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Data	understanding	vs	Data	prepara)on		

Data	understanding	provides	
general	informa0on	about	the	
data	like		
•  The	existence	of	missing	

values		
•  The	existence	of	outliers	
•  the	character	of	a9ributes	
•  dependencies	between	

a9ributes.	

Data	prepara)on	uses	this	
informa0on	to		
•  select	a9ributes,		
•  reduce	the	dimension	of	the	

data	set,		
•  select	records,		
•  treat	missing	values,		
•  treat	outliers,		
•  integrate,	unify	and	

transform	data	
•  improve	data	quality		



Data	Reduc)on	

Reducing	the	amount	of	data	
– Reduce	the	number	of	records	

•  Data	Sampling	
•  Clustering	

– Reduce	the	number	of	columns	(a9ributes)	
•  Select	a	subset	of	a9ributes	
•  Generate	a	new	(a	smaller)	set	of	a9ributes	



Sampling	
	

•  Improve	the	execu0on	0me	of	data	mining	algorithms	

•  Problem:	how	to	select	a	subset	of	representa)ve	data?	

–  Random	sampling:	it	can	generate	problems	due	to	the	
possible	peaks	in	the	data	

–  Stra)fied	sampling:		
•  Approxima0on	of	the	percentage	of	each	class	
•  Suitable	for	distribu0on	with	peaks:	each	peak	is	a	
layer	



Stra)fied	Sampling	

Raw Data  Cluster/Stratified Sample 



Reduc)on	of	Dimensionality	

•  Selec)on	of	a	subset	of	a>ributes	that	is	as	
small	as	possible	and	sufficient	for	the	data	
analysis.		
–  removing	(more	or	less)	irrelevant	features	
–  removing	redundant	features.		



Removing	irrelevant/redundant	features		
	

•  For	removing	irrelevant	features,	a	performance	
measure	is	needed	that	indicates	how	well	a	feature	
or	subset	of	features	performs	w.r.t.	the	considered	
data	analysis	task	

•  For	removing	redundant	features,	either	a	
performance	measure	for	subsets	of	features	or	a	
correla0on	measure	is	needed.		



Reduc)on	of	Dimensionality	

Manual	
– ALer	analyzing	the	significance	and/or	
correla)on	with	other	a9ributes	

Automa)c:	Selec0ng	the	top-ranked	features	
–  Incremental	Selec0on	of	the	“best”	a9ributes		
– “Best”	=	with	respect	to	a	specific	measure	of	
sta0s0cal	significance	(e.g.:	informa0on	gain).	



Data	Cleaning	

•  How	to	handle	anomalous	values	

•  How	to	handle	outliers	

•  Data	Transforma0ons	



Anomalous	Values	

•  Missing	values	
–  NULL,	?	

•  Unknown	Values	
–  Values	without	a	real	meaning	

•  Not	Valid	Values	
–  Values	not	significant	



Manage	Missing	Values	

1.  Elimina0on	of	records	
2.  Subs0tu0on	of	values	

Note:	it	can	influence	the	original	distribu0on	of	numerical	values	
–  Use	mean/median/mode	
–  Es0mate	missing	values	using	the	probability	distribu)on	of	

exis0ng	values	
–  Data	Segmenta0on	and	using	mean/mode/median	of	each	

segment	
–  Data	Segmenta0on	and	using	the	probability	distribu)on	within	

the	segment	
–  Build	a	model	of	classifica)on/regression	for	compu0ng	missing	

values	



Data	Transforma)on:	Mo)va)ons	

•  Data	with	errors	and	incomplete	

•  Data		not	adequately	distributed	
– Strong	asymmetry	in	the	data	
– Many	peaks	

•  	Data	transforma0on	can	reduce	these	issues	



Goals	

•  Define	a	transforma0on	T on	the	a9ribute	X: 
   Y = T(X)  
 such that :	

–  Y	preserve	the	relevant	informa0on	of	X	
–  Y	eliminates	at	least	one	of	the	problems	of	X	
–  Y	is	more	useful	of		X 



Goals	

•  Main	goals:	
–  stabilize	the	variances	
–  normalize	the	distribu0ons	
– Make	linear	rela0onships	among	variables	

•  Secondary	goals:	
–  simplify	the	elabora0on	of	data	containing	features	
you	do	not	like	

–  represent	data	in	a	scale	considered	more	suitable	



Why	linear	correla)on,	normal	
distribu)ons,	etc?	

•  Many	sta0s0cal	methods	require	linear	correla0ons,	
normal	distribu0ons,	the	absence	of	outliers	

•  Many	data	mining	algorithms	have	the	ability	to	
automa0cally	treat	non-linearity	and	non-normality	
–  The	algorithms	work	s0ll	be9er	if	such	problems	are	
treated	



Normaliza)ons	

•  min-max	normaliza0on	

•  z-score	normaliza0on	

•  normaliza0on	by	decimal	scaling	
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Methods	
•  Exponen0al	transforma0on	

•  with	a,b,c,d	and	p	real	values	
–  Preserve	the	order	
–  Preserve	some	basic	sta0s0cs	
–  They	are	con0nuous	func0ons		
–  They	are	derivable	
–  They	are	specified	by	simple	func0ons	
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Be>er	Interpreta)on	

•  Linear	Transforma0on	

	 	 	1€	=	1936.27	Lit.	
–  p=1, a= 1936.27 ,b =0 

	 		
	 	 	ºC=	5/9(ºF	-32)	

–  p = 1, a = 5/9, b = -160/9 
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Stabilizing	the	Variance	

•  Logarithmic	Transforma)on	

–  Applicable	to	posi0ve	values	
– Makes	homogenous	the	variance	in	log-normal	distribu0ons	

•  E.g.:	normalize	seasonal	peaks	

dxcxT += log)(



Logarithmic	Transforma)on:	Example	

2300 Mean
2883,3333 Scarto medio assoluto
3939,8598 Standard Deviation

5 Min
120 1° Quartile
350 Median

1775 2° Quartile
11000 Max

Data are sparse!!! 

Bar Birra Ricavo
A Bud 20
A Becks 10000
C Bud 300
D Bud 400
D Becks 5
E Becks 120
E Bud 120
F Bud 11000
G Bud 1300
H Bud 3200
H Becks 1000
I Bud 135



Logarithmic	Transforma)on:	Example	

Bar Birra Ricavo (log)
A Bud 1,301029996
A Becks 4
C Bud 2,477121255
D Bud 2,602059991
D Becks 0,698970004
E Becks 2,079181246
E Bud 2,079181246
F Bud 4,041392685
G Bud 3,113943352
H Bud 3,505149978
H Becks 3
I Bud 2,130333768

Media 2,585697
Scarto medio assoluto 0,791394
Deviazione standard 1,016144
Min 0,69897
Primo Quartile 2,079181
Mediana 2,539591
Secondo Quartile 3,211745
Max 4,041393



Stabilizing	the	Variance	

•  Square-root	Transforma)on	
•  p = 1/c,	c	integer	number	

–  To	make	homogenous	the	variance	of	par0cular	
distribu0ons	e.g.,	Poisson	Distribu0on	

•  Reciprocal	Transforma)on	
–  p < 0 
–  Suitable	for	analyzing	0me	series,	when	the	variance	
increases	too	much	wrt	the	mean	

baxxT p +=)(



Discre)za)on:	Advantages	
•  Hard	to	understand	the	op0mal	discre0za0on	

•  We	should	need	the	real	data	distribu0on	

•  Original	values	can	be	con)nuous	and	sparse	

•  Discre0zed	data	can	be	simple	to	be	interpreted	

•  Data	distribu0on	aLer	discre0za0on	can	have	a	Normal	
shape	

•  Discre0zed	data	can	be	too	much	sparse	yet	
–  Elimina0on	of	the	a9ribute	



Unsupervised	Discre)za)on	
•  Characteris0cs:	

–  No	label	for	the	instances	
–  The	number	of	classes	is	unknown	

•  Techniques	of	binning:	
–  Natural	binning	 											à	Intervals	with	the	same	width	
–  Equal	Frequency	binning	à	Intervals	with	the	same	frequency	
–  Sta)s)cal	binning	 					 				à	Use	sta0s0cal	informa0on	(Mean,	
variance,	Quar0le)	



Discre)za)on	of	quan)ta)ve	a>ributes	

• Solu)on:	each	value	is	replaced	by	the	interval	to	which	it	belongs.	
• height:		0-150cm,		151-170cm,	171-180cm,		>180c	
• weight:	0-40kg,		41-60kg,		60-80kg,		>80kg	
•  income:	0-10ML,	11-20ML,	20-25ML,	25-30ML,	>30ML	

CID height weight income 
1 151-171 60-80 >30  
2 171-180 60-80 20-25 
3 171-180 60-80 25-30 
4 151-170 60-80 25-30 
 

• Problem:	the	discre0za0on	may	be	useless	(see	weight).	



How	to	choose	intervals?	
1.   Interval	with	a	fixed	“reasonable”	granularity	

	Ex.	intervals	of		10	cm	for	height.	

2.   Interval	size	is	defined	by	some	domain	dependent	criterion		
Ex.:	0-20ML,	21-22ML,	23-24ML,	25-26ML,	>26ML	

3.   Interval	size	determined	by	analyzing	data,	studying	the	distribu)on	
or	using	clustering	
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Weight distribution 
• 50 - 58 kg 
• 59-67 kg 
• > 68 kg 



Natural	Binning	
•  Simple	
•  Sort	of	values,	subdivision	of	the	range	of	values	in	k	parts	

with	the	same	size	

•  Element xj belongs	to	the	class	i if		

    xj ∈ [xmin + iδ,		xmin + (i+1)δ)	

•  It	can	generate	distribu0on	very	unbalanced	

k
xx minmax −=δ



Example	
•  δ	=(160-100)/4 = 15 
•  class	1:	[100,115)	
•  class	2:	[115,130)	
•  class	3:	[130,145)	
•  class	4:	[145,	160]	
	

Bar Beer Price

A Bud 100
A Becks 120
C Bud 110
D Bud 130
D Becks 150
E Becks 140
E Bud 120
F Bud 110
G Bud 130
H Bud 125
H Becks 160
I Bud 135



Equal	Frequency	Binning	
•  Sort	and	count	the	elements,	defini0on	of	k	intervals	of	f,	

where:	

	(N	=	number	of	elements	of	the	sample)	
•  The	element xi belongs	to	the	class	j if		

   j × f ≤  i < (j+1) ×  f 

•  It	is	not	always	suitable	for	highligh0ng	interes0ng	
correla0ons	

k
Nf =



Example	
•  f = 12/4 = 3 
•  class	1:	{100,110,110}	
•  class	2:	{120,120,125}	
•  class	3:	{130,130,135}	
•  class	4:	{140,150,160}	

	

Bar Beer Price

A Bud 100
A Becks 120
C Bud 110
D Bud 130
D Becks 150
E Becks 140
E Bud 120
F Bud 110
G Bud 130
H Bud 125
H Becks 160
I Bud 135

100  110  120  130  140  150  160    

4 

Co
un

t 

3 3 3 



How	many	classes?	

•  If	too	few	
⇒ Loss	of	informa0on	on	the	distribu0on	

•  If	too	many	
=>	Dispersion	of	values	and	does	not	show	the	form	of	distribu0on	

•  The	op0mal	number	of	classes	is	func0on	of	N		elements	
(Sturges,	1929)	

•  The	op0mal	width	of	the	classes	depends	on	the	variance	and	
the	number	of	data	(Sco9,	1979)	
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Supervised	Discre)za)on	

•  Characteris)cs:	
–  The	discre0za0on	has	a	quan0fiable	goal		

–  The	number	of	classes	is	known	

•  Techniques:	
–  ChiMerge	
–  discre0za0on	based	on	Entropy	
–  discre0za0on	based	on	percen0les	



Supervised	Discre)za)on:	ChiMerge	

•  Bo9om-up	Process:	
–  Ini0ally	each	value	corresponds	to	an	interval	
–  Adjacent	Intervals	are	itera0vely	merged	if	similar	
–  The	similarity	is	measured	on	the	bases	of	the	target	
a9ribute,	measuring	how	much	the	two	intervals	are	
“different”.	



Entropy based approach 

• Minimizes	the	entropy	

3 categories for both x and y 5 categories for both x and y 



Similarity	



Similarity	and	Dissimilarity	
•  Similarity	

–  Numerical	measure	of	how	alike	two	data	objects	are.	
–  Is	higher	when	objects	are	more	alike.	
–  OLen	falls	in	the	range	[0,1]	

•  Dissimilarity	
–  Numerical	measure	of	how	different	are	two	data	objects	
–  Lower	when	objects	are	more	alike	
–  Minimum	dissimilarity	is	oLen	0	
–  Upper	limit	varies	

•  Proximity	refers	to	a	similarity	or	dissimilarity	



Similarity/Dissimilarity	for	ONE	A>ribute	
p and q are the attribute values for two data objects. 



Many	a>ributes:	Euclidean	Distance	

•  Euclidean	Distance	

				
			Where	n	is	the	number	of	dimensions	(a9ributes)	
and	pk	and	qk	are,	respec0vely,	the	value	of	kth	
a9ributes	(components)	or	data	objects	p	and	q.	

	
•  Standardiza0on	is	necessary,	if	scales	differ.	
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Euclidean	Distance	

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix 

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0



Minkowski	Distance	

•  Minkowski	Distance	is	a	generaliza0on	of	
Euclidean	Distance	

				
			Where	r	is	a	parameter,	n	is	the	number	of	
dimensions	(a9ributes)	and	pk	and	qk	are,	
respec0vely,	the	kth	a9ributes	(components)	or	data	
objects	p	and	q.	
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Minkowski	Distance:	Examples	

•  r	=	1.		City	block	(Manha9an,	taxicab,	L1	norm)	distance.		
–  A	common	example	of	this	is	the	Hamming	distance,	which	is	just	the	number	of	

bits	that	are	different	between	two	binary	vectors	

•  r	=	2.		Euclidean	distance	

•  r	→	∞.		“supremum”	(Lmax	norm,	L∞	norm)	distance.		
–  This	is	the	maximum	difference	between	any	component	of	the	vectors	

•  Do	not	confuse	r	with	n,	i.e.,	all	these	distances	are	defined	for	
all	numbers	of	dimensions.	



Minkowski	Distance	

Distance Matrix 

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L∞ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0



Curse	of	Dimensionality	

•  When	dimensionality	
increases,	data	becomes	
increasingly	sparse	in	the	
space	that	it	occupies	

•  Defini0ons	of	density	and	
distance	between	points,	
which	is	cri0cal	for	
clustering	and	outlier	
detec0on,	become	less	
meaningful	

• Randomly generate 500 points 

• Compute difference between max and min 
distance between any pair of points 



Common	Proper)es	of	a	Distance	

•  Distances,	such	as	the	Euclidean	distance,	have	
some	well	known	proper0es.	

1.  d(p,	q)	≥	0			for	all	p	and	q	and	d(p,	q)	=	0	only	if		
p	=	q.	(Posi0ve	definiteness)	

2.  d(p,	q)	=	d(q,	p)			for	all	p	and	q.	(Symmetry)	
3.  d(p,	r)	≤	d(p,	q)	+	d(q,	r)			for	all	points	p,	q,	and	r.			

(Triangle	Inequality)	

	where	d(p,	q)	is	the	distance	(dissimilarity)	between	points	
(data	objects),	p	and	q.	

	

•  A	distance	that	sa0sfies	these	proper0es	is	a	metric	



Common	Proper)es	of	a	Similarity	

•  Similari0es,	also	have	some	well	known	
proper0es.	

1.  s(p,	q)	=	1	(or	maximum	similarity)	only	if	p	=	q.		
	

2.  s(p,	q)	=	s(q,	p)			for	all	p	and	q.	(Symmetry)	
	

	where	s(p,	q)	is	the	similarity	between	points	(data	
objects),	p	and	q.	

	



Binary	Data	

Categorical insufficient sufficient good very good excellent
p1 0 0 1 0 0
p2 0 0 1 0 0
p3 1 0 0 0 0
p4 0 1 0 0 0

item bread butter milk apple tooth-past
p1 1 1 0 1 0
p2 0 0 1 1 1
p3 1 1 1 0 0
p4 1 0 1 1 0



Similarity	Between	Binary	Vectors	

•  Common	situa0on	is	that	objects,	p	and	q,	have	only	
binary	a9ributes	

•  Compute	similari0es	using	the	following	quan00es	
 M01 = the number of attributes where p was 0 and q was 1 
 M10 = the number of attributes where p was 1 and q was 0 
 M00 = the number of attributes where p was 0 and q was 0 
 M11 = the number of attributes where p was 1 and q was 1 

 

•  Simple	Matching	and	Jaccard	Coefficients		
	SMC	=		number	of	matches	/	number	of	a9ributes		

									 	 		=		(M11	+	M00)	/	(M01	+	M10	+	M11	+	M00)	
	

	J	=	number	of	11	matches	/	number	of	not-both-zero	a9ributes	values				
				=	(M11)	/	(M01	+	M10	+	M11)		



SMC	versus	Jaccard:	Example	

p	=		1	0	0	0	0	0	0	0	0	0				 	 		
q	=		0	0	0	0	0	0	1	0	0	1		
	
M01 = 2   (the number of attributes where p was 0 and q was 1) 
M10 = 1   (the number of attributes where p was 1 and q was 0) 
M00 = 7   (the number of attributes where p was 0 and q was 0) 
M11 = 0   (the number of attributes where p was 1 and q was 1) 

		
SMC	=	(M11	+	M00)/(M01	+	M10	+	M11	+	M00)	=	(0+7)	/	(2+1+0+7)	=	0.7		
	
J	=	(M11)	/	(M01	+	M10	+	M11)	=	0	/	(2	+	1	+	0)	=	0		
	



Document	Data	

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play
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Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0



Cosine	Similarity	
• 	If	d1	and	d2	are	two	document	vectors,	then	
													cos(	d1,	d2	)	=		(d1	•	d2)	/	||d1||	||d2||	,		
			where	•	indicates	vector	dot	product	and	||	d	||	is		the			length	of	vector	d.			

• 	Example:		
	

		 	d1	=		3	2	0	5	0	0	0	2	0	0	 		
			 	d2	=		1	0	0	0	0	0	0	1	0	2		
	
				d1	•	d2=		3*1	+	2*0	+	0*0	+	5*0	+	0*0	+	0*0	+	0*0	+	2*1	+	0*0	+	0*2	=	5	
			||d1||	=	(3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5	=		(42)	0.5	=	6.481	
				||d2||	=	(1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)	0.5	=	(6)	0.5	=	2.245	
	
				 	cos(	d1,	d2	)	=	.3150	
	



Correla0on	

•  Correla0on	measures	the	linear	rela0onship	
between	objects	(binary	or	con0nuos)	

•  To	compute	correla0on,	we	standardize	data	
objects,	p	and	q,	and	then	take	their	dot	product	
(covariance/standard	devia0on)	

!pk = (pk −mean(p))
!qk = (qk −mean(q))

correlation(p,q) = ( !p • !q ) / (n−1)std(p)std(q)


