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Time Series Classification

• Given a set X of n time series, X = {x1, x2, …, xn}, each time series has 
m ordered values xi = < xt1, xt2, …, xtm > and a class value ci. 
• The objective is to find a function f that maps from the space of 

possible time series to the space of possible class values. 
• Generally, it is assumed that all the TS have the same length m.



KNN Classification

• The most widely used and effective approach for TSC consists in using 
KNN on the raw time series.
• Pros: 
• Simple
• Dynamic Time Warping gives much better results than Euclidean distance on 

many problems.

• Cons:
• KNN is a lazy classifier and computationally expensive on its own
• Dynamic Time Warping is very very slow to calculate



Shapelet-based Classification

1. Represent a TS as a vector of 
distances with representative 
subsequences, namely shapelets.

2. Use it to as input for machine 
learning classifiers.
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Time Series Shapelets

• Shapelets are TS subsequences which are 
maximally representative of a class.
• Shapelets can provide interpretable results, 

which may help domain practitioners 
better understand their data.
• Shapelets can be significantly more 

accurate/robust because they are local 
features, whereas most other state-of-the-
art TS classifiers consider global features.
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Distance with a Subsequence

• Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance 
function that takes time series T and subsequence S as inputs and returns a 
nonnegative value d, which is the distance from T to S. 
• SubsequenceDist(T, S) = min(Dist(S, S')), for S' ∈ ST|S|

• where ST|S| is the set of all possible subsequences of T
• Intuitively, it is the distance between S and its best matching location in T.



Testing The Utility of a Candidate Shapelet

• Arrange the TSs in the dataset D based on the distance from the 
candidate.
• Find the optimal split point that maximizes the information gain 

(same as for Decision Tree classifiers)
• Pick the candidate achieving best utility as the shapelet



Entropy

• A TS dataset D consists of two classes, A and B. 
• Given that the proportion of objects in class A is p(A) and the 

proportion of objects in class B is p(B),
• The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).
• Given a strategy that divides the D into two subsets D1 and D2, the 

information remaining in the dataset after splitting is defined by the 
weighted average entropy of each subset. 
• If the fraction of objects in D1 is f(D1) and in D2 is f(D2), 
• The total entropy of D after splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). 



Information Gain

• Given a certain split strategy sp which divides 
D into two subsets D1 and D2, the entropy 
before and after splitting is I(D) and Î(D). 
• The information gain for this splitting rule is:
• Gain(sp) = I(D) - Î(D) =
•                 = I(D) - f(D1)I(D1) + f(D2)I(D2).

• We use the distance from T to a shapelet S as 
the splitting rule sp.

Split point
distance from 
shapelet = 5.1



Problem

• The total number of candidate is

• For each candidate you have to compute the distance between this 
candidate and each training sample
• For instance
• 200 instances with length 275
• 7,480,200 shapelet candidates



Speedup

• Distance calculations form TSs to shapelet candidates is expensive.
• Reduce the time in two ways
• Distance Early Abandon
• reduce the distance computation time between two TS

• Admissible Entropy Pruning
• reduce the number of distance calculations



Distance Early Abandon

• We only need the minimum distance.

• Method
• Keep the best-so-far distance
• Abandon the calculation if the current 

distance is larger than best-so-far.



Admissible Entropy Pruning

• We only need the best shapelet for 
each class
• For a candidate shapelet
• We do not need to calculate the 

distance for each training sample
• After calculating some training 

samples, the upper bound of 
information gain < best candidate 
shapelet
• Stop calculation
• Try next candidate

Best so far

Most optimistic 
case new candidate

New candidate 
calculus



Shapelet Summary

1. Extract all possible subsequences of a set 
given lengths (candidate shapelets)

2. For each candidate shapelet
1. Calculate the distance with each time series 

keeping the minimum distance (best 
alignment)

2. Evaluate the discriminatory effect of the 
shapelet through the Information Gain

3. Return the k best shapelets with the 
highest Information Gain.

4. Transform a dataset and train a ML model.



An Alternative Way for Extracting Shapelets

• The minimum distances (M) between Ts and Shapelets can be used as predictors to 
approximate the TSs label (Y) using a linear model (W):

• A logistic regression loss can measure the quality of the prediction:

• The objective is to minimize a regularized loss function across all the instances (I) :

• We can find the optimal shapelet for the objective function in a NN fashion by updating 
the shapelets in the minimum direction of the objective, hence the first gradient. 
Similarly, the weights can be jointly updated towards minimizing the objective function.



Motif/Shapelet Summary

• A motif is a repeated 
pattern/subsequence in a given TS.

• A shapelet is a pattern/subsequence 
which is maximally representative of 
a class with respect to a given 
dataset of TSs.
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TSC State-of-The-Art

A special thank to Francesco Spinnato for the slides



ResNet

• Three consecutive blocks, comprised of three convolutional layers,
connected by residual ‘shortcut’ connections.
• The blocks are followed by global average pooling and softmax layers

to form features and subsequent predictions.



Convolution Layer



Pooling Layer

• Makes the representations smaller and more manageable
• Operates over each activation map independently



MaxPooling and AvgPoling



InceptionTime

Neural network ensemble consisting of five Inception networks.
For each inception network:
• three Inception modules (6 blocks by default)
• global averaging pooling
• fully-connected layer with the softmax activation function.

Each Inception module consists of convolutions with kernels of several
sizes followed by batch normalization and the rectified linear unit
activation function.



InceptionTime



TapNet

Draws on the strengths of both traditional and deep learning approaches:
• deep learning approaches -> excel at learning low dimensional features without

the need for embedded domain knowledge, whereas
• traditional approaches -> work well on small datasets.

3 distinct modules:
• Random Dimension Permutation: produce groups of randomly selected

dimensions with the intention of increasing the likelihood of learning how
combinations of dimension values effect class value.
•Multivariate Time Series Encoding:

• 3 sets of 1d convolutional layers followed by batch normalisation
• the raw data is also passed through an LSTM and global pooling layer

• Attentional Prototype Learning: used for unlabelled data



TapNet



Canonical Interval Forest (CIF)

Ensemble of time series tree classifiers built using the 22 Canonical
Time-Series Characteristics (Catch22) features and simple summary
statistics (mean, stdev, slope).
For each tree, CIF:
• samples k time series intervals of random position and length;
• subsamples 8 of the 25 features randomly;
• calculates the features for each interval, concatenates them to form a

new data set;
• builds a decision tree on the feature-transformed dataset.



ROCKET

ROCKET (Random Convolutional Kernel Transform) uses a large number of
random convolutional kernels to transform the time series:
• all the parameters of all the kernels are randomly generated from fixed

distributions;
• the transformed features are used to train a linear classifier (Logistic

Regression or Ridge Regression Classifier);
• the combination of Rocket and logistic regression forms a single-layer

convolution with random kernel weights with a trained softmax layer.



ROCKET vs. CNN

CNNs use trainable filters/kernels optimized by stochastic gradient descent
to find patterns in the input data. Rocket differs in the following ways:
• Only a single layer containing a very large number of random kernels.
• Variety of kernels: each kernel has random length, dilation, and padding,

weights and biases.

Example of Convolution Example of Dilated Convolution



Dilated Convolution Kernels



ROCKET vs. CNN

• In CNNs kernel dilation increases exponentially with depth. Rocket
sample dilation randomly for each kernel, capturing patterns at
different frequencies and scales.
• Rocket uses the maximum value of the resulting feature maps

(~global max pooling), and the proportion of positive values
(proportion of the input which matches a given pattern).

• The only hyperparameter for Rocket is the number of kernels, k.
• k handles the trade-off between classification accuracy and computation time



MINIROCKET

MiniRocket removes almost all randomness from Rocket, and dramatically speeds
up the transform.
• Length: uses kernels of length 9.
• Weights: restricted to two values, 𝛼 = −1 and 𝛽 = 2.
• Kernels: there are 512 possible two-valued kernels of length 9. Only subset of 84

is used.
• Bias: drawn from the quantiles of the convolution output for the entire training

set (rather than a single, randomly-selected training example)
• Dilation: Each kernel is assigned the same fixed set of dilations, adjusted to the

length of the input time series. The maximum number of dilations per kernel is 32
• Padding: half the kernel/dilation combinations use padding, and half do not.
• Features: only proportion of positive values.



COTE / HIVE-COTE / TS-CHIEF

• Collective of Transformation-Based Ensembles (COTE) combines 35
classifiers over four data representations (similarity measures,
shapelet-transform, autocorrelation features, power spectrum).
• Hierarchical Vote Collective of Transformation-Based Ensembles

(HIVE-COTE) is an extension of COTE including more classifiers and a
hierarchical voting procedure.
• Time Series Combination of Heterogeneous and Integrated

Embedding Forest (TS-CHIEF) builds a random forest of decision trees
whose splitting functions are time series specific and based on
similarity measures, dictionary (bag-of-words) representations, and
interval-based transformations.



MR-SEQL

• The data is discretized into sequences of words via either Symbolic 
Aggregate Approximation (SAX) or SFA, using a sliding window.
• The most discriminative symbols are extracted using a SEQuence

Learner algorithm. 
• The dataset is transformed in presence/absence of subsequences

(similar to a shapelet transform)
• A linear (interpretable) model is trained on this new representation



MR-SEQL



Ranking Multivariate TSC algorithms



Ranking Multivariate TSC algorithms
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