Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

<table>
<thead>
<tr>
<th>Session Id</th>
<th>Country</th>
<th>Session Length (sec)</th>
<th>Number of Web Pages viewed</th>
<th>Gender</th>
<th>Browser Type</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>982</td>
<td>8</td>
<td>Male</td>
<td>IE</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>811</td>
<td>10</td>
<td>Female</td>
<td>Netscape</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>2125</td>
<td>45</td>
<td>Female</td>
<td>Mozilla</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>596</td>
<td>4</td>
<td>Male</td>
<td>IE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>123</td>
<td>9</td>
<td>Male</td>
<td>Mozilla</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example of Association Rule:

\[\{\text{Number of Pages} \in [5,10) \land (\text{Browser}=\text{Mozilla})\} \rightarrow \{\text{Buy} = \text{No}\} \]
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables

- Introduce a new “item” for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
 - Browser Type = Mozilla
Handling Categorical Attributes

Potential Issues

- What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values

- What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items
Handling Continuous Attributes

Different kinds of rules:
- $\text{Age} \in [21,35) \land \text{Salary} \in [70k,120k) \rightarrow \text{Buy}$
- $\text{Salary} \in [70k,120k) \land \text{Buy} \rightarrow \text{Age}: \mu=28, \sigma=4$

Different methods:
- Discretization-based
- Statistics-based
- Non-discretization based
 - minApriori
Handling Continuous Attributes

- Use discretization
- Unsupervised:
 - Equal-width binning
 - Equal-depth binning
 - Clustering
- Supervised:

<table>
<thead>
<tr>
<th>Class</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
<th>(v_6)</th>
<th>(v_7)</th>
<th>(v_8)</th>
<th>(v_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalous</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Normal</td>
<td>150</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

Attribute values, \(v \)
Discretization Issues

- Size of the discretized intervals affect support & confidence

\[
\{\text{Refund = No, (Income = $51,250)}\} \rightarrow \{\text{Cheat = No}\}
\]

\[
\{\text{Refund = No, (60K \leq \text{Income} \leq 80K)}\} \rightarrow \{\text{Cheat = No}\}
\]

\[
\{\text{Refund = No, (0K \leq \text{Income} \leq 1B)}\} \rightarrow \{\text{Cheat = No}\}
\]

- If intervals too small
 - may not have enough support
- If intervals too large
 - may not have enough confidence

- Potential solution: use all possible intervals
Discretization Issues

- **Execution time**
 - If intervals contain n values, there are on average $O(n^2)$ possible ranges

- **Too many rules**

 \[
 \{\text{Refund = No, (Income = $51,250)}\} \rightarrow \{\text{Cheat = No}\}
 \]

 \[
 \{\text{Refund = No, (51K \leq Income \leq 52K)}\} \rightarrow \{\text{Cheat = No}\}
 \]

 \[
 \{\text{Refund = No, (50K \leq Income \leq 60K)}\} \rightarrow \{\text{Cheat = No}\}
 \]
Approach by Srikant & Agrawal

- Preprocess the data
 - Discretize attribute using equi-depth partitioning
 - Use *partial completeness measure* to determine number of partitions
 - Merge adjacent intervals as long as support is less than max-support

- Apply existing association rule mining algorithms

- Determine interesting rules in the output
Approach by Srikant & Agrawal

- Discretization will lose information

 - Use *partial completeness measure* to determine how much information is lost

 C: frequent itemsets obtained by considering all ranges of attribute values
 P: frequent itemsets obtained by considering all ranges over the partitions

 P is *K-complete* w.r.t C if P ⊆ C, and ∀X ∈ C, ∃ X’ ∈ P such that:
 1. X’ is a generalization of X and support (X’) ≤ K × support(X) (K ≥ 1)
 2. ∀Y ⊆ X, ∃ Y’ ⊆ X’ such that support (Y’) ≤ K × support(Y)

Given K (*partial completeness level*), can determine number of intervals (N)
Interestingness Measure

Given an itemset: $Z = \{z_1, z_2, \ldots, z_k\}$ and its generalization $Z' = \{z'_1, z'_2, \ldots, z'_k\}$

- $P(Z)$: support of Z
- $E_{Z'}(Z)$: expected support of Z based on Z'

$$E_{Z'}(Z) = \frac{P(z_1)}{P(z'_1)} \times \frac{P(z_2)}{P(z'_2)} \times \cdots \times \frac{P(z_k)}{P(z'_k)} \times P(Z')$$

- Z is R-interesting w.r.t. Z' if $P(Z) \geq R \times E_{Z'}(Z)$
Interestingness Measure

- For S: \(X \rightarrow Y \), and its generalization S’: \(X’ \rightarrow Y’ \)

 \(P(Y|X) \): confidence of \(X \rightarrow Y \)
 \(P(Y'|X') \): confidence of \(X' \rightarrow Y' \)
 \(E_{S'}(Y|X) \): expected support of \(Z \) based on \(Z' \)

 \[
 E(Y \mid X) = \frac{P(y_1)}{P(y_1')} \times \frac{P(y_2)}{P(y_2')} \times \ldots \times \frac{P(y_k)}{P(y_k')} \times P(Y'|X')
 \]

- Rule S is R-interesting w.r.t its ancestor rule S’ if
 - Support, \(P(S) \geq R \times E_{s'}(S) \) or
 - Confidence, \(P(Y|X) \geq R \times E_{s'}(Y|X) \)
Statistics-based Methods

- **Example:**
 - Browser=Mozilla ∧ Buy=Yes → Age: μ=23

- **Rule consequent** consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.

- **Approach:**
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule
Statistics-based Methods

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:
 \[A \Rightarrow B: \mu \text{ versus } \overline{A} \Rightarrow B: \mu' \]

- Statistical hypothesis testing:
 - Null hypothesis: \(H_0: \mu' = \mu + \Delta \)
 - Alternative hypothesis: \(H_1: \mu' > \mu + \Delta \)
 - \(Z \) has zero mean and variance 1 under null hypothesis

\[Z = \frac{\mu' - \mu - \Delta}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \]
Statistics-based Methods

Example:

\[r: \text{Browser=Mozilla} \land \text{Buy=Yes} \rightarrow \text{Age: } \mu=23 \]
- Rule is interesting if difference between \(\mu \) and \(\mu' \) is greater than 5 years (i.e., \(\Delta = 5 \))
- For \(r \), suppose \(n_1 = 50, s_1 = 3.5 \)
- For \(r' \) (complement): \(n_2 = 250, s_2 = 6.5 \)

\[
Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11
\]
- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since \(Z \) is greater than 1.64, \(r \) is an interesting rule
Min-Apriori (Han et al)

Document-term matrix:

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Example:

W1 and W2 tends to appear together in the same document
Min-Apriori

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Min-Apriori

How to determine the support of a word?

- If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors – e.g., using L_1 norm
 - Each word has a support equals to 1.0

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Min-Apriori

- New definition of support:

\[
\text{sup}(C) = \sum_{i \in T} \min_{j \in C} D(i, j)
\]

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Example:

\[
\text{Sup}(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17
\]
Anti-monotone property of Support

Example:

Sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1

Sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9

Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17
Multi-level Association Rules

- **Food**
 - Bread
 - Wheat
 - White
 - Milk
 - Skim
 - 2%
 - Kemps
 - Foremost

- **Electronics**
 - Computers
 - Desktop
 - Laptop
 - Accessory
 - Home
 - TV
 - DVD
 - Printer
 - Scanner
Multi-level Association Rules

Why should we incorporate concept hierarchy?

- Rules at lower levels may not have enough support to appear in any frequent itemsets

- Rules at lower levels of the hierarchy are overly specific
 - e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc.
 - are indicative of association between milk and bread
Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X_1 and X_2, then
 $\sigma(X) \leq \sigma(X_1) + \sigma(X_2)$

 If $\sigma(X_1 \cup Y_1) \geq \text{minsup}$,
 and X is parent of X_1, Y is parent of Y_1
 then $\sigma(X \cup Y_1) \geq \text{minsup}$, $\sigma(X_1 \cup Y) \geq \text{minsup}$
 $\sigma(X \cup Y) \geq \text{minsup}$

 - If $\text{conf}(X_1 \Rightarrow Y_1) \geq \text{minconf}$,
 then $\text{conf}(X_1 \Rightarrow Y) \geq \text{minconf}$
Multi-level Association Rules

● Approach 1:
 – Extend current association rule formulation by augmenting each transaction with higher level items

 Original Transaction: \{skim milk, wheat bread\}

 Augmented Transaction:
 \{skim milk, wheat bread, milk, bread, food\}

● Issues:
 – Items that reside at higher levels have much higher support counts
 ✷ if support threshold is low, too many frequent patterns involving items from the higher levels
 – Increased dimensionality of the data
Multi-level Association Rules

- **Approach 2:**
 - Generate frequent patterns at highest level first
 - Then, generate frequent patterns at the next highest level, and so on

- **Issues:**
 - I/O requirements will increase dramatically because we need to perform more passes over the data
 - May miss some potentially interesting cross-level association patterns
Sequence Data

Sequence Database:

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>6, 1</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>7, 8, 1, 2</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>1, 6</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>1, 8, 7</td>
</tr>
</tbody>
</table>
Examples of Sequence Data

<table>
<thead>
<tr>
<th>Sequence Database</th>
<th>Sequence</th>
<th>Element (Transaction)</th>
<th>Event (Item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Purchase history of a given customer</td>
<td>A set of items bought by a customer at time t</td>
<td>Books, diary products, CDs, etc</td>
</tr>
<tr>
<td>Web Data</td>
<td>Browsing activity of a particular Web visitor</td>
<td>A collection of files viewed by a Web visitor after a single mouse click</td>
<td>Home page, index page, contact info, etc</td>
</tr>
<tr>
<td>Event data</td>
<td>History of events generated by a given sensor</td>
<td>Events triggered by a sensor at time t</td>
<td>Types of alarms generated by sensors</td>
</tr>
<tr>
<td>Genome sequences</td>
<td>DNA sequence of a particular species</td>
<td>An element of the DNA sequence</td>
<td>Bases A,T,G,C</td>
</tr>
</tbody>
</table>

Diagram:

![Element (Transaction) Sequence](image)

Event (Item)
Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)
 \[s = < e_1, e_2, e_3, \ldots > \]
 - Each element contains a collection of events (items)
 \[e_i = \{i_1, i_2, \ldots, i_k\} \]
 - Each element is attributed to a specific time or location

- Length of a sequence, \(|s|\), is given by the number of elements of the sequence

- A k-sequence is a sequence that contains k events (items)
Examples of Sequence

● Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

● Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>

● Sequence of books checked out at a library:

<{{Fellowship of the Ring} {The Two Towers} {Return of the King}>
Formal Definition of a Subsequence

- A sequence \(<a_1 a_2 \ldots a_n>\) is contained in another sequence \(<b_1 b_2 \ldots b_m>\) (\(m \geq n\)) if there exist integers \(i_1 < i_2 < \ldots < i_n\) such that \(a_1 \subseteq b_{i_1}\), \(a_2 \subseteq b_{i_1}\), \ldots, \(a_n \subseteq b_{i_n}\).

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<{2,4} {3,5,6} {8}>)</td>
<td>(<{2} {3,5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1,2} {3,4}>)</td>
<td>(<{1} {2}>)</td>
<td>No</td>
</tr>
<tr>
<td>(<{2,4} {2,4} {2,5}>)</td>
<td>(<{2} {4}>)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The support of a subsequence \(w\) is defined as the fraction of data sequences that contain \(w\).

- A *sequential pattern* is a frequent subsequence (i.e., a subsequence whose support is \(\geq\) \(\text{minsup}\)).
Sequential Pattern Mining: Definition

Given:
- a database of sequences
- a user-specified minimum support threshold, $minsup$

Task:
- Find all subsequences with support $\geq minsup$
Sequential Pattern Mining: Challenge

- Given a sequence: `<{a b} {c d e} {f} {g h i}>`
 - Examples of subsequences:
 `<{a} {c d} {f} {g}>`, `<{c d e}>`, `<{b} {g}>`, etc.

- How many k-subsequences can be extracted from a given n-sequence?

\[
\binom{n}{k} = \binom{9}{4} = 126
\]
Sequential Pattern Mining: Example

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3,4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2,4,5</td>
</tr>
</tbody>
</table>

MinSup = 50%

Examples of Frequent Subsequences:

- `<{1,2}>` \(s=60\% \)
- `<{2,3}>` \(s=60\% \)
- `<{2,4}>` \(s=80\% \)
- `<{3,5}>` \(s=80\% \)
- `<{1,2}>` \(s=80\% \)
- `<{2,2}>` \(s=60\% \)
- `<{1,2,3}>` \(s=60\% \)
- `<{2,2,3}>` \(s=60\% \)
- `<{1,2,2,3}>` \(s=60\% \)
Extracting Sequential Patterns

- Given n events: $i_1, i_2, i_3, \ldots, i_n$

- Candidate 1-subsequences:
 $$\langle\{i_1\}\rangle, \langle\{i_2\}\rangle, \langle\{i_3\}\rangle, \ldots, \langle\{i_n\}\rangle$$

- Candidate 2-subsequences:
 $$\langle\{i_1, i_2\}\rangle, \langle\{i_1, i_3\}\rangle, \ldots, \langle\{i_1\}\{i_1\}\rangle, \langle\{i_1\}\{i_2\}\rangle, \ldots, \langle\{i_{n-1}\}\{i_n\}\rangle$$

- Candidate 3-subsequences:
 $$\langle\{i_1, i_2, i_3\}\rangle, \langle\{i_1, i_2, i_4\}\rangle, \ldots, \langle\{i_1, i_2\}\{i_1\}\rangle, \langle\{i_1, i_2\}\{i_2\}\rangle, \ldots,$$
 $$\langle\{i_1\}\{i_1, i_2\}\rangle, \langle\{i_1\}\{i_1, i_3\}\rangle, \ldots, \langle\{i_1\}\{i_1\}\{i_1\}\rangle, \langle\{i_1\}\{i_1\}\{i_2\}\rangle, \ldots$$
Generalized Sequential Pattern (GSP)

- **Step 1:**
 - Make the first pass over the sequence database \(D \) to yield all the 1-element frequent sequences

- **Step 2:**

 Repeat until no new frequent sequences are found
 - **Candidate Generation:**
 - Merge pairs of frequent subsequences found in the \((k-1)th\) pass to generate candidate sequences that contain \(k \) items

 - **Candidate Pruning:**
 - Prune candidate \(k \)-sequences that contain infrequent \((k-1)\)-subsequences

 - **Support Counting:**
 - Make a new pass over the sequence database \(D \) to find the support for these candidate sequences

 - **Candidate Elimination:**
 - Eliminate candidate \(k \)-sequences whose actual support is less than \(\text{minsup} \)
Candidate Generation

- **Base case (k=2):**
 - Merging two frequent 1-sequences \(<\{i_1\}\>\) and \(<\{i_2\}\>\) will produce two candidate 2-sequences: \(<\{i_1\} \{i_2\}\>\) and \(<\{i_1 \ i_2\}\>\)

- **General case (k>2):**
 - A frequent \((k-1)\)-sequence \(w_1\) is merged with another frequent \((k-1)\)-sequence \(w_2\) to produce a candidate \(k\)-sequence if the subsequence obtained by removing the first event in \(w_1\) is the same as the subsequence obtained by removing the last event in \(w_2\).
 - The resulting candidate after merging is given by the sequence \(w_1\) extended with the last event of \(w_2\).
 - If the last two events in \(w_2\) belong to the same element, then the last event in \(w_2\) becomes part of the last element in \(w_1\).
 - Otherwise, the last event in \(w_2\) becomes a separate element appended to the end of \(w_1\).
Candidate Generation Examples

- Merging the sequences
 \(w_1 = \langle \{1\} \{2,3\} \{4\} \rangle \) and \(w_2 = \langle \{2,3\} \{4,5\} \rangle \)
 will produce the candidate sequence \(\langle \{1\} \{2,3\} \{4,5\} \rangle \) because the last two events in \(w_2 \) (4 and 5) belong to the same element

- Merging the sequences
 \(w_1 = \langle \{1\} \{2,3\} \{4\} \rangle \) and \(w_2 = \langle \{2,3\} \{4\} \{5\} \rangle \)
 will produce the candidate sequence \(\langle \{1\} \{2,3\} \{4\} \{5\} \rangle \) because the last two events in \(w_2 \) (4 and 5) do not belong to the same element.

- We do not have to merge the sequences
 \(w_1 = \langle \{1\} \{2,6\} \{4\} \rangle \) and \(w_2 = \langle \{1\} \{2\} \{4,5\} \rangle \)
 to produce the candidate \(\langle \{1\} \{2,6\} \{4,5\} \rangle \) because if the latter is a viable candidate, then it can be obtained by merging \(w_1 \) with \(\langle \{1\} \{2,6\} \{5\} \rangle \)
GSP Example

Frequent 3-sequences

- \(<\{1\} \{2\} \{3\}>\)
- \(<\{1\} \{2\} \{5\}>\)
- \(<\{1\} \{5\} \{3\}>\)
- \(<\{2\} \{3\} \{4\}>\)
- \(<\{2\} \{5\} \{3\}>\)
- \(<\{3\} \{4\} \{5\}>\)
- \(<\{5\} \{3\} \{4\}>\)

Candidate Generation

- \(<\{1\} \{2\} \{3\} \{4\}>\)
- \(<\{1\} \{2\} \{5\} \{3\}>\)
- \(<\{1\} \{5\} \{3\} \{4\}>\)
- \(<\{2\} \{3\} \{4\} \{5\}>\)
- \(<\{2\} \{5\} \{3\} \{4\}>\)

Candidate Pruning

- \(<\{1\} \{2\} \{5\} \{3\}>\)
Timing Constraints (I)

\[\{A, B\} \{C\} \{D, E\} \]

\[\leq x \quad > n \quad \leq m \]

\(x\): max-gap
\(n\): min-gap
\(m\): maximum span

\(x = 2, n = 0, m = 4\)

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< {2, 4} {3, 5, 6} {4, 7} {4, 5} {8}>)</td>
<td>(< {6} {5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(< {1} {2} {3} {4} {5}>)</td>
<td>(< {1} {4}>)</td>
<td>No</td>
</tr>
<tr>
<td>(< {1} {2, 3} {3, 4} {4, 5}>)</td>
<td>(< {2} {3} {5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(< {1, 2} {3} {2, 3} {3, 4} {2, 4} {4, 5}>)</td>
<td>(< {1, 2} {5}>)</td>
<td>No</td>
</tr>
</tbody>
</table>
Mining Sequential Patterns with Timing Constraints

Approach 1:
- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:
- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?
Apriori Principle for Sequence Data

Suppose:

\[x_g = 1 \text{ (max-gap)} \]
\[n_g = 0 \text{ (min-gap)} \]
\[m_s = 5 \text{ (maximum span)} \]
\[\text{minsup} = 60\% \]

\[\{2\} \{5\} \] support = 40%

but

\[\{2\} \{3\} \{5\} \] support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite
Contiguous Subsequences

- s is a contiguous subsequence of
 \[w = \langle e_1 \rangle \langle e_2 \rangle \ldots \langle e_k \rangle \]
 if any of the following conditions hold:
 - s is obtained from w by deleting an item from either \(e_1 \) or \(e_k \)
 - s is obtained from w by deleting an item from any element \(e_i \) that contains more than 2 items
 - s is a contiguous subsequence of s’ and s’ is a contiguous subsequence of w (recursive definition)

- Examples: \(s = \langle \{1\} \{2\} \rangle \)
 - is a contiguous subsequence of
 \[\langle \{1\} \{2\} \{3\} \rangle, \langle \{1\} \{2\} \{3\} \rangle, \text{ and } \langle \{3\} \{4\} \{1\} \{2\} \{2\} \{3\} \{4\} \rangle \]
 - is not a contiguous subsequence of
 \[\langle \{1\} \{3\} \{2\} \rangle \text{ and } \langle \{2\} \{1\} \{3\} \{2\} \rangle \]
Modified Candidate Pruning Step

- **Without maxgap constraint:**
 - A candidate k-sequence is pruned if at least one of its $(k-1)$-subsequences is infrequent

- **With maxgap constraint:**
 - A candidate k-sequence is pruned if at least one of its contiguous $(k-1)$-subsequences is infrequent
Timing Constraints (II)

Table

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>< {2,4, 3,5,6} {4,7} {4,6} {8}></td>
<td>< {3} {5}></td>
<td>No</td>
</tr>
<tr>
<td>< {1,2} {3} {4} {5}></td>
<td>< {1,2} {3}></td>
<td>Yes</td>
</tr>
<tr>
<td>< {1,2} {2,3} {3,4} {4,5}></td>
<td>< {1,2} {3,4}></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Diagram

![Diagram showing timing constraints]

- x_g: max-gap
- n_g: min-gap
- ws: window size
- m_s: maximum span

- $x_g = 2$, $n_g = 0$, $ws = 1$, $m_s = 5$
Modified Support Counting Step

- Given a candidate pattern: \(<\{a, c\}>\)
 - Any data sequences that contain

 \(<\ldots \{a \ c\} \ldots >,\>

 \(<\ldots \{a\} \ldots \{c\}\ldots > \ (\text{where } \text{time}({\{c\}}) - \text{time}({\{a\}}) \leq \text{ws})\)

 \(<\ldots \{c\} \ldots \{a\} \ldots > \ (\text{where } \text{time}({\{a\}}) - \text{time}({\{c\}}) \leq \text{ws})\)

 will contribute to the support count of candidate pattern
Other Formulation

• In some domains, we may have only one very long time series
 – Example:
 ◦ monitoring network traffic events for attacks
 ◦ monitoring telecommunication alarm signals

• Goal is to find frequent sequences of events in the time series
 – This problem is also known as frequent episode mining

Pattern: <E1> <E3>
General Support Counting Schemes

Object's Timeline

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>q</td>
<td>q</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Sequence: (p) (q)

<table>
<thead>
<tr>
<th>Method</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBJ</td>
<td>1</td>
</tr>
<tr>
<td>CWIN</td>
<td>6</td>
</tr>
<tr>
<td>CMINWIN</td>
<td>4</td>
</tr>
<tr>
<td>CDIST_O</td>
<td>8</td>
</tr>
<tr>
<td>CDIST</td>
<td>5</td>
</tr>
</tbody>
</table>

Assume:
- \(x_g = 2\) (max-gap)
- \(n_g = 0\) (min-gap)
- \(ws = 0\) (window size)
- \(m_s = 2\) (maximum span)
Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc
Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph
Representing Transactions as Graphs

- Each transaction is a clique of items

<table>
<thead>
<tr>
<th>Transaction Id</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A, B, C, D}</td>
</tr>
<tr>
<td>2</td>
<td>{A, B, E}</td>
</tr>
<tr>
<td>3</td>
<td>{B, C}</td>
</tr>
<tr>
<td>4</td>
<td>{A, B, D, E}</td>
</tr>
<tr>
<td>5</td>
<td>{B, C, D}</td>
</tr>
</tbody>
</table>
Representing Graphs as Transactions

\[
\begin{align*}
\text{G1} & : (a,b,p) & (a,b,q) & (a,b,r) & (b,c,p) & (b,c,q) & (b,c,r) & \cdots & (d,e,r) \\
G1 & : 1 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\
G2 & : 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
G3 & : 0 & 0 & 1 & 1 & 0 & 0 & \cdots & 0 \\
G3 & : \cdots & \cdots
\end{align*}
\]
Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?
Challenges…

- **Support:**
 - number of graphs that contain a particular subgraph

- **Apriori principle still holds**

- **Level-wise (Apriori-like) approach:**
 - **Vertex growing:**
 - \(k \) is the number of vertices
 - **Edge growing:**
 - \(k \) is the number of edges
Vertex Growing

\[G_1 = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0 \end{pmatrix} \quad G_2 = \begin{pmatrix} 0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0 \end{pmatrix} \quad G_3 = \text{join}(G_1, G_2) = \begin{pmatrix} 0 & p & p & 0 & q \\ p & 0 & r & 0 & 0 \\ p & r & 0 & r & 0 \\ 0 & 0 & r & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{pmatrix} \]
Edge Growing

\[G_3 = \text{join}(G_1, G_2) \]
Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - Use frequent \((k-1)\)-subgraphs to generate candidate \(k\)-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent \((k-1)\)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate \(k\)-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
Example: Dataset

<table>
<thead>
<tr>
<th></th>
<th>(a,b,p)</th>
<th>(a,b,q)</th>
<th>(a,b,r)</th>
<th>(b,c,p)</th>
<th>(b,c,q)</th>
<th>(b,c,r)</th>
<th>...</th>
<th>(d,e,r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>G2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

Minimum support count = 2

k=1 Frequent Subgraphs

k=2 Frequent Subgraphs

k=3 Candidate Subgraphs

(Pruned candidate)
Candidate Generation

- **In Apriori:**
 - Merging two frequent k-itemsets will produce a candidate $(k+1)$-itemset

- **In frequent subgraph mining (vertex/edge growing):**
 - Merging two frequent k-subgraphs may produce more than one candidate $(k+1)$-subgraph
Multiplicity of Candidates (Vertex Growing)

\[G_1 + G_2 = G_3 = \text{join}(G_1, G_2) \]

\[
M_{G_1} = \begin{pmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
q & 0 & 0 & 0
\end{pmatrix} \quad M_{G_2} = \begin{pmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0
\end{pmatrix} \quad M_{G_3} = \begin{pmatrix}
0 & p & p & 0 & q \\
p & 0 & r & 0 & 0 \\
p & r & 0 & r & 0 \\
0 & 0 & r & 0 & ? \\
q & 0 & 0 & ? & 0
\end{pmatrix}
\]
Multiplicity of Candidates (Edge growing)

- Case 1: identical vertex labels
Core: The (k-1) subgraph that is common between the joint graphs
Multiplicity of Candidates (Edge growing)

- Case 3: Core multiplicity

```
+ b a
a a
b a
```

```
+ b a
a a
b a
```

```
+ b a
a a
b a
```

```
+ b a
a a
b a
```

```
+ b a
a a
b a
```

```
+ b a
a a
b a
```
The same graph can be represented in many ways.
Graph Isomorphism

- A graph is isomorphic if it is topologically equivalent to another graph.
Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its \((k-1)\)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph
Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

String: 0010001111010110 Canonical: 0111101011001000