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must be square if it is to have an inverse matrix Th
. Thus

A, we are asking if we can find g matrix A~1 gyel, ¢, ¢ ’Af(zf\{l m bﬁn matrix
The answer is that some square matrices haye inverszs and =A"'A=1,.
More abstractly, an m by m matrix has an inverse on| Si(t?lget;io not.
spaces contain only the 0 vector, or if, equivalently, the l‘owymd 0 11 of its null
are both of dimension m. (This is equiv o UM Spaces

alent to the rank of t}, ix bei
: ¢ ¢ matrix bein
m.) Conceptually, an m by m matrix has an inverse if and only if it uni uelgjr
maps every non-zero m-dimensional row (column) on.

' _ vector onto a unique, non-
zero m-dimensional row (column) vector.

The existence of an inverse matrix is important when solving various matrix
equations.

A.2.5 Eigenvalue and Singular Value Decomposition

We now discuss a very important area of linear algebra: eigenvalues and eigen-
vectors. Eigenvalues and eigenvectors, along with the related concept of singu-
lar values and singular vectors, capture the structure of matrices by allowing
us to factor or decompose matrices and express them in a standard format. For
that reason, these concepts are useful in the solution of mathematical equa-

tions and for dimensionality and noise reduction. We begin with the definition
of eigenvalues and eigenvectors.

Definition A.8 (Eigenvectors and Eigenvaliies). The eigenvalues and

eigenvectors of an m by n matrix A are, respectively, the scalar values A and
the vectors u that are solutions to the following equation.

Au = Au (A.13)

In other words, eigenvectors are the veciors that are unchanged, except
for magnitude, when multiplied by A. The eigsnvalees are the scaling fac-
tors. This equation can also be written as (A — 3ju = .

For square matrices, it is possible to decompaos» thie mairix using eigenval-
ues and eigenvectors.

Theorem A.l. Assume that A is an n by n matriz with n independent (or-
thogonal) eigenvectors, u, ..., u, and n corresponding eigenvalues, A1, - -+ An-

Let U be the matriz whose columns are these eigenvectors, i.e., U = [uy, ... , Uy

and let A be a diagonal matriz, whose diagonal entries are the Aj, 1 <1 <.
Then A can be expressed as

. A=UAUL (A.14)
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698 Appendix A Linear Algebra

Thus, A can be decomposed into a product of three matrices. u is known
as the eigenvector matrix and A as the eigenvalue matrix.

More generally, an arbitrary matrix can be decomposed in a similar way.
Specifically, any m by n matrix A can be factored into the product of three
matrices as described by the following theorem.

Theorem A.2. Assume that A is an m by n matriz. Then A can be expressed

as follows
A=UzVT (A.15)

Where U ism bym, X ism byn, and V isn byn. U and V are orthonormal
matrices, i.e., their columns are of unit length and are mutually orthogonal,
Thus, UUT = 1,, and VVT = I,. ¥ is a diagonal matriz whose diagonal
entries are non-negative and are sorted so that the larger entries appear first,

i.€., Oij 2> Oit1i+1

The column vectors of V, vy, ..., vy are the right singular vectors, while
the columns of U are the left singular vectors. The diagonal elements of
¥, the singular value matrix, are typically written as o1,...,0, and are
called the singular values of A. (This use of ¢ should not be confused with
the use of o to represent the standard deviation of a variable.) There are at
most rank(A) < min(m, n) non-zero singular values.

It can be shown that the eigenvectors of AT A are the right singular vectors
(i.e., the columns of V), while the eigenvectors of AAT are the left singular
vectors (i.e., the columns of U). The non-zero eigenvalues of ATA and AAT
are the crf‘, i.e., the squares of the singular values. Indeed, the eigenvalue
decomposition of a square matrix can be regarded as a special case of singular
value decomposition.

The singular value decomposition (SVD) of a matrix can also be 2 pressed
with the following equation. Note that while uiv;-r might lock like a dot
product, it is not, and the result is a rank 1 m by n matrix.

rank(A)
A = Z O-'iuiv;'—r‘ ::‘116)
i=1

The importance of the above representation is that every iaatrix can be
expressed as a sum of rank 1 matrices that are weighted by singular values.
Since singular values, which are sorted in non-increasing order, often decline
rapidly in magnitude, it is possible to obtain a good approximation of a matrix
by using only a few singular values and singular vectors. This is useful for
dimensionality reduction and will be discussed further in Appendix B.
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Dimensionality
Reduction

This appendix considers varions technigues for dimensionsiity reduction. The

goal is to expose the reader to the issues invojver and te deseribe some oi the
more common approaches. We Degin u ith a discrission el 1

nents Analysis (PCA) and Singuiar Value Decomposition (SVL). These rueil
ods are described in some derail since they are among fhe s it monly
used approaches and we can build on the discussicn of linear algzued in Ap
pendix A. However, there are many otier approaches that are also eimpiyes
for dimensionality reductioi, and thas, we provide a Guick overview of reveral
other techniques. We conclude with a short review of important issues.

Aol Ty o
incipal CJompo-

oA

17, i
Wil
v

B.1 PCA and SVD

PCA and SVD are two closely related techniques. For PCA, the mean of the
data, is removed, while for SVD, it is not. These techniques have been widely
used for decades in 2 number of fields. In the following discussion, we will
assume that the reader is familiar with linear algebra at the level presented in
Appendix A.

B.1.1 Principal Components Analysis (PCA)

The goal of PCA is to find a new set of dimeqsions (attributes) .that l?ett(-ﬂ:
captures the variability of the data. l\f.I(.)re Spe(nﬁclally, the first dlm.CIlSlOI? is
chosen to capture as much of the variability as posmblev. The second d1mens1or;
is orthogonal to the first, and, subject t0 that constraint, captures as much o

the remaining variability as possible, and so on.

m?
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702 Appendix B Dimensionality Reduction

PCA has several appealing characteristics. First, it tends to identify the
strongest patterns in the data. Hence, PCA can be used as a pattern-finding
technique. Second, often most of the variability of the data can be captured
by a small fraction of the total set of dimensions. As a result, dimensionality
reduction using PCA can result in relatively low-dimensional data and it may
be possible to apply techniques that don’t work well with high-dimensional
data. Third, since the noise in the data is (hopefully) weaker than the patterns,
dimensionality reduction can eliminate much of the noise. This is beneficial
both for data mining and other data analysis algorithms.

We briefly describe the mathematical basis of PCA and then present an

example.

Mathematical Details

Statisticians summarize the variability of a collection of multivariate data; i.e.,
data that has multiple continuous attributes, by computing the covariance
matrix S of the data.

Definition B.1. Given an m by n data matrix D, whose m rows are data
objects and whose n columns are attributes, the covariance matrix of D is the
matrix S, which has entries s;; defined as

sij = covariance(d.;, d.j). (B.1)

In words, s;; is the covariance of the i*h and j®* attributes (columns) of the
data.

The covariance of two attributes is defined in Appendix C, and is a measure
of how strongly the attributes vary together. If i = j, i.e., the attributes are the
same, then the covariance is the variance of the attribute. If the data matrix
D is preprocessed so that the mean of each attribute is 0, then S = DTD.

A goal of PCA is to find a transformation of the data that satisfies the
following properties:

1. Each pair of new attributes has 0 covariance (for distinct attributes).

2. The attributes are ordered with respect to how much of the variance of
the data each attribute captures.

3. The first attribute captures as much of the variance of the data as pos-
sible.
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B.1 PCA and SVD 703

4. Subject to the orthogonality requirement, cach successive attribute cap-
tures as much of the remaining variance as possible.

A transformation of the data that has these properties can be obtained by using
eigenvalue analysis of the covariance matrix. Let Aj,..., A, be the eigenvalues
of S. The eigenvalues are all non-negative and can be ordered such that
A 2 A2 2 ... Am-1 2 M. (Covariance matrices are examples of what are
called positive semidefinite matrices, which, among other properties, have
non-negative eigenvalues.) Let U = [uy,...,uy] be the matrix of eigenvectors
of S. These eigenvectors are ordered so that the ith eigenvector corresponds
to the i** largest eigenvalue. Finally, assume that data matrix D has been

preprocessed so that the mean of each attribute (column) is 0. We can make
the following statements.

e The data matrix D’ = DU is the set of transformed data that satisfies
the conditions posed above.

e Each new attribute is a linear combination of the original attributes.
Specifically, the weights of the linear combination for the i** attribute
are the components of the it* eigenvector. This follows from the fact that
the j** column of D’ is given by Du; and the definition of matrix-vector
multiplication given in Equation A.12.

e The variance of the it" new attribute is ;.

e The sum of the variance of the original attributes is equal to the sum of
the variance of the new attributes.

e The new attributes are called principal components; i.e., the first new
attribute is the first principal component, the second new attribute is
the second principal component, and so on.

The eigenvector associated with the largest eigenvalue indicates the direc-
tion in which the data has the most variance. In other words, if all of the data
vectors are projected onto the line defined by this vector, the resulting val-
ues would have the maximum variance with respect to all possible directions.
The eigenvector associated with the second largest eigenvalue is the direction
(orthogonal to that of the first eigenvector) in which the data has the largest
remaining variance.

The eigenvectors of S define a new set of axes. Indeed, PCA can be viewed
as a rotation of the original coordinate axes to a new set of axes that are
aligned with the variability in the data. The total variability of the data is
preserved, but the new attributes are now uncorrelated.
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(a) Original points, (b) Polnts after transformation.

Figure B.1. Using PCA to transform the data.

Example B.1 (Two-Dimensional Data). We illustrate the use of PCA
for aligning the axes in the directions of the maximum variability of the data.
Figure B.1 shows a set of 1000 two-dimensional data points, before and after
a PCA transformation. The total variance for the original set of points is the
sum of the variance of the z and y attributes, which is equal to 2.84 + 2.95 =
5.79. After transformation, the variance is 4.81 + 0.98 = 5.79. @

Example B.2 (Iris Data). This example uses the Iris data set to demon-
strate the use of PCA for dimensionality reduction. This data set contains
150 data objects (flowers); there are 50 flowers from each of three different
Iris species: Setosa, Versicolour, and Virginica. Each flower is described by
four attributes: sepal length, sepal width, petal length, and petal width. See
Chapter 3 for more details.

Figure B.2(a) shows a plot of the fraction of the overall variance accounted
for by each eigenvalue (principal component) of the covariance matrix. This
type of plot is known as a scree plot and is useful for determining how many
principal components need to be kept to capture most of the variability of the
data. For the Iris data, the first principal component accounts for most of
the variation (92.5%), the second for only 5.3%, and the last two components
for just 2.2%. Thus, keeping only the first two principal components preserves
most of the variability in the data set. Figure B.2(b) shows a scatter plot of the
Iris data based on the first two principal components. Note that the Setosa
flowers are well separated from the Versicolour and Virginica flowers. The
latter two sets of flowers, while much closer to each other, are still relatively

well separated.
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B.1.2 SVD

PCA is equivalent to an SVD analysis of the data matrix, once the mean
of each variable has been removed. Nonetheless, it is informative to look at
dimensionality reduction from the SVD point of view, since it is not always
desirable to remove the mean from data, especially if the data is relatively
sparse.

Mathematical Details

From Appendix A, we know that an m by n matrix A can be written as
A= Y ouv] =UDVT, (B.2)

where o; is the i** singular value of A (the i*F diagonal entry of X), u; is the
i*" left singular vector of A (the i** column of U), and the v; is the ** right
singular vector of A (the i** column of V). (See Section A.2.5.) An SVD
decomposition of a data matrix has the following properties.

o Patterns among the attributes are captured by the right singular vectors,
i.e., the columns of V.

e Patterns among the objects are captured by the left singular vectors,
i.e., the columns of U.

e A matrix A can be successively approximated in an optimal manner by
taking, in order, the terms of Equation B.2. We do not explain what
we mean by optimal, but refer the reader to the bibliographic notes.
Informally, the larger a singular value, the larger the fraction of a matrix
that is accounted for by the singular value and its associated singular
vectors.

e To obtain a new data matrix with k attributes, we compute the matrix
D' = D * [v1,v2,...,vi]. It might seem from the previous discussion
that we would take the matrix that results from the first k terms of
Equation A.12. However, while the resulting matrix is of rank k, it still
has n columns (attributes).

Example B.3 (Document Data). SVD decomposition can be used to an-
alyze document data. The data for this example consists of 3204 newspaper
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a.rtlcles from tl.le Los Angeles Times. These articles come from 6 different sec-
tions: Ent‘ert_amment, Financial, Foreign, Metro, National, and Sports. The
data matrix is a document-term matrix, where each row represents a docu-

ment and each column is a term (word). The value of the ij" entry is the

: th : : h
number of times the j* term occurs in the i document. The data was pro-

cessed using standard techniques to remove common words, to adjust for the
different frequencies with which terms appear, and to adjust for the different
lengths of documents. (See Section 2.3.7 for more details.)

An SVD analysis of the data was performed to find the first 100 singular
values and vectors. (For many data sets, it is too expensive to find a full SVD
or PCA decomposition and often pointless since relatively few of the singular
values or eigenvalues are required to capture the structure of the matrix.)
The largest singular value is associated with common terms that are frequent,
but not eliminated by the preprocessing. (It can happen that the strongest
patterns represent noise or uninteresting patterns.)

However, the patterns associated with other singular values were more
interesting. For example, the following are the top 10 terms (words) associated
with the strongest components in the second right singular vector:

game, score, lead, team, play, rebound, season, coach, league,
goal

These are all terms associated with sports. Not surprisingly, the documents
associated with the strongest components of the second left singular vector are
predominantly from the Sports section.

The top 10 terms associated with the strongest components in the third
right singular vector are the following:

earn, million, quarter, bank, rose, billion, stock, company,
corporation, revenue

These are all financial terms, and, not surprisingly, the documents associated
with the strongest components in the third left singular vector are predomi-
nantly from the Financial section.

We reduced the dimensionality of the data using the second and third
singular vectors, i.e., D’ = D % [va,v3]. In other words, all documents were
expressed in terms of two attributes, one relating to Sports and one relating to
Finance. A scatter plot of documents is given by Figure B.3. For clarity, non-
Sports, non-Financial documents have been eliminated. The Sports documents
are shown in a lighter shade of gray, while the Financial documents are a
darker gray. The two different categories of documents are well separated for
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Probability and
Statistics

This appendix presents some of the basic concepts in probability and statistics
used throughout this book.

C.1 Probability

A random experiment is the act of measuring a process whose outcome
is uncertain. Examples include rolling a die, drawing from a deck of cards,
and monitoring the types of traffic across a network router. The set of all
possible outcomes of a random experiment is known as the sample space,
Q. For example, Q = {1,2,3,4,5,6} is the sample space for rolling a die. An
event E corresponds to a subset of these outcomes, i.e., E C Q. For example
E = {2,4,6} is the event of observing an even number when rolling a die.

A probability P is a real-valued function defined on the sample space Q
that satisfies the following properties:

1. For any event EC 9,0 < P(E) < 1.
% PO =1

3. For any set of disjoint events, Ey, Eg, ..., Ey € {2,
k k
P(|JE) =)_P(E).
i=1 i=1

The probability of an event E, which is written as P(E), is the fraction of
times event E is observed in a potentially unlimited number of experiments.

Scanned with CamScanner
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In a random experiment, there is often a quantity of interest we want to
measure; e.g., counting the number of times a tail turns up when tossing a
coin fifty times or measuring the height of a person taking a roller coaster ride
at a theme park. Since the value of the quantity depends on the outcome of a
random experiment, the quantity of interest is known as a random variable,
The value of a random variable can be discrete or continuous. A Bernoulli
random variable, for example, is a discrete random variable whose only possible
values are 0 and 1.

For a discrete random variable X, the probability X takes on a particular
value v is given by the total probability of all outcomes e in which X(e) =v:

P(X =v) = P(E = {ele € Q, X (e) = V}). (C.1)

The probability distribution of a discrete random variable X is also known as
its probability mass function.

Example C.1. Consider a random experiment where a fair coin is tossed
four times. There are 16 possible outcomes of this experiment: HHHH, HHHT,
HHTH, HTHH, THHH, HHTT, HTHT, THHT, HTTH, THTH, TTHH, HTTT,
THTT, TTHT, TTTH, and TTTT, where H (T) indicates that a head (tail)
is observed. Let X be a random variable that measures the number of times
a tail is observed in the experiment. The five possible values for X are 0, 1, 2,
3, and 4. The probability mass function for X is given by the following table:

X | 0 1 2 3 4
P(X) | 1/16 | 4/16 | 6/16 | 4/16 | 1/16

For example, P(X = 2) = 6/16 because there are six outcomes in which the
tail is observed twice during the four tosses. n

On the other hand, if X is a continuous random variable, then the proba-
bility that X has a value between a and b is

Pla«s< b= f ' He)de (C.2)

The function f(z) is known as the probability density function (pdf). Be-
cause f is a continuous distribution, the probability that X takes a particular
value z is always zero.
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Table C.1. Examples of probability functions. (['(n + 1) = nI'(n) and I'(1) = 1)

Probability Function Parameters
r—pn)?
Gaussian p(z) = -\7-217; exp"* e o
Binomial plx) = [D)pP (1~ p)»* n,p
Poisson p(z) = 567 exp™® 0
Exponential p(x) = fexp™®* 0
_ A a-1 —Az
Gamma p(z) = Fmy2® " exp A«
: - 1 k/2-1 gy 0 —2/2
Chi-square | p(z) = z73r/5) ¢ Pl pFa k

Table C.1 shows some of the well-known discrete and continuous proba-
bility functions. The notion of a probability (mass or density) function can
be extended to more than one random variable. For example, if X and Y are
random variables, then p(X,Y) denotes their joint probability function. The
random variables are independent of each other if P(X,Y) = P(X) x P(Y).
If two random variables are independent, it means that the value for one vari-
able has no impact on the value for the other.

Conditional probability is another useful concept for understanding the
dependencies among random variables. The conditional probability for vari-
able Y given X, denoted as P(Y|X), is defined as

P(X,Y)

(C.3)

If X and Y are independent, then P(Y|X) = P(Y). The conditional proba-
bilities P(Y|X) and P(X|Y) can be expressed in terms of one another using
a formula known as the Bayes theorem:

P(X|Y)P(Y)

P(Y|X) = =55

(C.4)

If {X1,X2,..., Xy} is the set of mutually exclusive and exhaustive outcomes
of a random variable X, then the denominator of the above equation can be
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expressed as follows:

k k
P(X) =Y P(X,Y:) = Y P(X|Y)P(X). (C.5)

i=1 i=1

Equation C.5 is called the law of total probability.

C.1.1 Expected Values

The expected value of a function g of a random variable X, denoted as

E[g(X)), is the weighted-average value of g(X), where the weights are given
by the probability function for X. If X is a discrete random variable, then the

expected value can be computed as follows:

Elg(X] = Zg(xi)P(X = ;). (C.6)

On the other hand, if X is a continuous random variable,

00

B[g(X)] = / (X F0aX, (C.7)

where f(X) is the probability density function for X. The remainder of this
section considers only the expected values for discrete random variables. The

corresponding expected values for continuous random variables are obtained

by replacing the summation with an integral.
There are several particularly useful expected values in probability theory.

First, if g(X) = X, then
[75.¢ =E[X]=Z$i P(X=:r,-). (0.8)

This expected value corresponds to the mean value of the random variable
X. Another useful expected value is when g(X) = (X — px). The expected

value of this function is

ok = E[(X - px)? = Z(Q:‘ —pux)? P(X = ;). (C.9)

i

This expected value corresponds to the variance of the random variable X.
The square root of the variance corresponds to the standard deviation of

the random variable X.

ool
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Example C.2. Consider the random experiment described in E
The average number of tails

four times is

xample C.1.
expected to show up when a fair coin is tossed

BX =0X1/16+1x4/16+2x 6/16+3 x 4/16 4+ 4 x 1/16 =2.  (C.10)

The variance for the number of tajls expected to show up is

oX = (0-2)*x1/16+ (1 - 2)? x 4/16 + (2 - 2)? x 6/16
+(3-2)2 x4/16 + (4 - 2)? x 1/16 = 1.

For pairs of random variables, a useful expected value to compute is the
covariance function, Cov, which is defined as follows:

Cov(X,Y) = E((X — ux)(Y - py)| (C.11)

Note that the variance of a random variable X is equivalent Cov(X, X). The
expected value of a function also has the following properties:

1. Ela] = a, if a is a constant.
2. ElaX] = aE[X).
3. E[aX +bY] = aE[X] + bE[Y].

Based on these properties, Equations C.9 and C.11 can be rewritten as follows:

0% = E[(X - px)?] = E[X?] - E[X]? (C.12)
Cov(X,Y) = E[XY] - E[X]E[Y] (C.13)

C.2 Statistics

To draw conclusions about a population, it is generally not feasible to gather
data from the entire population. Instead, we must make reasonable conclusions
about the population based on evidence gathered from sampled data. The
process of drawing reliable conclusions about the population based on sampled
data is known as statistical inference.
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Regression

Regression is a predictive modeling technique where the target variable to
be estimated is continuous. Examples of applications of regression include
predicting a stock market index using other economic indicators, forecasting
the amount of precipitation in a region based on characteristics of the jet
stream, projecting the total sales of a company based on the amount spent

for advertising, and estimating the age of a fossil according to the amount of
carbon-14 left in the organic material.

D.1 Preliminaries

Let D denote a data set that contains N observations,

D= {(xiiyl')l 1= 1)2:"-3N}-

Each x; corresponds to the set of attributes of the ith observation (also known
as the explanatory variables) and y; corresponds to the target (or response)
variable. The explanatory attributes of a regression task can be either discrete
or continuous.

Definition D.1 (Regression). Regression is the task of learning a target
function f that maps each attribute set x into a continuous-valued output y.

The goal of regression is to find a target function that can fit the input
data with minimum error. The error function for a regression task can be
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expressed in terms of the sum of absolute or squared error:

Absolute Error = Z lyi — f(xi)| (D.1)

1

Squared Error = Z('yi - f(xi))2 (D.2)

D.2 Simple Linear Regression

Consider the physiological data shown in Figure D.1. The data corresponds to
measurements of heat flux and skin temperature of a person during sleep. Sup-
pose we are interested in predicting the skin temperature of a person based on
the heat flux measurements generated by a heat sensor. The two-dimensional
scatter plot shows that there is a strong linear relationship between the two
variables.

Heat Flux | Skin Temperature Heat Flux | Skin Temperature Heat Flux | Skin Temperature
10.858 31.002 6.3221 31.581 4.3917 32.221
10.617 31.021 6.0325 31.618 4.2951 32.259
10.183 31.058 5.7429 31.674 4.2469 32.296
9.7003 31.095 5.5016 31.712 4.0056 32.334
9.652 31.133 5.2603 31.768 3.716 32.391
10.086 31.188 5.1638 31.825 3.523 32.448
9.459 31.226 5.0673 31.862 3.4265 32.505
8.3972 31.263 4,9708 31.919 3.3782 32.543
7.6251 31.319 4.8743 31.975 3.4265 326
7.1907 31.356 47777 32.013 3.3782 32.657
7.046 31.412 4.7295 32.07 3.3299 32.696
6.9494 31.468 4.633 32.126 3.3299 32.753
6.7081 31.524 4.4882 32.164 3.4265 32.791
33 T T T T T T T
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Heat Flux

Figure D.1. Measurements of heat flux and skin temperature of a person.
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D.2 Simple Linear Regression 731
D.2.1 Least Square Method

Suppose we wish to fit the following linear model to the observed data:
f(z) = w1z + wo, (D.3)

where wp and w; are parameters of the model and are called the regression
coefficients. A standard approach for doing this is to apply the method of

least squares, which attempts to find the parameters (wo,w;) that minimize
the sum of the squared error

N N
SSE =Y [ui - f(z)]* =Y _[vi — wiz — wo]?, (D.4)
i=1 i=1

which is also known as the residual sum of squares.

This optimization problem can be solved by taking the partial derivative
of E with respect to wg and w;, setting them to zero, and solving the corre-
sponding system of linear equations.

OF il
-670 = g ;[yi —wiz; —wo] =0
N
OF
or = _2:;[% —w1T; —wolzi =0 (D.5)

These equations can be summarized by the following matrix equation,
which is also known as the normal equation:

( Z]:;i %:ié ) ( Z(; ) = ( Zz:;c?f;, ) (D.6)

Since 37, z; = 229.9, ¥, 27 = 1569.2, 3,4 = 1242.9, and ), z;y; = 7279.7,
the normal equations can be solved to obtain the following estimates for the

parameters.
S0\ _ [ 39 2209 \ 7' [ 12429
W - 229.9 1569.2 7279.7
_ [ 01881 —0.0276 \ [ 1242.9
b —0.0276  0.0047 7279.7

_( 33.1699
= \ -0.2208
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732 Appendix D Regression

Thus, the linear model that best fits the data in terms of minimizing the
SSE is
f(z) =33.17 - 0.22z.

Figure D.2 shows the line corresponding to this model.

33 T T T T T T

+
i Skin Temp = 33.17 — 0.22 Heat Flux
325R%

32+

315}

Skin Temperature

31+

30‘5 1 i 1 i i
3 4 5 6 7 8 9 10 1
Heat Flux

Figure D.2. Alinear model that fits the data given in Figure D.1.

We can show that the general solution to the normal equations given in
D.6 can be expressed as follow:

&y = ¥ T

A Ozy

wp = D.7
s (D.7)

where T = Y., 2i/N, ¥ = >; 4i/N, and

Ozy = Z(mi—ﬁ'ﬁ)(yi——ﬁ) (D.8)
Orx = Y _(@i—E) (D.9)
o = DW= (D.10)
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D.2 Simple Linear Regression 733

Thus, linear model that results in the minimum squared error is given by

f@) =7+ X[z -3, (D.11)

Ozx
In summary, the least squares method is a systematic approach to fit a lin-
ear model to the response variable y by minimizing the squared error between
the true and estimated value of y. Although the model is relatively simple, it

seems to provide a reasonably accurate approximation because a linear model

is the first-order Taylor series approximation for any function with continuous
derivatives.

D.2.2 Analyzing Regression Errors

Some data sets may contain errors in their measurements of x and 3. In
addition, there may exist confounding factors that affect the response variable
Yy, but are not included in the model specification. Because of this, the response
variable y in regression tasks can be non-deterministic, i.e., it may produce a
different value even though the same attribute set x is provided.

We can model this type of situation using a probabilistic approach, where
y is treated as a random variable:

y = f)+y-fx)
= f(x)+e (D.12)

Both measurement errors and errors in model specification have been absorbed
into a random noise term, ¢. The random noise present in data is typically
assumed to be independent and follow a certain probability distribution.

For example, if the random noise comes from a normal distribution with
zero mean and variance o2, then

P(e|x,Q) = \/22_7 exp_lt%f!'m]‘ (D.13)
log[P(e|x, )] = —%(y — f(x,2))? + constant (D.14)

This analysis shows that minimizing the SSE, [y — f(x, )2, implicitly assumes
that the random noise follows a normal distribution. Furthermore, it can be

shown that the constant model, f(x, Q) = c, that best minimizes this type of
error is the mean, i.e.,, c =7.
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734 Appendix D Regression
Another typical probability model for noise uses the Laplacian distribution:

P(e|x, Q) = cexp_':ly"f(""ml (D.15)
log[P(e|x, )] = —cly — f(x,§2)| + constant (D.lﬁ)
This suggests that minimizing the absolute error ly — f(x,9)| implicitly as-

sumes that the random noise follows a Laplacian distrjbution. T%le best con-
stant model for this case corresponds to f(x,§) = #, the median value of

Y.
Besides the SSE given in Equation D.4, we can also define two other types

of errors:

SST = Y (-9 (D.17)

SSM = 3 (f(=:)-7)° (D.18)

1

where SST is known as the total sum of squares and SSM is known as the
regression sum of squares. SST represents the prediction error when the
average value 7 is used as an estimate for the response variable. SSM, on
the other hand, represents the amount of error in the regression model. The
relationship among SST, SSE, and SSM is derived as follows:

SSE = 3 Iy ~7+7 - f(@)?
= Z:j[yz- — 9+ Dl (@) ~ 7 + 2 > = 1)@ - f(z:))
= Y-+ i[f(mi) i 2i<yz- ~T)on(e: - 3)
= -+ i[f(wi) -3 - 2iw%(mz- - )
= ;[yi - 7] —Z::[f(:vi) -7 1
= SST - SSM (D.19)

where we have applied the following relationships:

V- f@) = —wi(z;-7)
;[%‘ -z -7 = Ozy = W10 = w; Z[xt —7)2.

]
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D.2 Simple Linear Regression 735

Thus, we can write SST = SSE + SSM.

D.2.3 Analyzing Goodness of Fit

One way to measure the goodness of the fit is by computing the following

measure: \
g2 SSM _ 3ilf(=i) :127] (D.20)
SST  ili-1
The R? (or coefficient of determination) for a regression model may range
between 0 and 1. Its value is close to 1 if most of the variability observed in
the response variable can be explained by the regression model.
R? is also related to the correlation coefficient, r, which measures the
strength of the linear relationship between the explanatory and response vari-
ables

s e, (D.21)
v/ OzzOzy

From Equations D.9, D.10, and D.11, we can write

Ylf(zi) — 7
il — 72
Zi[a—:l(ﬂvi 5 f)]2

Oxrx

R =

. (D.22) '?
Uz;co'yy

The above analysis shows that the correlation coefficient is- eqt?ivalent‘to the
square root of the coefficient of determination (except .f(.)r its sign, vErhlch de-
pends on the direction of the relationship, whether positive or negatlve).. %

It is worth noting that R? increases as we add more explanatory va.rfables
into the model. One way to correct for the number of explanatory variables
added to the model is by using the following adjusted R? measure:

N-1
Adjusted R? =1- (m) (1 - R?), (D.23)
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736 Appendix D Regression

where N is the number of data points and d + 1 is the number of parameters
of the regression model.

D.3 Multivariate Linear Regression

The normal equations can be written in a more compact form using the
following matrix notation. Let X = (1 x), where 1 = (1,1,1,...)7 and
x = (x1,%2,...,Zn5)T. Then, we can show that

171 17x N T
XTX = ( o = ) - ( S %xf ) , (D.24)
1t 1

which is equivalent to the left-hand side matrix of the normal equation. Sim-
ilarly, if y = (y1,%2,--.,yn)T, we can show that

(1 =fy=(23 )= (&2 ). (0.25)

which is equivalent to the right-hand side matrix of the normal equation. Sub-
stituting Equations D.24 and D.25 into Equation D.6 we obtain the following
equation:

XTxX0 = X"y, (D.26)

where ) = (wo,w1)T. We can solve for the parameters in €2 can as follows:
0 =XTX)" Xy, (D.27)

The above notation is useful because it allows us to extend the linear
regression method to the multivariate case. More specifically, if the attribute
set consists of d explanatory attributes (zi,2,...,24), X becomes an N X d
design matrix:

1 11 T12 ... T1d
1l = x won
X = 21 22 2d : (D.28)
1 zn1 zZN2 ... ZNg
while Q = (wp,w1,. .. ,wd—1)T is a d-dimensional vector. The parameters can

be computed by solving the matrix equation given in Equation D.26.
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D.4 Alternative Least-Square Regression Methods

The least squares method can also be used to find other types of regression
models that minimize the SSE. More specifically, if the regression model is

‘ y = f(x,9) +e (D.29)
wo + Z w;igi(x) + €, (D.30)

and the random noise is normally distributed, then we can apply the same
methodology as before to determine the parameter vector €. The g;'s can be
any type of basis functions, including polynomial, kernel, and other nonlinear

functions.
For example, suppose X is a two-dimensional feature vector and the regres-
sion model is a polynomial function of degree 2

f(z1,22,9) = wo + w11 + woT2 + w3T1T2 + waT? + wsT3. (D.31)
If we create the following design matrix:

2 2
1 z11 T12 ZTnri 33%1 ")
1 =z x T T T
21 22 21722 2 2 |, (D.32)

1 zn1 ZN2 ZIN1TN2 k1 The
where z;; is the jth attribute of the ith observation, then the regression prob-
lem becomes equivalent to solving Equation D.26. The least-square solution to

the parameter vector §2 is given by Equation D.27. By choosing the appropri-
ate design matrix, we can extend this method to any type of basis functions.
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