study 
outside the U.S. Past recipients of 
AAUW fellowships in computer 
science have done academic work 
on human-computer interaction; 
other grants by the organization 
have spanned the gamut of computer 
science topics.

poiNters

big dATA resoUrces
Every day, we end up creating 
enormous volumes of digital data. 
Such data is generated by various 
means, e.g., weather sensors, social 
media posts, digital pictures and 
videos, emails, financial transactions, 
amongst many others. It is estimated 
that 90 percent of the data available 
to us now has been created during 
the last two years. This is loosely 
characterized as “big data.”

We define big data as datasets 
that are so large and complex 
traditional data analysis and 
management tools no longer work. 
They are usually characterised by: 
(1) an extremely large volume; (2) 
a very high speed of update; and 
(3) a wide variety of sources, which 

aCroNyms

l-Bfgs algorithm limited memory 

Broyden–Fletcher–Goldfarb–Shanno 

algorithm: A quasi-newton optimization 

methods that uses a limited memory 

variation of the BFGS update.

Bdms Big Data Management System: 

Systems that can manage data sets 

so large and complex, which are 

awkward to work with using on-hand 

database management tools.

aQl Annotation Query language: A 

language for building extractors that 

extract structured information from 

unstructured or semistructured text.

gfs Google File System: A proprietary 

distributed file system developed by 

Google Inc. for its own use.

eC2 Amazon Elastic Cloud: A 

central part of Amazon.com’s cloud 

computing platform that allows users 

to rent virtual computers on which to 

run their own computer applications.

hdfs Hadoop Distributed File 

System: A distributed, scalable, and 

portable filesystem written in Java 

for the Hadoop framework, designed 

to store very large data sets reliably, 

and to stream those data sets at high 

bandwidth to user applications.

sdN Software Defined networking:  

An emerging architecture for 

computer networking that separates 

the control plane from the data plane 

in network switches and routers.

http://Amazon.com
http://visweek.org/
http://analytics.theiegroup.com/bigdata-london
http://www.nsf.gov/pubs/2011/nsf11560/nsf11560.htm
http://www.nsf.gov/pubs/2011/nsf11560/nsf11560.htm
http://www.hertzfoundation.org/dx/fellowships/application.aspx
http://www.aauw.org/learn/fellows_directory/index.cfm
http://www.aauw.org/learn/fellows_directory/index.cfm
http://www.hertzfoundation.org/dx/fellowships/application.aspx
http://analytics.theiegroup.com/bigdata-london
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National Robotics Initiative
Website: http://www.nsf.gov/
funding/pgm_summ.jsp?pims_
id=503641&org=CISE

Deadline: Letters of Intent due Oct. 
1 for small proposals, Dec.15 for 
large proposals; Full proposals due 
Nov. 3 for small proposals, Jan. 18, 
2013 for large proposals.
Benefits: 60-75 grants allotted from 
a $40-50 million fund.
Eligibility: Similar to other NSF 
projects.
Explanation: The National Robotics 
Initiative is a U.S. program put 
forward by many government 
agencies, including NASA and the 
NSF. The focus of the initiative is 
on “co-robots,” robots that work 
cooperatively with people, taking the 
roles of co-workers, co-protectors, 
and co-inhabitants alongside 
humans. In order for these robots to 
be of the greatest possible use, they 
will have to be cheap, usable, and 
available anywhere. The initiative 
aims both to support the technical 
research that will make this possible, 
as well as the interdisciplinary 
insights that can be gained by 
working with researchers in areas 
like linguistics, cognition, and 
developmental science. Another 
part of the program is integrating 
robotics into education, both 
through curriculum and through 
research to determine the possible 
long-terms effects of humans living 
with co-robots. For more information 
about how this new generation 
of robotics might transform in 
space flight, health care, and food 
production see the official program 
solicitation; http://www.nsf.gov/
pubs/2011/nsf11553/nsf11553.htm/.

contribute to generating the data. 
For that reason, big data has to deal 
with engineering challenges and 
research opportunities in storage, 
privacy, and analysis issues.

Big Data Now: Current Perspectives 
from O’Reilly Radar
O’Reilly Radar Team, O’Reilly Media, 
Kindle edition (2011)
Description:
This is a collection of data related 
work published by O’Reilly Media 
in 2010-2011, mainly in the form 
of interviews with experts in the 
field. The four core areas covered in 
this book include: (1) data issues, 
(2) products and processes in the 
application of data, (3) data science 
and data tools, and (4) the business 
of data. This book is available for 
Amazon Kindle devices and reader 
applications.

Taming The Big Data Tidal Wave: 
Finding Opportunities in Huge Data 
Streams with Advanced Analytics
Bill Franks, Wiley (2012)
From the back cover:
“In case you ever wondered why big 
data is providing business value in 
many industries, this book gives 
you perspectives and answers from 
many angles—from the tech side, 
to data science, to business users 
and processes. In my entire career 
of researching and lecturing on 
analytics, I have never encountered 
a book that combines the knowledge 
of both information technology 
and business managers in such a 
succinct way. I would recommend it 
to anyone whose career intersects 
with big data.”

 —Diego Klabjan,  
Professor at Northwestern University, 

Director, Master’s of Science in Analytics

“Bill Franks provides an entertaining 
and consumable take on a complex 
and intricate topic. The mix of 
insights applicable to practitioners 
and novices alike make this a critical 
read for someone new to the analytics 
space or to anyone in the space 
wanting to ensure they can learn from 
an accomplished leader. Franks’ view 
across multiple industries and uses of 
big data have positioned him well to 

deliver this entry into the emergence 
of the space.”

 —Richard Maltsbarger,  
Senior Vice President of Strategy,  

Lowe’s Companies, Inc.

UseFUl WebsiTes

IBM Big Data
http://www-01.ibm.com/software/data/
bigdata

Oracle Big Data
http://www.oracle.com/us/technologies/
big-data/index.html

McKinsey Global Institute, “Big data: 
The next frontier for innovation, 
competition, and productivity”
http://tinyurl.com/74tdfdv/

Nature Special: Big Data
http://www.nature.com/news/specials/
bigdata/index.html

Google Public Data Explorer
http://www.google.com/publicdata/di

The CASA Blog Network
http://blogs.casa.ucl.ac.uk

grAdUATe progrAms

The Bartlett, University  
College London
http://www.bartlett.ucl.ac.uk/ 

McCormick School of Engineering, 
Northwestern
http://www.analytics.northwestern.edu

Advanced Analytics at North Carolina 
State University
http://analytics.ncsu.edu

School of Information Systems and 
Management, Carnegie Mellon 
University
http://www.heinz.cmu.edu/

School of Information Studies,  
Syracuse University
http://ischool.syr.edu//

Kelley School of Business,  
Indian University Bloomington 
http://kelley.iu.edu/
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One day, grandma baked a cake  
with a square top and dimensions 
30cm × 30cm × 10cm. What is a simple 
strategy for cutting the cake into nine 
equal pieces? The next day, grandma 
baked another cake with the same 
dimensions. This time, she put a  
thin layer of icing on top and on all  
four sides but not on the bottom.  
What is a simple strategy for cutting 
such a cake into nine pieces such  
that all pieces have the same amount  
of cake by volume and the same 
amount of icing by surface area?

find the solution at: http://xrds.acm.
org/bemusement/2012.cfm

Source: Mathoverflow;  
http://mathoverflow.net/questions/ 
29323/math-puzzles-for-dinner
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Source: http://thisisindexed.com/2006/08/back-that-thing-up/

Puzzle:  
Grandma’s 
Famous 
Cake
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Data: By the numbers

Back that Thing Up

Convincing

suBmit a puzzle

Can you can do better? Bemusements would like your puzzles and mathematical games (but not Sudoku).  
Contact xrds@acm.org to submit yours!

http://thisisindexed.com/2006/08/back-that-thing-up/
http://xkcd.com/833/
http://xrds.acm.org/bemusement/2012.cfm
http://xrds.acm.org/bemusement/2012.cfm
http://mathoverflow.net/questions/29323/math-puzzles-for-dinner
mailto:xrds@acm.org
http://mathoverflow.net/questions/29323/math-puzzles-for-dinner
http://www.phdcomics.com
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You already know that intelligence is vital to 
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The National Security Agency is the only 
Intelligence Community agency that 
generates intelligence from foreign signals 
and protects U.S. systems from prying eyes. 

If you like using scientific methods and 
systematic thinking to solve complex 
problems, then explore NSA. At NSA you 
can experience a variety of opportunities 
throughout your career as you work on real-
world challenges with the latest technology. 
You’ll also enjoy a collaborative work 
environment with flexible hours that will 
enable you to strike a balance between work 
and life. 

You won’t find this kind of experience  
anywhere else.
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Scholarships and Co-op
 >> Plus other opportunities
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