
K-model: A New Computational Model for Stream Processors

Gabriele Capannini - email capannin@di.unipi.it

Given the demand of massive comput-
ing power in modern rendering applications,
GPUs (as well as Sony’s Cell BE processor,
and next-generation CPUs) are designed to
be extremely fast at rendering large graph-
ics datasets. Indeed, inspired by the attrac-
tive performance/cost ratio, several studies
adopt such type of processors also for carry-
ing out data-intensive and general-purpose
tasks. Their architecture consists of various
single-instruction-multiple-data (SIMD) ar-
ray processors that are able to compute an
huge number of arithmetic operations at the
same time.

Related to SIMD, there is the stream
processing. It is a computer program-
ming paradigm that allows some applica-
tions to more easily use multiple computa-
tional units by restricting the parallel syn-
chronization, or communication that can
be performed among those units. Given a
set of data (a stream), a series of opera-
tions (kernel functions) are independently
applied to each element in the stream. Fur-
thermore, due to both the performance con-
straints and the absence of some architec-
tural “facilities”, e.g. jump prediction and
re-order buffer, the design of efficient algo-
rithms for these processors requires more ef-
forts than for standard CPUs.

To face this issue, we propose K-model
that is a computational model aimed to

capture all the distinguishing features of
GPUs, and alike architectures. Given a
K-algorithm, two functions evaluate the
amount of work performed inside the pro-
cessor in term of latency and length of
the instructions. The first function can
be thought as a measure of the parallel
complexity, whereas the other one can be
thought as the complexity assuming we are
on a serial RAM, and it contributes to mea-
sure the efficiency of the algorithm. How-
ever, the evaluation of the “internal-work”
induced by a stream element is not the
unique purpose of K-model. A relevant as-
pect to take into consideration is the pat-
tern used to access the memory storing both
input data and results.

Two case studies that focus on these
two different type of performance con-
straints are presented: (i) a new function to
map Bitonic Sorting Network that improves
GPU exploitation and maximizes the band-
width with which the data is transferred.
It is worth noticing that being an in-place
sorting based on bitonic networks our solu-
tion uses less memory that is an important
aspect when sorting large volume of data, as
it is required by large-scale distributed sys-
tem for information retrieval; (ii) a novel
and efficient method to compute another
important building block for parallel algo-
rithms: the parallel prefix sum.


