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Mobility data mining
Mirco Nannia

1.1 Introduction

1.1.1 What is mobility data mining

The trajectories of a moving object are a powerful summary for its ac-
tivity related to mobility. As seen in previous chapters, such information
can be queried in order to retrieve those trajectories (and the objects
that own them) that respond to some given search criteria, for instance
following a predefined interesting behavior. However, when massive in-
formation is available, we might be able to move a step forward and ask
that such “interesting behaviors” automatically emerge from the data.
That is precisely the domain explored by mobility data mining.

Moving from queries to data mining essentially consists in adding de-
grees of freedom to the search process that the algorithms perform. For
instance, a query might consist in searching those trajectories that at
some point perform the following sequence of maneuvers: abrupt slow
down, U-turn and finally accelerate. One possible corresponding data
mining task, instead, might require to discover which sequences of ma-
neuvers are performed frequently in the database of trajectories. Then,
the output sequences obtained might contain also the slow-down → U-
turn → accelerate example mentioned above. To perform this data min-
ing process the user needs to specify the general structure of the behav-
iors he/she searches (sequences), what kind of elements they can contain
(the set of maneuvers to consider, as well as a precise way to locate a
given maneuver within a trajectory), and a criterion to select “inter-
esting” behaviors – in our example, the user wants only behaviors that
appear frequently in the data.
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1.1.2 Note on terminology

In this chapter we will make frequent use of the terms “trajectory pat-
tern”. As mentioned in Chapter 1, the notion of trajectory pattern is
substantially equivalent to that of “trajectory behavior”, which also ap-
peared in previous chapters of this book. The two notions originate from
different communities and simply reflect different perspectives of the
same subject: the data management view (where “trajectory behavior”
originates) focuses more on determining which trajectory is associated to
each behavior; the data mining view, on the contrary, is more focused
on what are the interesting behaviors in the input trajectories.

The several forms and variants of existing analysis tasks that belong
to mobility data mining cannot be easily categorized into a set of fixed
classes. However, it is possible to recognize a few simple dimensions
along which to locate the different analysis methods. In the following we
mention one of them, that will be also used later as guideline during the
presentation of analysis examples.

1.1.3 Local patterns vs. global models

The example of behavior illustrated at the beginning of this section is
representative of a class of mining methods, called local patterns or, in
most contexts, simply patterns. The key point of local patterns is the aim
of identifying behaviors and regularities that involve only a (potentially
small) subset of trajectories, and that describe only a (potentially small)
part of each trajectory involved.

The complementary class of mining methods is called global models, or
simply models. Their objective is to provide a general characterization
of the whole dataset of trajectories, thus going towards the definition
of general laws that regulate the data, rather than spotting interesting
yet isolated phenomena. For instance, we will see later mining tasks
aimed to define a global subdivision of all trajectories into homogeneous
groups, as well as tasks aimed to discover rules able to predict the future
evolution of a trajectory (i.e., the next locations it will visit).

In the rest of the chapter we will provide an overview of the problems
and methods available in the mobility data mining field. For obvious
reasons of space, the discussion will not cover exhaustively the available
literature on the subject, and instead will propose some representative
examples of the various topics. The presentation will mainly follow the
distinction between local patterns and global models introduced above.
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1.2 Local trajectory patterns/behaviors

The mobility data mining literature offers several examples of trajectory
patterns that can be discovered from trajectory data. Despite this wide
variety, most proposals actually respect two basic rules: first, a pattern is
interesting (and therefore extracted) only if it is frequent, and therefore
it involves (or appears in) several trajectories1; second, a pattern must
describe the movement in space of the objects involved, and not only
aspatial or highly abstracted spatial features.

While the spatial component of trajectory data is virtually always part
of the patterns extracted, the temporal one (also intrinsic in trajectory
data) can be treated in several different ways, and we will use this differ-
entiation to better organize the presentation. Then, while a trajectory
pattern always describes a behavior that is followed by several moving
objects, we can choose whether they should do so together (i.e., during
the period), at different moments yet with same timings (i.e., there can
be a time shift between the moving objects), or in any way, with no
constraints on time.

1.2.1 Using absolute time or Groups that move together

One of the basic questions that arise when analyzing moving objects
trajectories is the following:

Are there groups of objects that move together for some time?

For instance, in the realm of animal monitoring such kind of patterns
would help to identify possible aggregations, such as herds or simple
families, as well as predator-prey relations. In human mobility, similar
patterns might indicate groups of people moving together on purpose
or forced by external factors, e.g. a traffic jam, where cars are forced to
stay close to each other for a long time period.

Obviously, the larger are the groups and/or the longer is the period
they stay together, the higher is the likelihood that the observed phe-
nomenon is significant and not a pure coincidence. For instance, if two
members of a population of zebras under monitoring happen to move

1 While that holds for the majority of methods appeared in the mobility data
mining literature, significant exceptions exist, including the extreme case of
outliers detection, consisting of anomalous (and thus infrequent) patterns. For
ease of presentation, outlier detection will be described later in this chapter, in
the context of global models.
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close to each other for a short time, that can be seen as a random en-
counter. However, if dozens of zebras are observed together for several
hours, we can safely assume that they form a herd or something is hap-
pening that forces them to keep together.

The simplest form of trajectory pattern in literature that exactly an-
swers the question posed above is the trajectory flock. As the name sug-
gests, a flock is a group of moving objects that satisfy three constraints:

• a spatial proximity constraint: within the whole duration of the flock,
all its members must be located within a disk of radius r – possibly
a different one at each time instant, i.e. the disk moves to follow the
flock;

• a minimum duration constraint: the flock duration must be at least k
time units;

• a frequency constraint: the flock must contain at least m members.

Figure 1.1(a) shows an abstract example of flock, where three trajecto-
ries meet at some point (at the fifth time unit), keep close to each other
for some time (four consecutive time units) and then separate (ninth
time unit). If, for instance, the constraints chosen by the user are the
radius r used in the figure to draw the circles, a minimum duration of
four time units (or less) and a minimum size of three members, then the
common movement shown in the figure will be recognized as a flock.

Figure 1.1(b) shows an example extracted from a real dataset that
contains GPS tracks of tourists in a recreational park (Dwingelderveld
National Park, in Netherland). The leftmost section of the figure depicts
the three trajectories that were involved in the flock, while the rightmost
one shows (a zoom with) only the segments of trajectories that create
the flock. As we can see, in this example a flock is a local pattern, both
in the sense of involving only a small subset of trajectories (three, in our
case), and in the sense of describing an interesting yet relatively small
segment of the whole life of the trajectories involved.

The general concepts of moving together or forming a group are imple-
mented by the flocks framework in the simplest way possible: the objects
are required to be very close to each other during all the duration of the
flock. However, a group might appear also under different conditions.
One of these alternatives is to require that at each timestamp the objects
form a cluster – thus borrowing ideas and methods from the clustering
literature. A notable example are moving clusters, a form of pattern that
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(a) (b)

Figure 1.1 Visual representation of (a) a trajectory flock and (b) sam-
ple result on a real dataset: the left part represents the trajectories
involved, the right part a zoom on the segments that form the flock

at each time stamp groups objects by means of density-based clustering.
Such approach can be summarized in the following points:

• first, all objects that have a large number of neighbors are labeled as
core objects; among the remaining objects, those that are neighbors
of core objects are labeled as border objects; the remaining objects are
labeled as noise;

• second, core objects are grouped into clusters in such a way that each
pair of neighboring core objects fall in the same cluster. Essentially,
clusters are computed as transitive closure of the neighbor relation;

• finally, border objects are assigned to the same cluster of their neigh-
boring core objects2, while noise is discarded.

The neighbors of an object are all the objects at a distance not larger
than a threshold r, and the minimum number of neighbors required
to make an object a core object is also a parameter m. Therefore, we
can see that a core object and its neighbors approximately satisfy the
closeness requirements of a flock – more exactly, these where density
requirements. The step forward here is that multiple compact groups can
be merged together if they are adjacent (see the second step), in order
to form larger ones. Beside their sheer size, the groups formed through
this process can also have a relatively large extension (therefore not all
pairs of objects in the cluster will be close to each other, because they
actually are neighbors of neighbors of neighbors. . . ) and an arbitrary
shape. In several contexts this can be useful, for instance in analyzing
vehicle trajectories, since the road network simply forces large groups

2 Notice that a border object might have two or more neighboring core objects
belonging to different clusters. In this case one of them is chosen through any
arbitrary criterion.
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Figure 1.2 Visual example of a moving cluster over three time units

of cars to distribute along the roads (therefore creating a cluster with
snake-like shape) instead of freely agglomerate around a center (which
would instead yield a compact, spherical-shape cluster).

A second, interesting feature that characterizes moving clusters is the
fact that the population of objects involved in the pattern can gradu-
ally change along the time: the only strict requirements are that at each
timestamp a (spatial dense) cluster exists, and that when moving from
a timestamp to the consecutive one the population shared by the corre-
sponding spatial clusters is larger than a given fraction (a parameter of
the method). A simple example of pattern that illustrates this point is
shown in Figure 1.2: at each time slice a dense cluster is found, formed
by three objects, and any pair of consecutive clusters share two over
three objects. This way, moving clusters that last a long time, might
even start from a set of objects and end into a completely different (pos-
sibly disjoint) set. In our example, only one object permanently belongs
to the moving cluster. In some sense, the pattern is not strictly related
to a population that generates it. The purpose of the pattern becomes to
describe phenomena that happen in the population, not to find a group
of individuals that do something peculiar consistently together.

One element of rigidity that affects both the patterns illustrated so far
is the fact that they describe continuous portions of time. For instance, if
a herd that usually moves compactly gets dispersed for a short time (for
instance due to an attack by predators) and later gets compact again,
both flocks and moving clusters will generally result into two different
and disconnected patterns – the before and the after the temporary dis-
persion. One possible way to avoid this loss of information consists in
allowing gaps in the patterns, i.e., a pattern involves a set of timestamps
that are not necessarily consecutive. In the literature we can find a solu-
tion of this kind, known as swarm patterns. Swarms are a general form
of patterns that generalize flocks and moving clusters, since any spa-
tial clustering method can be applied at the level of single timestamp,
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and then spatial clusters belonging to different timestamps are linked
(in case they share an appropriate fraction of population) regardless of
their temporal distance.

1.2.2 Using relative time

In some contexts, the moving objects we are examining might act in a
similar way, even if they are not together. For instance, similar daily
routines might lead several individuals to drive their car along the same
routes, even if they leave home at very different hours of the day. Or,
tourists that visit a city in different days of the year might actually visit
it in the same way – for instance by visiting the same places in the same
order and spending approximately the same amount of time on them –
because they simply share interests and attitude. This leads to a new
category of questions, which can be well represented by the following:

Are there groups of objects that perform a sequence of movements, with
similar timings though possibly during completely different moments?

Patterns like flocks and moving clusters can provide some answers to
the question, but usually it is a small set, since it is limited to movements
that happen synchronously among all objects involved. The question
posed above involves a much weaker constraint on the temporal dimen-
sion of the problem, and therefore might allow many more answers. In
the following we will present one example of pattern that goes in this
direction and extracts spatio-temporal behaviors that are followed by
several objects, but allowing any arbitrary time shift between them.

T-Patterns (abbreviation of Trajectory patterns) are defined as se-
quences of spatial locations with typical transition times, such as the
following two:

Railway Station15min−→ Museum2h15min−→ Castle Square

Railway Station10min−→ Middle Bridge10min−→ Campus

For instance, the first pattern might represent the typical behavior of
tourists that rapidly reach a museum from the railway station and spend
there about two hours before getting to the adjacent square. The second
pattern, instead, might be related to students that reach the university
campus from the station by passing through the mandatory passage on
the central bridge over the river. A graphical example is also provided
in Figure 1.3(left).
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The two key points that characterize T-patterns are the following:
first, they do not specify any particular route among two consecutive
regions described: instead, a typical travel time is specified, which ap-
proximates the (similar) travel time of each individual trajectory rep-
resented by the pattern. In the gap between two consecutive regions a
trajectory might even have stopped in other regions not described in the
pattern; second, the individual trajectories aggregated in a pattern need
not to be simultaneous, since the only requirement to join the pattern is
to visit the same sequence of places with similar transition times, even
if they start at different absolute times.

T-patterns are parametric on three main parameters: the set of spatial
regions to be used to form patterns, i.e., the spatial extension of “Rail-
way Station” and any other place considered relevant for the analysis3;
the minimum support threshold, corresponding to the minimum size of
the population that contributes to form the pattern (the parameter m
for flocks); and a time tolerance threshold τ , that determines the way
transition times are aggregated: transition times that differ less than
τ will be considered compatible, and therefore can be joined to form a
common typical transition time.

Figure 1.3(right) depicts an example of T-pattern on vehicle data de-
scribing the movements of a fleet of trucks. The pattern shows that there
exists a consistent flow of vehicles from region A to region B, and then
back to region C, close to the origin. Also, the time taken to move from
region A to region B (t1 in the figure) is around ten times larger then
the transition time from B to C. That might suggest, for instance, that
the first part of the pattern describes a set of deliveries performed by
the trucks, while the second part describes the fast return to the base.

1.2.3 Not using time

In many cases it is interesting to understand if there are typical routes
followed by significant portions of the population, i.e.:

Are there groups of objects that perform a common route (or segment
of route), regardless of when and how fast they move?

That means, for instance, that we are interested in what path an
individual follows, but not the hour of the day he/she does it, nor the
3 Actually, the algorithmic tool provided in literature to extract T-patterns also

contains heuristics to automatically define such regions, but in general the
domain expert might want to do it maually in order to better exploit its
knowledge or to better focus the analysis, or both.
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Figure 1.3 Visual representation of a T-pattern (left) and sample
result on a real dataset (right)

transportation means adopted: cars, bicycles, pedestrians and people
on the bus might follow the same path yet at very different speeds,
resulting in different relative times. Also notice that we are interested
here in routes that might be just a small part of a longer trip of the
individual.

The mobility data mining literature provides a few definitions of pat-
terns that can answer to the question given above. In particular, we will
briefly summarize one of the earliest proposals appeared, at that time
named generically as spatio-temporal sequential pattern (in contrast, the
trend in recent times is to assign elaborate and sonorous names to any
new form of pattern or model).

The basic idea, also depicted in Figure 1.4, consists of two steps4:
first, segments of trajectories are grouped based on their distance and
direction, in such a way that each group is well described by a single rep-
resentative segment (see the two thick segments in the figure); second,
consecutive segments are joined to form the pattern. Frequent sequences
are then outputted as sequences of rectangles such that their width quan-
tifies the average distance between each segment and the points in the
trajectory it covers. Figure 1.4 depicts a simple pattern of this kind,
formed of two segments and corresponding rectangles. In particular, it
is possible to see how the second part of the pattern is tighter than the
first one, i.e., the trajectory segments it represents are more compact.

1.3 Global trajectory models

A common need in data analysis at large is to understand which are the
laws and rules that drive the behavior of the objects under monitoring.
4 The original proposal of this pattern considers a single, long input trajectory.

However, the same concepts can be easily extended to multiple trajectories.
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Figure 1.4 Visual representation of a spatio-temporal sequential pat-
tern

In the context of mobility data mining we refer to such laws and rules
as (global) trajectory models, and in this area we can recognize three
important representative classes of problems: dividing trajectories into
homogeneous groups; learning rules to label any arbitrary trajectory
with some tag, to be chosen among a set of predefined classes; predicting
where an arbitrary trajectory will move next. In the following we will
introduce and discuss each of them.

1.3.1 Trajectory clustering

In data mining, clustering is defined as the task of creating groups of
objects that are similar to each other, while keeping separated those
that are much different. In most cases, the final result of clustering is
a partitioning of the input objects into groups, called clusters, which
means that all objects are assigned to a cluster, and clusters are mutually
disjoint. However, exceptions to this general definition exists and are
relatively common.

While the data mining literature is extremely rich of clustering meth-
ods for simple data types, such as numerical vectors or tuples of a rela-
tional database, moving to the realm of trajectory makes it difficult to
directly apply them. The problem is, trajectories are complex objects,
and many traditional clustering methods are tightly bound to the simple
and standard data type they were developed for. In most cases, to use
them we need to adapt the existing methods or even to re-implement
their basic ideas in a completely new, trajectory-oriented way. We will
see next some solutions that try to reuse as much as possible existing
methods and frameworks; then, we will discuss a few clustering methods
that were tailored around trajectory data since the beginning.

Generic methods with trajectory distances. Several clustering methods
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in the data mining literature are actually clustering schemata that can be
applied to any data type, provided that a notion of similarity or distance
between objects is given. For this reason, they are commonly referred to
as distance-based methods. The key point is that such methods do not
look at the inner structure of data, and simply try to create groups that
exhibit small distances between its members. All the knowledge about
the structure of the data and their semantics is encapsulated in the
distance function provided, which summarizes this knowledge through
single numerical values – the distances between pairs of objects; the algo-
rithm itself, then, combines such summaries to form groups by following
some specific strategy.

To give an idea of the range of alternative clustering schemata avail-
able in literature, we mentioned three very common ones: k-means, hi-
erarchical clustering, density-based clustering.

K-means tries to partition all input objects into k clusters, where k is
a parameter given by the user. The method starts from a random par-
titioning and then performs several iterations to progressively refine it.
During an iteration, k-means first computes a centroid for each cluster,
i.e., a representative object that lies in the perfect center of the clus-
ter5), then re-assigns each object to the centroid that is closest to it.
Such iterative process stops when convergence (perfect or approximate)
is reached.

Hierarchical clustering methods try to organize objects in a multi-
level structure of clusters and sub-clusters. The idea is that under tight
proximity requirements, several small and specific clusters might be ob-
tained, while loosening the requirements some clusters might be merged
together into larger and more general ones. For instance, agglomerative
methods start from a set of extremely small clusters – one singleton for
each input object – and iteratively selects and merge together the pair
of clusters that are most similar. At each iteration, then, the number of
clusters decreases of one unit, and the process ends when only one huge
cluster is obtained, containing all objects. The final output will be a data
structure called dendogram, represented as a tree where each singleton
cluster is a leaf, and each cluster is a node having as children the two
sub-clusters that originated it through merging.

Finally, density-based clustering, as already introduced in Section 1.2.1,

5 Notice that such object is a new one, computed from those in the cluster.
Therefore, some level of understanding of the data structure is needed, here.
When that is not possible, usually a variant is applied, called k-medoid that
selects the most central object of the cluster as representative.
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is aimed to form maximal, crowded (i.e., dense) groups of objects, thus
not limiting the cluster extension or its shape and, in some cases, putting
together also couples of very dissimilar objects.

How to choose the appropriate clustering method? While no strict
rule can exist, a general hint consists in paying attention to some ba-
sic characteristics of the data and the expected characteristics of the
output. For instance, if we expect that our data should form compact
clusters of spherical shapes (i.e., they should agglomerate around some
centers of attraction), then k-means is a good candidate, especially if the
dataset is large – k-means is known to be very efficient. However, the
user should know the number k of clusters to be found in the data, or at
least some reasonable guess. That can be avoided with hierarchical, ag-
glomerative algorithms, since the dendograms they produce synthesize
the results that can be obtained for all possible values of k, from 1 to N
(the number of input objects). The choice of the most appealing k can be
postponed after the computation, and be supported by an examination
of the dendogram. However, hierarchical clustering is usually expensive
(efficient variants exist, yet introducing other factors to be evaluated), so
it is not a good option with large datasets. Finally, density-based meth-
ods apparently do not suffer of any of the issues mentioned above, and
are also more robust to noisy data, yet the resulting clusters will usually
have an arbitrary shape and size – a feature that might be unacceptable
in some contexts, and extremely useful in others.

Depending on the analysis task that the user wants to perform, once
the clustering schema to be adopted has been selected, he/she needs
to choose the most appropriate similarity function, i.e., the numerical
measure that quantifies how much two trajectories look similar. The
range of possible choices is virtually unlimited. The examples that can
be found in the literature include the following, approximately sorted in
increasing order of complexity:

• spatial starts, ends, or both: two trajectories are compared based only
on their starting points (the origin of the trip), or the ending point
(the final destination of the trip), or a combination of them. The
distance between the trajectories, then, reduces to the spatial distance
between two points. When both starts and ends are considered, the
sum or average of their respective distances is computed. The output
of a clustering based on these distances will generally put together
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Figure 1.5 Sample trajectory clustering on a real dataset, obtained
using a density-based clustering schema, and a spatial route distance
function

trajectories that start or end in similar places, regardless of when
they do start/end and what happens in the rest of the trajectory;

• spatial route: in this case, the spatial shape of the trajectory is consid-
ered, and two trajectories that follow a similar path (though possibly
at different times and with different speeds) from start to end, will
result in a low distance.

• spatio-temporal route: in this case, also the time is considered, there-
fore two trajectories will be similar when they approximately move
together throughout their life.

Obviously, the selection of the clustering schema and the selection
of the distance function might also be performed in the opposite order.
Indeed, in some cases the choice of the distance to adopt is relatively easy
or even enforced by the specific application, in which case the selection
of the distance is performed first.

Figure 1.5(right) shows an example of result obtained by a specific
combination of schema and distance, namely a density-based clustering
algorithm using the spatial route distance described above. Different
clusters are plotted with different colors. The dataset used in the example
contains trajectories of vehicles in Tuscany, Italy, also plotted on the left
of the figure.

Trajectory-oriented clustering methods. A complementary approach
to clustering, as opposed to the distance-based solutions described so
far, consists in algorithms that try to better exploit the nature and
inner structure of trajectory data. From a technical point of view, that
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usually translates to deeply re-adapt some existing solution in order to
accommodate the characteristics of trajectory data.

One important family of solutions makes use of standard probabilistic
modeling tools. A very early example was provided by mixture models-
based clustering of trajectories. The basic idea is not dissimilar from
k-means: we assume that the data actually forms a set of k groups, and
each group can be summarized by means of a representative object. The
difference is that now the representative is a probability distribution of
trajectories that fits well with the trajectories in its cluster. The key
point in this approach, obviously, is exactly how a probability distribu-
tion of trajectories can be defined (and fitted on a dataset). In short,
the solution adopted computes a central representative trajectory plus a
random Gaussian noise around it. The closeness of a trajectory from the
cluster center, then, is simply computed as its likelihood, i.e., the prob-
ability that it was generated from the central trajectory adding some
Gaussian noise. Another well-known statistical tool often adopted when
dealing with trajectories are Hidden Markov Models (HMMs). The basic
approach, here, consists in modeling a trajectory as a sequence of transi-
tions between spatial areas. Then, a cluster of trajectories is modeled by
means of a Markov model (i.e. the set of transition probabilities between
all possible pairs of regions) that better fits the trajectories. Moreover,
the precise position that a trajectory is expected to occupy within each
spatial region is also modeled through a probability distribution. The
clustering problem, then, consists in finding a set of HMMs (the clus-
ters), such that each of them fits well with a subset of the trajectories.

Other examples of trajectory-oriented clustering methods can arise by
adding novel dimensions to the clustering problem. For instance, in the
literature it was investigated the problem of finding clusters by means of
a distance-based clustering method (a density-based one, more exactly,
though a similar process might be easily replicated for other approaches)
when it is not known in advance the time interval to consider for clus-
tering. For instance, we might expect that rush hours in urban traffic
data exhibit cluster structures that are better defined than what hap-
pens in random periods of the day. The problem, then, becomes to find
both the optimal time interval (rush hours were just a guess to be con-
firmed) and the corresponding optimal cluster structure. The solution
proposed, named time-focused trajectory clustering, adopts a trajectory
distance computed as the average spatial distance between the trajecto-
ries within a given time interval, which is a parameter of the distance.
Then, for each time interval T , the algorithm can be run focusing on the
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Figure 1.6 Three-dimensional depiction of sample result obtained
with time-focused trajectory clustering on a dataset of synthetic tra-
jectories.

trajectory segments laying within T . The quality of the resulting clusters
is evaluated in terms of their density, and an heuristics is provided to
explore only a reasonable subset of the possible values of T . A sample
result of the process is given in Figure 1.6, that depicts a set of trajec-
tories forming three clusters (plus some noise) and shows the optimal
time interval (that where the clusters are clearest) as dark trajectory
segments.

1.3.2 Trajectory classification

Clustering is also known as unsupervised classification, since the ob-
jective is to find a way to put objects into groups without any prior
knowledge of which groups might exist, and what their objects look like.
In several contexts such knowledge is available, more exactly in the form
of a set of predefined classes and a set of objects that are already labeled
with the class they belong to – the so called training set. The problem,
here, becomes to find rules to classify new objects in a way that is co-
herent with the prior knowledge, i.e. they fit well with the training set.
For instance, we might have access to a set of vehicle trajectories that
were manually labeled with the vehicle type (car, truck, motorbike), and
we would like to find a way to automatically label an other, much larger
set of new trajectories.
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The simplest solution to the problem is the so called k-nearest neigh-
bors (kNN) approach: instead of inferring any classification rule, it di-
rectly compares each new trajectory t against the training set, and finds
the k labeled trajectories that are closest to t. The most popular label
among the neighbors is then assigned also to t. The assumption is that
the more similar are two trajectories, the more likely they belong to
the same class. Obviously, everything revolves around a proper choice
for the similarity measure applied, which should be as much coherent
as possible with the classification problem at hand. As an example, we
can expect that a similarity function which takes into consideration the
acceleration of objects will recognize well the vehicle type – the lighter
the vehicle, the easier is to reach high accelerations. On the contrary, a
measure based only on the places visited might perform worse.

The same idea is also applied in several sampling-based solutions to
the clustering problem: when the dataset is too large to process, one ap-
proach consists in randomly sampling a small subset of trajectories, and
computing clusters on them. Then, all others trajectories are assigned to
the cluster (i.e., classified) with a kNN approach or by comparing them
against the centroid of each cluster.

Approaching the problem from a different viewpoint, each class in-
volved in the classification problem could be modeled through a prob-
abilistic model that is fitted to the available trajectories in the class.
Then, each new trajectory can be assigned to the class whose model
most likely generated it. Similarly to what we have seen with clustering,
hidden Markov models are a common choice to do it. As compared to
clustering, the problem is now simplified, since the association trajecto-
ries↔ classes is known apriori. Behind the probabilistic framework they
operate in, HMMs essentially aggregate trajectories based on their over-
all shape, again assuming that similar trajectories have better chances
of belonging to the same class.

The final way to classify trajectories we will see, is based on a tradi-
tional two-steps approach: first extract a set of discriminative features
by a preliminary analysis of the trajectories; then, use such features –
that can be expressed as a database tuple or a vector – to train any
existent standard classification model for vector/relational data.

The first step requires to understand which characteristics of the tra-
jectories appear to better predict which class each trajectory belongs to.
One straightforward approach might consist in calculating a predefined
set of measures expected to be informative enough for the task. For in-



1.3 Global trajectory models 17

stance, aggregates such as average speed of the trajectory, its length,
duration, average acceleration and diameter of the covered region might
be used. Other, more sophisticated, solutions might instead try to ex-
tract finer aspects of the movement, tuned to calculate only the most
useful ones. A proposal of this kind can be find in literature with the
name TraClass, which heavily relies on a trajectory clustering step.

TraClass is based on a fundamental observation: in several (if not
most) cases, the features that best discriminate trajectory classes are
related to a small part of the overall trajectory. All approaches men-
tioned so far, on the contrary, uniquely consider overall characteristics
– that includes HMM-based solutions, since each model must fit whole
trajectories. Single, short-duration events hidden in the long life of a
trajectory might then be lost in the process. TraClass tries to fill in the
gap by extracting a set of trajectory behaviors (which, we recall, look
for local behaviors rather than overall descriptions of full trajectories).
The basic tool adopted is trajectory segmentation and the clustering of
such segments to form movement patterns.

TraClass works at two levels: regions and trajectory segments. At the
first one, it extracts higher-level features based on the regions of space
that trajectories visited, without using movement patterns; at the second
one, lower-level trajectory-based features are computed, using movement
patterns. The extraction phase is made more effective by evaluating the
discriminative power of the regions and patterns under construction. For
instance, a frequent movement that is performed by trajectories of all
classes will be not useful for classification (knowing that a trajectory con-
tains such pattern does not help in guessing the right class to associate
to it); on the contrary, a slightly less frequent pattern that is mostly fol-
lowed by trajectories of a single class is a very promising feature. In the
proposed framework, trajectory partitioning makes discriminative parts
of trajectories identifiable, and the two types of patterns collaborate to
better characterize trajectories.

Once a vector of features has been computed for each trajectory, we
can choose any generic, vector-based classification algorithm. One rep-
resentative (and easy to grasp) example are decision trees. The resulting
classification model has the structure of a tree, whose internal nodes
represent tests on the features of the object to classify, and the leaves
indicate the class to associate to the objects. Figure 1.7 shows a fictitious
example based on TraClass features, with two classes: positive (P) and
negative (N). When a new trajectory needs to be classified, the test on
the root (the top circle) is performed on it. In the example, if the trajec-
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Figure 1.7 Sample decision tree on regions and patterns.

tory actually visits region A, then we move to the left child of the root
and continue the evaluation from there, otherwise we move to the right
child. In the first case, we have now to test whether the trajectory fol-
lows pattern X: in case of positive answer, the trajectory is labeled with
“class P”, otherwise with “class N”. The classification process proceeds
in a similar way when different outcomes are obtained, always starting
from the root and descending through a path till a leaf is reached, which
provides the label prediction. Another way to read a decision tree is as
a set of decision rules, one for each path from root to leaf, such as “If
(Visit region A) AND (Follow patter X) THEN Class P”.

1.3.3 Trajectory location prediction

Trajectory classification can be seen as the problem of predicting a cat-
egorical variable related to a trajectory. However, prediction is most
naturally related to the temporal evolution of variables. Since the basic
aspect of objects in the context of trajectory is their location, predicting
their future position appears to be a problem of primary interest.

The modeling tools that are able to model the sequential evolution
of the objects they describe, are good candidates for a predictive usage.
Indeed, once a trajectory has been associated to the most likely model
(for instance by choosing one of the k HMMs combined in a mixture-
model, as described for the clustering problem), such model can be run to
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Figure 1.8 Sample Prediction tree produced by WhereNext.

simulate the most likely next steps. In most cases we can apply the same
remarks discussed earlier in this section for classification: if the model
is based on an overall summary of the behavior of a set of trajectories,
most likely it will not be able to capture local events, even though their
appearance is highly correlated with a future behavior – in our case, the
next location.

In literature it can be found an approach called WhereNext, that works
in a way not too dissimilar from the one followed by TraClass for the clas-
sification problem. Basically, WhereNext extracts T-patterns (see Sec-
tion 1.2.2) from a training dataset of trajectories and combine them into
a tree structure similar to a prefix-tree. In particular, each root-to-node
path corresponds to a T-pattern, and root-to-leaf paths correspond to
maximal patterns. Figure 1.8 shows a sample prediction tree, condensing
12 patterns, 7 of which are maximal (one per leaf).

When a new trajectory is presented, its most recent segment is com-
pared against the regions represented in the tree, looking for the best
match among the root-to-node paths. For instance, Figure 1.8 depicts
the case where the last part of the trajectory visits region A followed
by region B after a delay between 9 and 15 time units. The match is
depicted by the red sequence. Then, the model finds that the matched
sequence is a prefix of a longer pattern, and so it suggests as likely con-
tinuation region E (marked in green in the figure), to be reached after a
delay between 10 and 56 time units.

WhereNext has a few characteristic features that distinguish it from
most alternative approaches: first, the next location prediction is equipped
also with a temporal delay; second, if no good match is found between
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new trajectories and prediction tree, no prediction is provided, while
most standard approaches always output a suggestion, even if it has an
extremely low confidence; finally, the location prediction occurs in terms
of regions and not single spatial points, although the center of the region
can be returned if a single point is required by the specific application.

1.3.4 Trajectory outliers

The general objective of clustering is to fit each object in data into
some category (and discovering the categories is part of the problem).
However, sometimes the analyst is exactly interested in those objects
that deviate from the rest of the dataset, and therefore cannot really fit
any category. Such objects are called outliers.

Finding an outlier object means to discover some feature or pattern
that holds for the object, and yet is anomalous or at least very rare
in the dataset. In this sense, the problem can be properly seen as a
(infrequent) pattern discovery task. The reason for discussing it now is
that most outlier detection methods in literature actually adopt some
clustering procedure, and identify outliers as those objects that are (or
would be) left out of any cluster. Here we provide two examples.

A basic method for discovering trajectory outliers consists in adopt-
ing a density-based clustering perspective, and therefore compute the
number of neighbors of each trajectory over a reasonably large neigh-
borhood. Then, the trajectories that have too few neighbors are classified
as outliers. As density-based clustering, the method is parametric on the
distance measure adopted, and therefore, in principle, any distance be-
tween trajectories can be applied. Alternatively, from each trajectory a
set of predefined representative features can be extracted, such as av-
erage speed, initial position, and similar, and then apply any standard
distance over vector data.

In Section 1.3.2 the TraClass trajectory classification method was pre-
sented, which has the characteristic of working over trajectory segments
(obtained by properly cutting original trajectories) rather than whole
trajectories. By clustering such segments, relevant sub-trajectory pat-
terns were extracted and later used for classification purposes. Following
the same idea, outliers can be found within trajectory segments, there-
fore focusing on single parts of trajectory that behave in a anomalous
way. In particular, each trajectory segment is compared against the rep-
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resentative segment of each cluster, and if no representative segment fits
well enough, the input trajectory segment is classified as outlier.

1.4 Conclusion

We conclude this chapter with a few notes on the topics presented and
some of the open questions in mobility data mining research.

1.4.1 Summary

Mobility data mining, as many other instantiations of the general data
mining paradigm into specific contexts, brings with itself the general
categorization of problems and methods it inherited from standard data
mining. In particular, the three main categories – frequent patterns,
clustering and classification – appear again. However, some specifici-
ties of trajectory data emerged and stimulated the development of new
approaches. In particular, the complexity of the data, joining temporal
and spatial information, greatly increases the search space of most inter-
esting problems, such as finding patterns or discovering discriminative
spatio-temporal features for classification or prediction problems.

1.4.2 Open questions

One aspect of mobility data mining that the reader might have guessed
by reading this chapter is the fact that it still lacks an overall, compre-
hensive and clear theoretical framework. Such a framework should be
able to accommodate existing problems and solutions proposed in liter-
ature, as well as clarify the relations between them. Some examples of
efforts in this direction exist in literature, and we also reported a few of
them – for instance, the relation between local trajectory patterns and
global trajectory classification models, and their ability to grasp differ-
ent, complementary kinds of discriminatory features of trajectory data;
or the relations between some of the various forms of trajectory pattern.
However, such cases are rather isolated, and at the present, providing an
integrated view of methods and issues is still a largely unexplored part
of the research field.

Another important point in mobility data mining is the fact that sev-
eral data sources might provide information about the same mobility
phenomena coming from different viewpoints. Each data source usually
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has distinctive characteristics, strong points and limitations, and their
integration might help in overcoming the limits of each of them. For in-
stance, vehicle GPS data are usually very detailed in space (i.e., spatial
uncertainty is small) and time (frequency of data acquisition is rela-
tively high), yet it is inherently limited to the vehicles that are involved
in the data collection process; instead, mobile phone service providers
are able to collect information about mobility of all their customers, and
through the collaboration of a few providers it is possible to cover the
activity of very large portions of the real population. One example are
call detail records (CDRs), that describe the cell towers that served each
call performed by each phone, together with its timestamp. CDRs allow
to build mobility trajectories for each customer served. However, such
trajectories are very sparse (one point corresponds to a call, which are
usually not so frequent) and spatially rough (a point actually represents
the whole area served by the cell tower). Activities that try to com-
bine these two data sources are appearing nowadays, with the aim of
improving the representativity of GPS data through the extremely high
penetration of the (spatially and temporally poor) CDR data.

Finally, so far, our discussion has always implicitly assumed that the
trajectory data were analyzed off-line and in a centralized setting, i.e.,
by first collecting all data in a single database and then analyzing them.
However, mobility data are usually massive and arrive as a continuous
stream from the data source(s). Massiveness and streaming nature of
data leads, at a large scale, to make it impossible to collect them in a
centralized database, and therefore analysis methods need to be devel-
oped that exploit appropriate technologies, such as distributed databases
(a paradigm where data are distributed along several data centers, to be
queried to obtain the data needed for each specific analysis or compu-
tation step), distributed computation (several nodes with computation
powers collaborate to analyze data) and streaming-oriented computa-
tion (essentially aimed to perform computation by looking at the input
data only once).

1.5 Bibliographic Notes

As mentioned at the beginning of the chapter, the literature on mobility
data mining is rather extensive – especially for such a young field – and
heterogeneous. Attempting an exhaustive discussion of existing problems
and proposals would require much more space and would be beyond our
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purposes as well. In the following, we will provide an essential list of
bibliographic references for the reader, including those describing the
methods cited in the chapter and a few pointers for further readings.

The original definition of flock patterns required that the group of
objects meet at a single time instant and have the same direction of
movement. Successive variants introduced the temporal duration con-
straint, also adopted in this chapter, starting from Gudmundsson et al.
(2004). Moving clusters were defined by Kalnis et al. (2005), provided
with a few heuristics for incrementally computing the interesting pat-
terns, while spatio-temporal sequential patterns appeared in Cao et al.
(2005).

T-patterns were introduced by Giannotti et al. (2007), and later were
exploited in building WhereNext – a location prediction method by Mon-
reale et al. (2009) – as well as in several application works.

One rich source for a library of trajecory distances – to be used within
generic clustering algorithms – is provided by Pelekis et al. (2007). Sev-
eral references exist for standard (distance-based) clustering schema that
can be applied to trajectory data, including basic introductions to data
mining such as Tan et al. (2005).

Model-based approaches to trajectory clustering can be found in sev-
eral, isolated papers, especially on specific application domains (video
surveillance, animal tracking, etc.). The mixture-models trajectory clus-
tering described in this chapter was first introduced in Gaffney and
Smyth (1999), later extended to include time shifts. Hidden Markov
Models-based approaches can be found, for instance, in Mlich and Chme-
lar (2008).

Time-focused clustering, an extension of density-based clustering for
trajectories, was presented in Nanni and Pedreschi (2006).

The TraClass framework for trajectory classification was introduced in
Lee et al. (2008a), mainly based on previous works of the same authors
on trajectory segmentation and clustering. The same principles were
then applied to the outlier detection problem, as described in Lee et al.
(2008b).

Finally, a few sources already exist for deeper exploring the subject of
data mining on trajectory data, including the book by Giannotti and Pe-
dreschi (2008), which contains a chapter on spatio-temporal data mining,
and the book chapter on spatio-temporal clustering by Kisilevich et al.
(2010).
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