Preparazione e caratteristiche dei Dati per Data Mining

Fosca Giannotti

f.giannotti@isti.cnr.it

Dino Pedreschi dino.pedreschi@unipi.it

Materiale

- Lucidi delle lezioni (Slides PowerPoint):
 - Primo autore: G. Manco Revisione: M. Nanni
 - Versione attuale: In distribuzione
- Testi di Riferimento
 - J. Han, M. Kamber. *Data Mining: Concepts and Techniques*. Morgan Kaufmann, 2000.
 - Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
 - D. Hand, H. Mannila, P. Smyth. Principles of Data Mining. MIT Press, 2001.

Il Processo di KDD Interpretation and Evaluation **Data Mining** Knowledge **Selection and Preprocessing** Data Patterns & Consolidation Models Prepared Data Varehouse Consolidated • Data 2015 Preparazione di Dati per Data Mining **Data Sources**

I Contenuti

- Introduzione e Concetti di Base
 - Motivazioni
 - Il punto di partenza: dati consolidati, Data Marts
- Data Selection
 - Manipolazione di Tabelle
- Information Gathering
 - Misurazioni
 - Visualizzazioni
 - Statistiche
- Data cleaning
 - Trattamento di valori anomali
 - Identificazione di Outliers
 - Risoluzione di inconsistenze

- Data reduction
 - Campionamento
 - Riduzione di Dimensionalità
- Data transformation
 - Normalizzazioni
 - aggregazione
 - Discretizzazione
- Data Similarity
 - Similarity and Dissimilarity (on Single attribute)
 - Distance (Many attributes)
 - Distance on Binary data (Simple matching; Jaccard)
 - Distance on Document Data
- Data Esploration (lumtidimensional array)

Problemi tipici

- Troppi dati
 - dati sbagliati, rumorosi
 - dati non rilevanti
 - dimensione intrattabile
 - mix di dati numerici/simbolici
- Pochi dati
 - attributi mancanti
 - valori mancanti
 - dimensione insufficiente

Il Data Preprocessing è un Processo

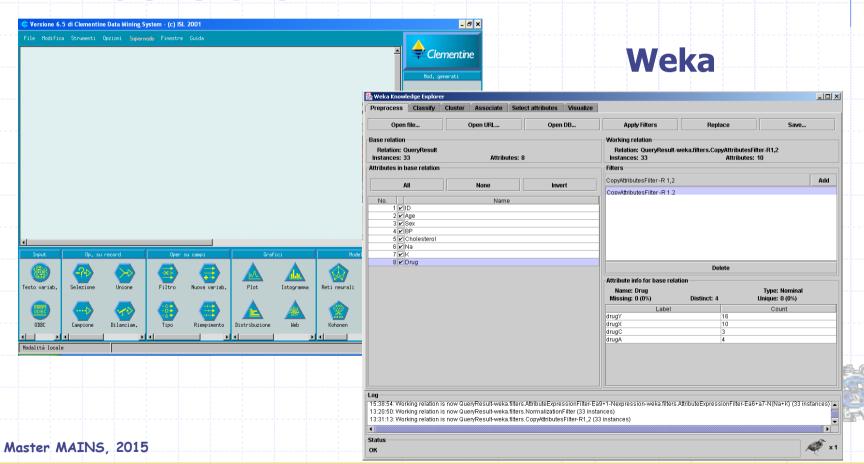
- Accesso ai Dati
- Esplorazione dei Dati
 - Sorgenti
 - Quantità
 - Qualità
- Ampliamento e arricchimento dei dati
- Applicazione di tecniche specifiche

Il Data Preprocessing dipende (ma non sempre) dall' Obiettivo

- Alcune operazioni sono necessarie
 - Studio dei dati
 - Pulizia dei dati
 - Campionamento
- Altre possono essere guidate dagli obiettivi
 - Trasformazioni
 - Selezioni

Outline del Modulo

- Introduzione e Concetti di Base
- Data Selection


E' sempre necessario SQL?

- I moderni tools raggruppano una serie di operazioni in maniera uniforme
- La metafora di interazione è visuale
 - Esempi che vedremo:
 - Clementine
 - Weka
- SQL è più generico
 - Ma anche più difficile da usare

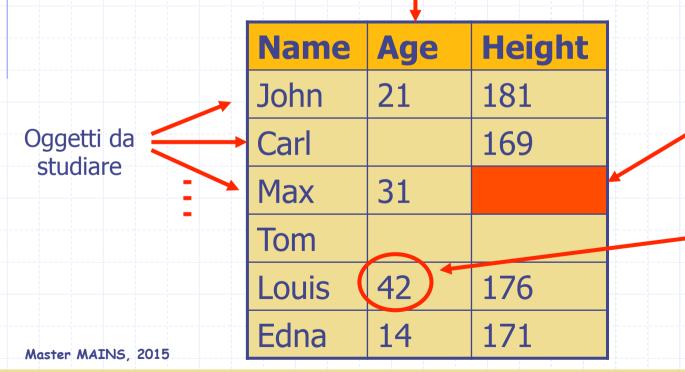
Es. due piattaforme per DM

Clementine

Outline del Modulo

- Introduzione e Concetti di Base
- Data Selection
- Information Gathering

Oggetti, Proprietà, Misurazioni


- Il mondo reale consiste di oggetti
 - Automobili, Vigili, Norme, ...
- Ad ogni oggetto è associabile un insieme di proprietà (features)
 - Colore, Cilindrata, Proprietario, ...
- Su ogni proprietà è possibile stabilire delle misurazioni
 - Colore = rosso, Cilindrata = 50cc, Proprietario = luigi, ...

La Nostra Modellazione

La realtà è descritta da una tabella

Proprietà (feature)

Variabile

Misurazione

Preparazione di Dati per Data Mining

Tipi di misure

- Misure Discrete (simboliche, categoriche, qualitative)
 - Nominali
 → identificatori univoci (Cod. Fiscale)
 - Ordinali
 → è definito un ordine (low < high)
 - Binarie \rightarrow due soli valori (T/F, 1/0,...)
- Misure Continue
 - Interval-Based → Scalabili di fattore costante (es.: misure in MKS e CGS)
 - Ratio-Scaled → Scalabili linearmente (ax+b)
 (es.: temperature °C e °F)

Properties of Attribute Values

The type of an attribute depends on which of the following properties it possesses:

Distinctness:

= ≠

Order:

< >

Addition:

+---

Multiplication:

* /

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

•Attribute Type	•Description	•Examples	•Operations
•Nominal	•The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. (=, ≠)	•zip codes, employee ID numbers, eye color, sex: {male, female}	•mode, entropy, contingency correlation, χ² test
•Ordinal	•The values of an ordinal attribute provide enough information to order objects. (<,>)	•hardness of minerals, {good, better, best}, grades, street numbers	•median, percentiles, rank correlation, run tests, sign tests
•Interval	•For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	•calendar dates, temperature in Celsius or Fahrenheit	•mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
•Ratio	•For ratio variables, both differences and ratios are meaningful. (*, /)	•temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	•geometric mean, harmonic mean, percent variation
Master MAINS,	2015		

•Attribute Level	•Transformation	•Comments			
•Nominal	•Any permutation of values	•If all employee ID numbers were reassigned, would it make any difference?			
•Ordinal	•An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function.	•An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.			
•Interval	•new_value =a * old_value + b where a and b are constants	•Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).			
•Ratio	•new_value = a * old_value	•Length can be measured in meters or feet.			

Preparazione di Dati per Data Mining

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, counts, or the set of words in a collection of documents
 - Often represented as integer variables.
 - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Practically, real values can only be measured and represented using a finite number of digits.
 - Continuous attributes are typically represented as floating-point variables.

Types of data sets

- Record
 - Data Matrix
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

	Tid	Refund	Marital Status	Taxable Income	Cheat	
	1	Yes	Single	125K	No	
	2	No	Married	100K	No	
	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
	5	No	Divorced	95K	Yes	
	6	No	Married	60K	No	
	7	Yes	Divorced	220K	No	
	8	No	Single	85K	Yes	
¥	9	No	Married	75K	No	
	10	No	Single	90K	Yes	

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

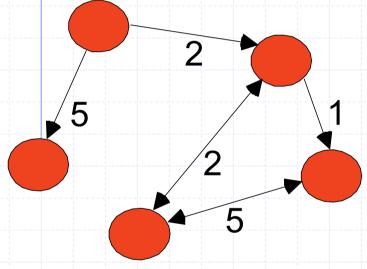
Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n Wi.	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data


- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

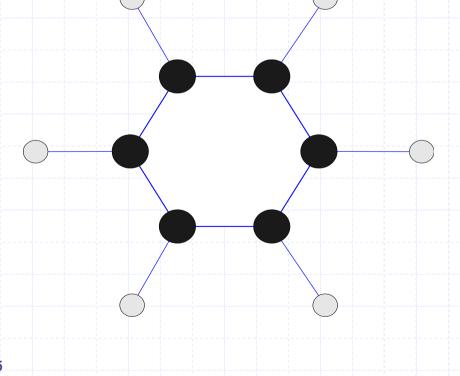
Graph Data

Examples: Generic graph and HTML Links

Data Mining

Graph Partitioning

<


Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Chemical Data

◆ Benzene Molecule: C₆H₆

Ordered Data

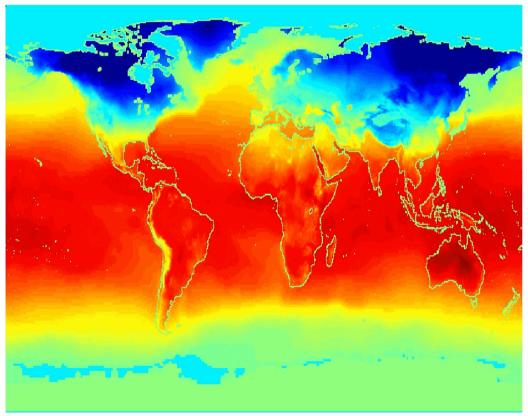
Sequences of transactionsItems/Events

```
(AB) (D) (CE)
(BD) (C) (E)
(CD) (B) (AE)
```

•An element of the sequence

Ordered Data

Genomic sequence data



Ordered Data

Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

Caratteristiche delle Variabili (dei data sets)

Sparsità

- Mancanza di valore associato ad una variabile
 - Un attributo è sparso se contiene molti valori nulli

Monotonicità

- Crescita continua dei valori di una variabile
 - Intervallo [-∞, ∞] (o simili)
- Non ha senso considerare l'intero intervallo

Outliers

- Valori singoli o con frequenza estremamente bassa
- Possono distorcere le informazioni sui dati

Dimensionalità delle variabili

- Il numero di valori che una variabile può assumere può essere estremamente alto
 - Tipicamente riguarda valori categorici

Dimensionalità degli oggetti

- Il numero di attributi che un oggetto ha può essere estremamente alto
 - Es. prodotti di un market basket

Anacronismo

 Una variabile può essere contingente: abbiamo i valori in una sola porzione dei Master MAINSti₂₀₁₅

Descrizione dei dati

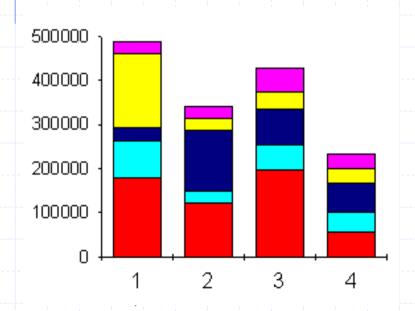
- Grafici
 - Distribuzione frequenze
 - Correlazione
 - Dispersione
- Misure
 - Media, mediana, quartili
 - Varianza, deviazione standard
 - Forma, simmetria, curtosi

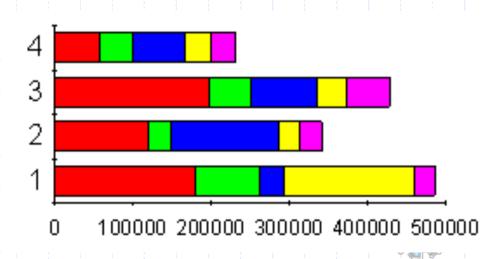
Visualizzazione dati qualitativi

- Rappresentazione delle frequenze
 - Diagrammi a barre
 - Ortogrammi
 - Aerogrammi
- Correlazione
 - Web diagrams
- Ciclicità
 - Diagrammi polari

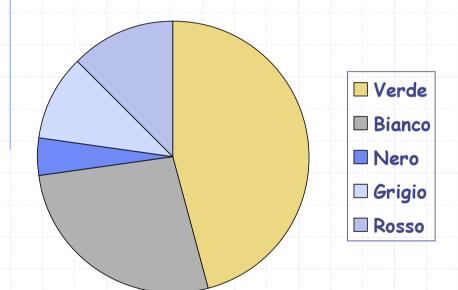
Diagrammi di Pareto

- Diagammi a barre distanziate
- Un assortimento di eventi presenta pochi picchi e molti elementi comuni



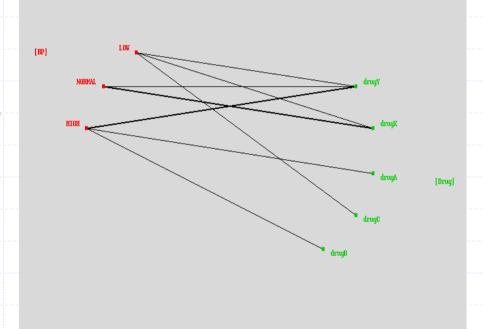

Preparazione di Dati per Data Mining

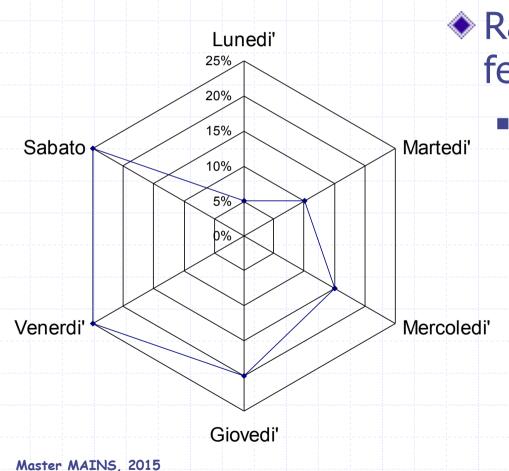
Ortogrammi



 Ogni colonna indica la la distribuzione interna per un dato valore e la frequenza

Aerogrammi


- Rappresentazioni a torta
- frequenza della distribuzioni

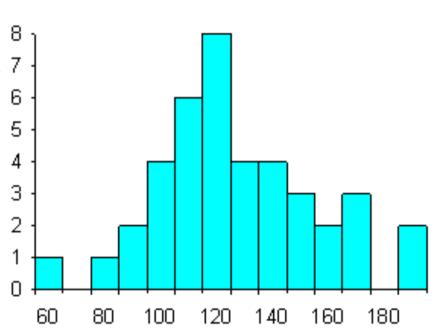

Web

Visualizzano correlazioni tra valori simbolici

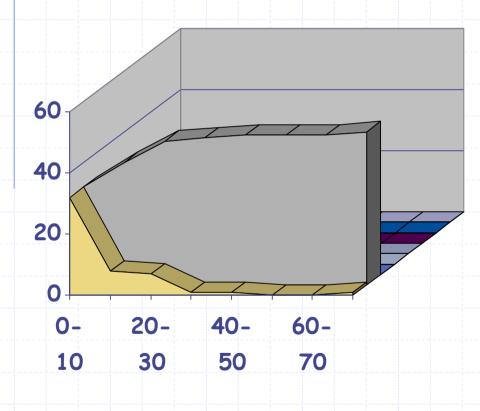
Diagrammi polari

 Rappresentano fenomeni ciclici

> E.g., concentrazione delle vendite nell' arco settimanale


Dati Quantitativi

- ◆ Istogrammi
- Poligoni
- Stem and leaf
- Dot Diagrams
- Diagrammi quantili


Istogrammi

- Rappresentazioni a barre
- Evidenziano la frequenza su intervalli adiacenti
 - La larghezza di ogni rettangolo misura
 l'ampiezza degli intervalli
 - Quale larghezza?

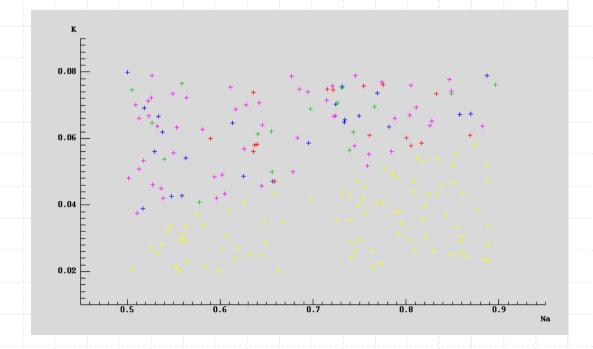
Poligoni

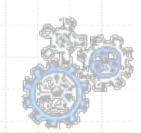
- Per la descrizione di frequenze cumulative
- I punti sono uniti tramite linee

Rappresentazione "Stem & Leaf"

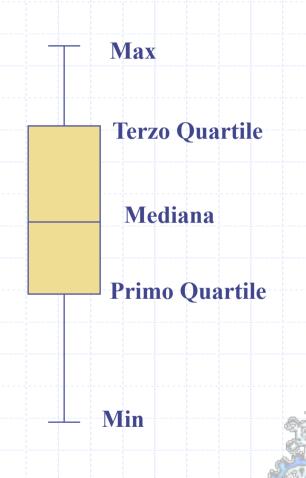
10-19	2	7	5					
20-29	9	19	5	3	4	7	1	8
10-19 20-29 30-39 40-49	4 9	9 2 4	17					
40-49	4 8	8 2						
50-59	3							

- Simile a istogrammi
- Evita la perdita di informazione
- Utile per pochi dati




Dot Diagrams, Scatters

Weka


 Visualizza la Dispersione plot dei dat

Rappresentazioni Boxplot

- Rappresentano
 - il grado di dispersione o variabilità dei dati (w.r.t. mediana e/o media)
 - la simmetria
 - la presenza di valori anomali
- Le distanze tra i quartili definiscono la dispersione dei dati

Misure descrittive dei dati

Tendenza centrale o posizione

 Media aritmetica, geometrica e armonica, mediana, quartili, percentili, moda

Dispersione o variabilità

 Range, scarto medio, varianza, deviazione standard

Forma della distribuzione

 Simmetria (medie interquartili, momenti centrali, indice di Fisher) e curtosi (indice di Pearson, coefficiente di curtosi)

Outline del Modulo

- Introduzione e Concetti di Base
- Data Selection
- Information Gathering
- Data cleaning

Data Cleaning

- Trattamento di valori anomali
- Trattamento di outliers
- Trattamento di tipi impropri

Valori Anomali

- Valori mancanti
 - NULL
- Valori sconosciuti
 - Privi di significato
- Valori non validi
 - Con valore noto ma non significativo

Outline del Modulo

- Introduzione e Concetti di Base
- Data Selection
- Information Gathering
- Data cleaning
- Data reduction

Trattamento di valori nulli

- 1. Eliminazione delle tuple
- 2. Sostituzione dei valori nulli

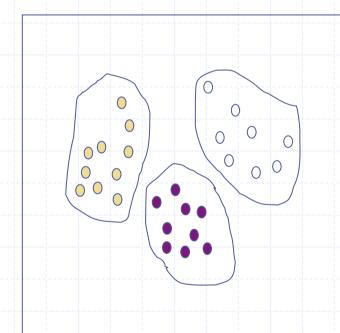
N.B.: può influenzare la distribuzione dei dati numerici

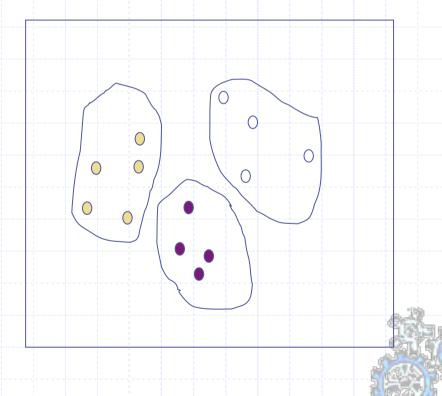
- Utilizzare media/mediana/moda
- Predirre i valori mancanti utilizzando la distribuzione dei valori non nulli
- Segmentare i dati e utilizzare misure statistiche (media/moda/ mediana) di ogni segmento
- Segmentare i dati e utilizzare le distribuzioni di probabilità all'interno dei segmenti
- Costruire un modello di classificazione/regressione e utilizzare il modello per calcolare i valori nulli

Data Reduction

- Riduzione del volume dei dati
 - Verticale: riduzione numero di tuple
 - Data Sampling
 - Clustering
 - Orizzontale: riduzione numero di colonne
 - Seleziona un sottinsieme di attributi
 - Crea un nuovo (e piccolo) insieme di attributi

Sampling (Riduzione verticale)


- Riduce la complessità di esecuzione degli algoritmi di Mining
- Problema: scegliere un sottoinsieme rappresentativo dei dati
 - La scelta di un campionamento casuale può essere problematica per la presenza di picchi
- Alternative: Schemi adattativi
 - Stratified sampling:
 - Approssimiamo la percentuale di ogni classe (o sottopopolazione di interesse rispetto all'intero database)
 - Adatto a distribuzioni con picchi: ogni picco è in uno strato
 - Possiamo combinare le tecniche random con la stratificazione
- N.B.: Il Sampling potrebbe non ridurre I tempi di risposta se i dati risiedono su disco (page at a time).



Sampling

Raw Data

Cluster/Stratified Sample

Riduzione Dimensionalità

(Riduzione orizzontale)

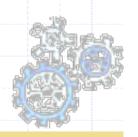
- Selezione di un sotto-insieme di attributi
 - Manuale
 - In seguito a analisi di significatività e/o correlazione con altri attributi
 - Automatico
 - Selezione incrementale degli attributi "migliori"
 - "Migliore" = rispetto a qualche misura di significatività statistica (es.: information gain).

Riduzione Dimensionalità

(Riduzione orizzontale)

- Creazione di nuovi attributi con i quali rappresentare le tuple
 - Principal components analysis (PCA)
 - Trova le combinazioni lineari degli attributi nei k vettori ortonormali più significativi
 - Proietta le vecchie tuple sui nuovi attributi
 - Altri metodi
 - Factor Analysis
 - Decomposizione SVD

Outline del Modulo


- Introduzione e Concetti di Base
- Data Selection
- Information Gathering
- Data cleaning
- Data reduction
- Data transformation

Data Transformation: Motivazioni

- Dati con errori o incompleti
- Dati mal distribuiti
 - Forte asimmetria nei dati
 - Molti picchi
- La trasformazione dei dati può alleviare questi problemi

Obiettivi

Vogliamo definire una trasformazione T sull'attributo X:

$$Y = T(X)$$

tale che:

- Y preserva l'informazione "rilevante" di X
- Y elimina almeno uno dei problemi di X
- Yè più "utile" di X

Obiettivi

- Scopi principali:
 - stabilizzare le varianze
 - normalizzare le distribuzioni
 - linearizzare le relazioni tra variabili
- Scopi secondari:
 - semplificare l'elaborazione di dati che presentano caratteristiche non gradite
 - rappresentare i dati in una scala ritenuta più adatta.

Perché normalità, linearità, ecc.?

- Molte metodologie statistiche richiedono correlazioni lineari, distribuzioni normali, assenza di outliers
- Molti algoritmi di Data Mining hanno la capacita` di trattare automaticamente nonlinearita' e non-normalita'
 - Gli algoritmi lavorano comunque meglio se tali problemi sono trattati

Metodi

Trasformazioni esponenziali

- - Preservano l' ordine
 - Preservano alcune statistiche di base
 - sono funzioni continue
 - ammettono derivate
 - sono specificate tramite funzioni semplici

Migliorare l'interpretabilita`

Trasformazioni lineari

$$p=1, a=1936.27, b=0$$

$$^{\circ}C = 5/9(^{\circ}F - 32)$$

$$p = 1, a = 5/9, b = -160/9$$

Normalizzazioni

min-max normalization


$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization

$$v' = \frac{v - mean_A}{stand _dev_A}$$

normalization tramite decimal scaling

$$v' = \frac{v}{10^{j}}$$
 dove j è il più piccolo intero tale che Max($|v'|$)<1

Stabilizzare varianze

Trasformazione logaritmica

$$T(x) = c \log x + d$$

- Si applica a valori positivi
- omogeneizza varianze di distribuzioni lognormali
- E.g.: normalizza picchi stagionali

Trasformazione logaritmica: esempio

Bar	Birra	Ricavo
Α	Bud	20
Α	Becks	10000
C	Bud	300
D	Bud	400
D	Becks	5
E	Becks	120
E	Bud	120
F	Bud	11000
G	Bud	1300
H	Bud	3200
H	Becks	1000
	Bud	135

2300	Media
2883,3333	Scarto medio assoluto
3939,8598	Deviazione standard
5	Min
120	Primo Quartile
350	Mediana
1775	Secondo Quartile
11000	Max

Dati troppo dispersi!!!

Trasformazione Logaritmica: esempio

Bar	Birra	Ricavo (log)
Α	Bud	1,301029996
Α	Becks	4
С	Bud	2,477121255
D	Bud	2,602059991
D	Becks	0,698970004
E	Becks	2,079181246
E	Bud	2,079181246
F	Bud	4,041392685
G	Bud	3,113943352
Н	Bud	3,505149978
H	Becks	3
- I	Bud	2,130333768

Media	2,585697
Scarto medio assoluto	0,791394
Deviazione standard	1,016144
Min	0,69897
Primo Quartile	2,079181
Mediana	2,539591
Secondo Quartile	3,211745
Max	4,041393

Stabilizzare varianze

$$T(x) = ax^p + b$$

- Trasformazione in radice
 - p = 1/c, c numero intero
 - per omogeneizzare varianze di distribuzioni particolari, e.g., di Poisson
- Trasformazione reciproca
 - *p* < 0
 - per l'analisi di serie temporali, quando la varianza aumenta in modo molto pronunciato rispetto alla media

Simmetria

- Si ha simmetria quando media, moda e mediana coincidono
 - condizione necessaria, non sufficiente
 - Asimmetria sinistra: moda, mediana, media
 - Asimmetria destra: media, mediana, moda

Asimmetria dei dati

Simmetria e Media interpercentile

$$M - x_p = x_{1-p} - M \Leftrightarrow \frac{x_{1-p} + x_p}{2} = M$$

- Se la media interpercentile è sbilanciata, allora la distribuzione dei dati è asimmetrica
 - sbilanciata a destra

$$\bar{x}_p > M$$

sbilanciata a sinistra

$$\bar{x}_p < M$$

Asimmetria nei dati: esempio

Verifichiamo la simmetria (valori di un unico attributo)

2.808	14.001	4.227	5.913	6.719
3.072	29.508	26.463	1.583	78.811
1.803	3.848	1.643	15.147	8.528
43.003	11.768	28.336	4.191	2.472
24.487	1.892	2.082	5.419	2.487
3.116	2.613	14.211	1.620	21.567
4.201	15.241	6.583	9.853	6.655
2.949	11.440	34.867	4.740	10.563
7.012	9.112	5.732	4.030	28.840
16.723	4.731	3.440	28.608	995

Asimmetria: esempio

- I valori della media interpercentile crescono col percentile considerato
- Distribuzione sbilanciata a destra

Percentile	Media	Low	High
M	6158	6158	6158
F	9002	3278	14726
E	12499	2335	22662
D	15420	2117	28724
C	16722	2155	31288
1	39903	995	78811

Creare simmetria nei dati: Trasformation plot

- lacktriangle Trovare una trasformazione T_{ρ} che crei simmetria
 - Consideriamo i percentili x_U e x_L
 - I valori c ottenuti tramite la formula

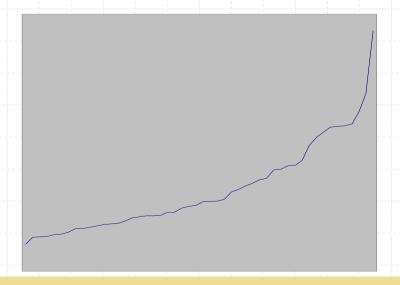
$$\frac{x_U + x_L}{2} - M = (1 - c) \frac{(x_U - M)^2 + (M - x_L)^2}{4M}$$

suggeriscono dei valori adeguati per p

- Intuitivamente, compariamo la differenza assoluta e relativa tra mediana e medie interpercentili
- il valore medio (mediano) dei valori di c è il valore della trasformazione

Trasformation plot: esempio

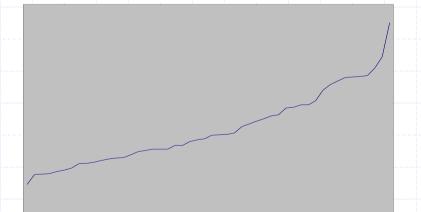
C	$(x_L-x_U)/2-M$ $((M-x_L)^2+(x_U-M)^2)/4M$
0.14258	2844.5 3317.5
0.45583	11652.8
0.56592	9262.7 21338.8
0.59820	10564.3 26292.5
0	9262.7 21338.8


- Calcolando la mediana dei valori c otteniamo p=0.5188
- Proviamo con p=1/2...

Trasformazione 1: radice quadrata

$$T(x) = \sqrt{x}$$

Percentile	Media	Low	High	
M	78,42283	78,42283	78,42283	0,50000
F	89,28425	57,23633	121,33217	0,25000
E	99,37319	48,27950	150,46688	0,12500
D	107,58229	45,68337	169,48122	0,06250
C	110,87427	45,05801	176,69054	0,03125
1	156,13829	31,54362	280,73297	

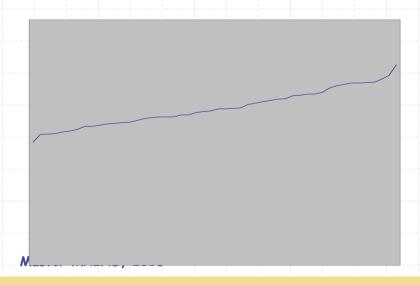


- La curva si tempera,ma i valori alti continuano a produrre differenze notevoli
- Proviamo a diminuire p…

Trasformazione 2: radice quarta

$$T(x) = \sqrt[4]{x}$$

Percentile	Media	Low	High	
M	8,85434	8,85434	8,85434	0,50000
F	9,28978	7,56489	11,01467	0,25000
E	9,60590	6,94676	12,26503	0,12500
D	9,88271	6,74694	13,01849	0,06250
C	9,97298	6,65710	13,28886	0,03125
1	11,18573	5,61637	16,75509	



- I valori alti continuano ad influenzare
- Proviamo con il logaritmo...

Trasformazione 3: logaritmo

$$T(x) = \log x$$

Percentile	Media	Low	High	
M	3,78836502	3,78836502	3,78836502	0,50000
F	3,84144850	3,51507795	4,16781905	0,25000
E	3,86059853	3,36672764	4,35446943	0,12500
D	3,88578429	3,31332721	4,45824138	0,06250
C	3,88573156	3,27798502	4,49347811	0,03125
1	3,94720496	2,99782308	4,89658684	

Abbiamo ottenuto simmetria!

Semplificare le relazioni tra attributi

- Esempio: caso della regressione
 - La formula

$$y = \alpha x^p$$

puo' essere individuata studiando la relazione

$$z = \log \alpha + pw$$

dove
$$z = \log y$$
 e $w = \log x$

Discretizzazione

- Unsupervised vs. Supervised
- Globale vs. Locale
- Statica vs. Dinamica
- Task difficile
 - Difficile capire a priori qual' è la discretizzazione ottimale
 - bisognerebbe conoscere la distribuzione reale dei dati

Discretizzazione: Vantaggi

- I dati originali possono avere valori continui estremamente sparsi
- I dati discretizzati possono essere più semplici da interpretare
- Le distribuzioni dei dati discretizzate possono avere una forma "Normale"
- I dati discretizzati possono essere ancora estremamente sparsi
 - Eliminazione della variabile in oggetto

Unsupervised Discretization

- Caratteristiche:
 - Non etichetta le istanze
 - Il numero di classi è noto a priori
- Tecniche di binning:
 - Natural binning

 - Statistical binning

- → Intervalli di identica ampiezza
- Equal Frequency binning → Intervalli di identica frequenza
 - → Uso di informazioni statistiche (Media, varianza, Quartili)

Discretization of

squantitatiers epide belongs.

·height: 0-150cm, 151-170cm, 171-180cm, >180cm

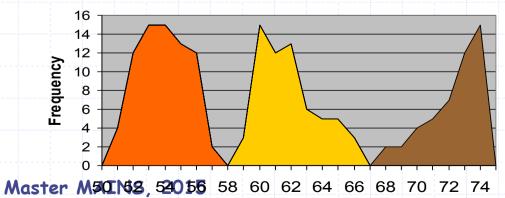
·weight: 0-40kg, 41-60kg, 60-80kg, >80kg

·income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

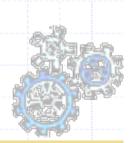
CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

·Problem: the discretization may be useless (see weight).

Master MAINS, 2015


How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
 - 2. Interval size is defined by some domain dependent criterion


Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML

3. Interval size determined by analyzing data, studying the distribution or using clustering

·50 - 58 kg ·59-67 kg ·> 68 kg

Natural Binning

- Semplice
- Ordino i valori, quindi divido il range di valori in k parti della stessa dimensione

$$\delta = \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

- ♦ l' elemento x_j appartiene alla classe i se $x_j \in [x_{min} + i\delta, x_{min} + (i+1)\delta)$
- Puo` produrre distribuzioni molto sbilanciate

Esempio

Bar	Beer	Price
A	Bud	100
A	Becks	120
\mathbf{C}	Bud	110
D	Bud	130
D	Becks	150
E	Becks	140
E	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
Ι	Bud	135

- $\delta = (160-100)/4 = 15$
- classe 1: [100,115)
- classe 2: [115,130)
- classe 3: [130,145)
- classe 4: [145, 160]

Master MAINS, 2015

Equal Frequency Binning

Ordino e Conto gli elementi, quindi definisco k intervalli di f elementi, dove:

$$f = \frac{N}{k}$$

(Nè il numero di elementi del campione)

• l'elemento x_i appartiene alla classe j se

$$j \times f \le i < (j+1) \times f$$

Non sempre adatta ad evidenziare correlazioni interessanti

Esempio

	Bar	Beer	Price
	A	Bud	100
	A	Becks	120
	С	Bud	110
	D	Bud	130
	D	Becks	150
	E	Becks	140
-	Е	Bud	120
	F	Bud	110
	G	Bud	130
	Н	Bud	125
	Н	Becks	160
	I	Bud	135

- classe 1: {100,110,110}
- classe 2: {120,120,125}
- classe 3: {130,130,135}
- classe 4: {140,150,160}

Quante classi?

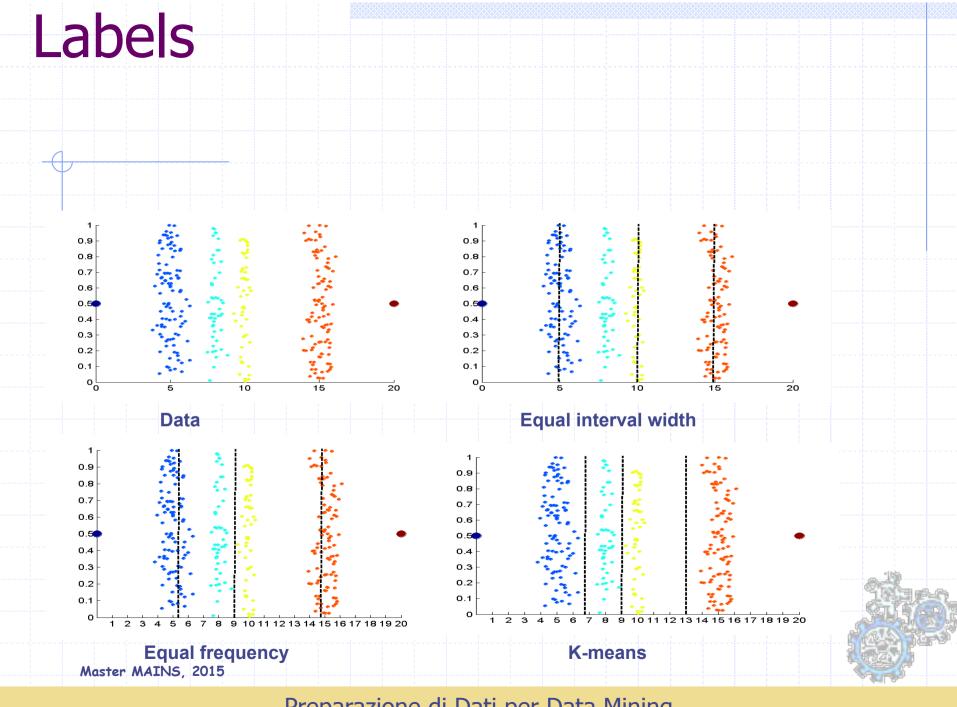
- Se troppo poche
 - => perdita di informazione sulla distribuzione
- Se troppe
 - => disperde i valori e non manifesta la foma della distribuzione
- ◆ Il numero ottimale C di classi è funzione del numero N di elementi (Sturges, 1929)

$$C = 1 + \frac{10}{3} \log_{10}(N)$$

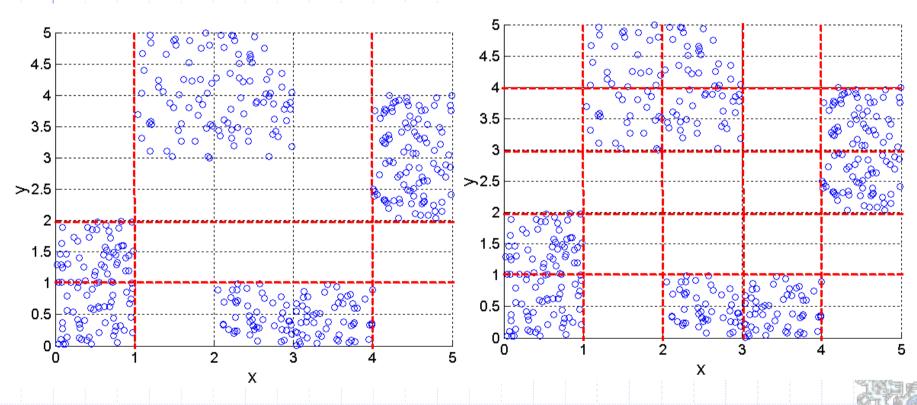
 L' ampiezza ottimale delle classi dipende dalla varianza e dal numero dei dati (Scott, 1979)
 3.5.5

$$h = \frac{3.5 \cdot s}{\sqrt{N}}$$

Supervised Discretization


- Caratteristiche:
 - La discretizzazione ha un obiettivo quantificabile
 - Il numero di classi non è noto a priori
- Tecniche:
 - ChiMerge
 - Discretizzazione basata sull' Entropia
 - Discretizzazione basata sui percentili

Supervised Discretization: ChiMerge


- Procedimento Bottom-up:
 - Inizialmente, ogni valore è un intervallo a se'
 - Intervalli adiacenti sono iterativamente uniti se sono simili
 - La similitudine è misurata sulla base dell' attributo target, contando quanto i due intervalli sono "diversi"

Discretization Using Class Labels

Entropy based approach

3 categories for both x and y

5 categories for both x and y

Master MAINS, 2015

Outline del Modulo

- Introduzione e Concetti di Base
- Data Selection
- Information Gathering
- Data cleaning
- Data reduction
- Data transformation
- Data similarity

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

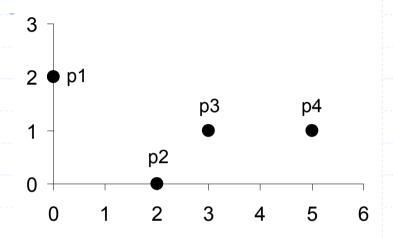
Similarity/Dissimilarity for ONE Attribute

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min_d}{max_d - min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Many attributes: Euclidean Distance


Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the value of k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

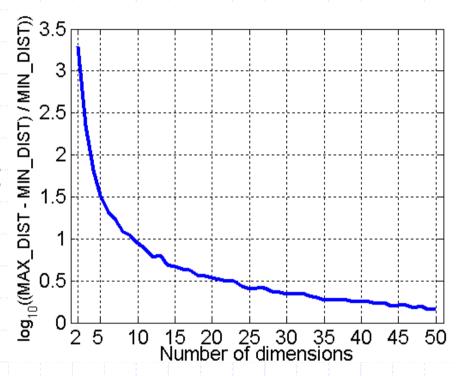
- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- ◆ Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0


L∞	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Master MAINS, 2015

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Master MAINS, 2015

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - d $(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)
 - where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.
- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Binary Data

Categorical	insufficient	sufficient	good	very good	exceller
p1	0	0	1	0	0
p2	0	0	1	0	0
р3	1	0	0	0	0
p4	0	1	0	0	0

item	1	bread	butter	milk	apple	tooth-past		
p1		1	1	0	1	0		
p2		0	0	1	1	1		
р3		11	1	1	0	0		
p4		1	0	1	1	0		
		3 3 3			1	1		

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

 SMC = number of matches / number of attributes

 = (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)

 $J = number of 11 matches / number of not-both-zero attributes values = <math>(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

$$p = 10000000000$$

$$q = 0000001001$$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Master MAINS, 2015

Document Data

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where indicates vector dot product and ||d|| is the length of vector d.
- Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_{1} \cdot d_{2} = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_{1}|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481$$

$$||d_{2}|| = (1*1+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuos)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$p'_k = (p_k - mean(p))/std(p)$$

$$q'_k = (q_k - mean(q)) / std(q)$$

$$correlation(p,q) = p' \cdot q'$$

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

$$\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{th} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{th} attribute} \\ & 1 & \text{otherwise} \end{array} \right.$$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^n w_k |p_k - q_k|^r
ight)^{1/r}$$

ChiMerge: criterio di similitudine

- Basato sul test del Chi quadro
- k = numero di valori differenti dell' attributo target
- R_i = numero di casi nell' i-esimo intervallo ($\sum_{j=1}^k A_{ij}$)
- C_j = numero di casi nella j-esima classe ($\sum_{i=1}^2 A_{ij}$)
- E_{ij} = frequenza attesa di A_{ij} (R_i * C_j /N)

Test del Chi Quadro per la discretizzazione

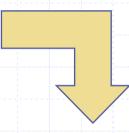
	1	2		K	Total
1	A_{11}	A_{12}	•••	A_{1k}	R_1
2	A_{21}	A_{22}	•••	A_{2k}	R_2
Total	C_1	\mathbb{C}_2		$C_{\mathbf{k}}$	N

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^{2}}{E_{ij}}$$

- Si individua quanto "distinti" sono due intervalli
- k-1 gradi di liberta`
- La significativita` del test è data da un threshold δ
 - Probabilita` che
 l' intervallo in questione e
 la classe siano
 indipendenti

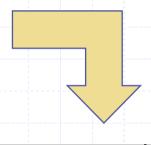
Esempio

Bar	Beer	Price
A	Bud	100
A	Becks	120
C	Bud	110
D	Bud	130
D	Becks	150
E	Becks	140
E	Bud	120
F	Bud	110
G	Bud	130
H	Bud	125
Н	Becks	160
I	Bud	135

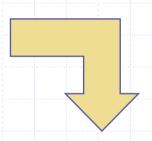

- Discretizzazione w.r.t.Beer
- threshold 50% confidenza
- Vogliamo ottenere una discretizzazione del prezzo che permetta di mantenere omogeneita` w.r.t. Beer

Esempio: Chi Values

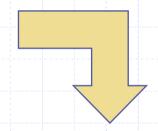
	Bud		Becks	
100		1		0
110		2		0
120		1		1
125		1		0
130		2		0
135		1		0
140		0		1
150		0		1
160		0		1


Scegliamo gli elementi adiacenti con Chi-Value minimo

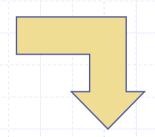
	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130	2	0	0
135	1	0	2
140	0	1	0
150	0	1	0
160	0	1	1.38629


	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130	2	0	0
135	1	0	2
140	0	1	0
150-160	0	2	1.38629

	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130	2	0	0
135	1	0	2
140	0	1	0
150-160	0	2	1.38629


	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130	2	0	0
135	1	0	4
140-150-160	0	3	1.38629

\text{\tin}}\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	Bud	Becks		Chi Value
100		1	0	0
110		2	0	1.33333
120			1	0.75
125	}	1	0	0
130	4	2	0	0
135	,	1	0	4
140-150-160	()	3	1.38629


	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130-135	3	0	6
140-150-160	0	3	1.38629

	Bud	Becks	Chi Value
100	1	0	0
110	2	0	1.33333
120	1	1	0.75
125	1	0	0
130-135	3	0	6
140-150-160	0	3	1.38629

	Bud		Becks	Chi Value
100		1	0	0
110		2	0	1.33333
120		1	1	2.4
125-130-135		4	0	7
140-150-160		0	3	1.38629

		Bud	Becks	Chi Value
	100	1	0	0
	110	2	0	1.33333
	120	1	1	2.4
125-	130-135	4	0	7
140-	150-160	0	3	1.38629

Tutti i valori sono oltre il 50% di confidenza (1.38)

	Bud	Becks	Chi Value
100-110	3	0	1.875
120	1	1	2.4
125-130-135	4	0	7
140-150-160	0	3	1.38629

Esercitazione KNIME Master MAINS, 2015

Preparazione di Dati per Data Mining

Appendice

Misure descrittive dei dati

Media Aritmetica

- Per effettuare la correzione di errori accidentali
 - permette di sostituire
 i valori di ogni
 elemento senza
 cambiare il totale
 - Sostituzione di valori NULL
- Monotona crescente

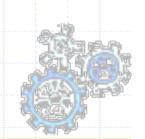
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\frac{1}{n+k} \left(\sum_{i=1}^{n} x_i + k \overline{x} \right) = \overline{x}$$

Media Geometrica

$$x_g = \sqrt{\prod_{i=1}^n x_i}$$

- Per bilanciare proporzioni
- dati moltiplicativi


La media aritmetica dei
logaritmi è il logaritmo
della media geometrica

Monotona crescente

Prodotto _	Variazioni Prezzi	
	1996	1997
A	100	200
В	100	50
Media	100	125

$$x_g = 100$$

$$\log x_g = \frac{1}{n} \sum_{i=1}^n \log x_i$$

Media Armonica

- Monotona decrescente
- Per misure su dimensioni fisiche
- ◆ E.g., serie temporali

$$x_a = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$$

Mediana

- Il valore centrale in un insieme ordinato di dati
- Robusta
 - poco influenzata dalla presenza di dati anomali

1 7 12 18 23 34 54

$$\bar{x} = 21.3$$

$$M = 23$$

Mediana e Quartili

- Divide un insieme di dati a meta`
 - statistica robusta (non influenzata da valori con rilevanti differenze)
 - ulteriori punti di divisione
- interquartili
 - mediane degli intervalli dei dati superiore e inferiore
 - Un quarto dei dati osservati è sopra/sotto il quartile
- percentili
 - di grado p: il p% dei dati osservati è sopra/sotto il percentile
 - mediana: 50-esimo percentile
 - primo quartile: 25-esimo percentile
 - secondo quartile: 75-esimo percentile
- max, min
 - range = max-min

Percentili

lacktriangle Rappresentati con \mathbf{x}_p

Utilizziamo le lettere per esprimerli

Etichetta	P		
M	$\frac{1}{2} = 0.5$		
F	¹ / ₄ =0.25		
Е	1/8=.125		
D	1/16=0.625		
C	1/32=0.3125		
В	1/64		
A	1/128		
Z	1/256		
Y	1/512		
X	1/1024		

Moda

Misura della frequenza dei dati

a a b b c c a d b c a e c b a a moda = a (f = 6)

- Significativo per dati categorici
- Non risente di picchi
- Molto instabile

Range, Deviazione media

- Intervallo di variazione
- Scarti interquantili

- Scarto medio assoluto
- Scarto medio assoluto dalla mediana
 - In generale, $S_5 \le S_n$

$$r = max-min$$

$$r_p = x_{100-p} - x_p$$

$$S_n = \frac{1}{n} \sum_{i=1}^n |x_i - \overline{x}|$$

$$S_M = \frac{1}{n} \sum_{i=1}^n \left| x_i - M \right|$$

Varianza, deviazione standard

- misure di mutua variabilità tra i dati di una serie
- Devianza empirica

$$dev = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Varianza

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Coefficiente di variazione
 - misura relativa

$$V = \frac{S}{\overline{x}}$$

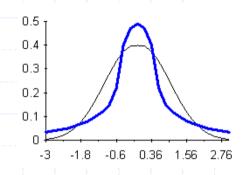
Simmetria

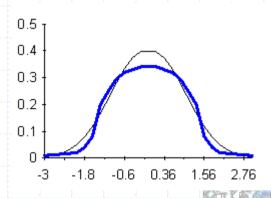
- Si ha simmetria quando media, moda e mediana coincidono
 - condizione necessaria, non sufficiente
 - Asimmetria sinistra: moda, mediana, media
 - Asimmetria destra: media, mediana, moda

Simmetria (Cont.)

- Indici di asimmetria
 - medie interquartili
 - Momenti centrali
- indice di Fisher
 - γ nullo per distribuzioni simmetriche
 - γ > 0: sbilanciamenti a destra
 - γ <0: sbilanciamento a sinistra

$$\bar{x}_p = (x_{1-p} + x_p)/2$$


$$m_k = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^k$$


$$\gamma = \frac{m_3}{\hat{s}^3}$$

Curtosi

- Grado di appiattimento della curva di distribuzione rispetto alla curva normale
 - mesocurtica: forma uguale alla distribuzione normale;
 - leptocurtica:una frequenza minore delle classi intermedie, frequenza maggiore delle classi estreme e dei valori centrali;
 - platicurtica:una frequenza minore delle classi centrali e di quelle estreme, con una frequenza maggiore di quelle intermedie
 - numero più ridotto di valori centrali.

Curtosi (cont.)

- Indice di Pearson
 - $\beta=3$: distribuzione mesocurtica
 - β >3: distribuzione leptocurtica
 - β <3: distribuzione platicurtica
- Coefficiente di curtosi
 - Una distribuzione leptocurtica ha K ~ 1/2
 - platicurtosi: k~0

$$\beta = \frac{m_4}{\hat{s}^4}$$

$$K = \frac{\frac{1}{2}(x_{.75} - x_{.25})}{(x_{.90} - x_{.10})}$$

Coefficienti di Correlazione

Covarianza

$$Cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Coefficiente di Pearson

$$r_{xy} = \frac{Cov(x, y)}{s_x s_y}$$

