Used in many applications

 Mainly for its efficiency, resistance to noise and ability to deal with arbitrary shaped clusters

Main idea: divide noise from objects to clusters

- Objects to cluster = dense points
- Noise = low-density points

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

© Tan,Steinbach, Kumar

Introduction to Data Mining

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Border points can be neighbors of several core points/clusters \rightarrow arbitrarily choose one!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 8	4/18/2004 84
--	--------------

Step 1: label points as core (dense), border and noise

 Based on thresholds R (radius of neighborhood) and min_pts (min number of neighbors)

DBSCAN

Step 2: connect core objects that are neighbors, and put them in the same cluster

DBSCAN

Step 3: associate border objects to (one of) their core(s), and remove noise

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/200)4 88
--	-------

When **DBSCAN** Works Well

Original Points

Resistant to Noise

Can handle clusters of different shapes and sizes

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	89
	-		

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.92)

(MinPts=4, Eps=9.75).

C)	Tan.	Steinba	ach. K	umar

Varying densities

High-dimensional data

4/18/2004

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

