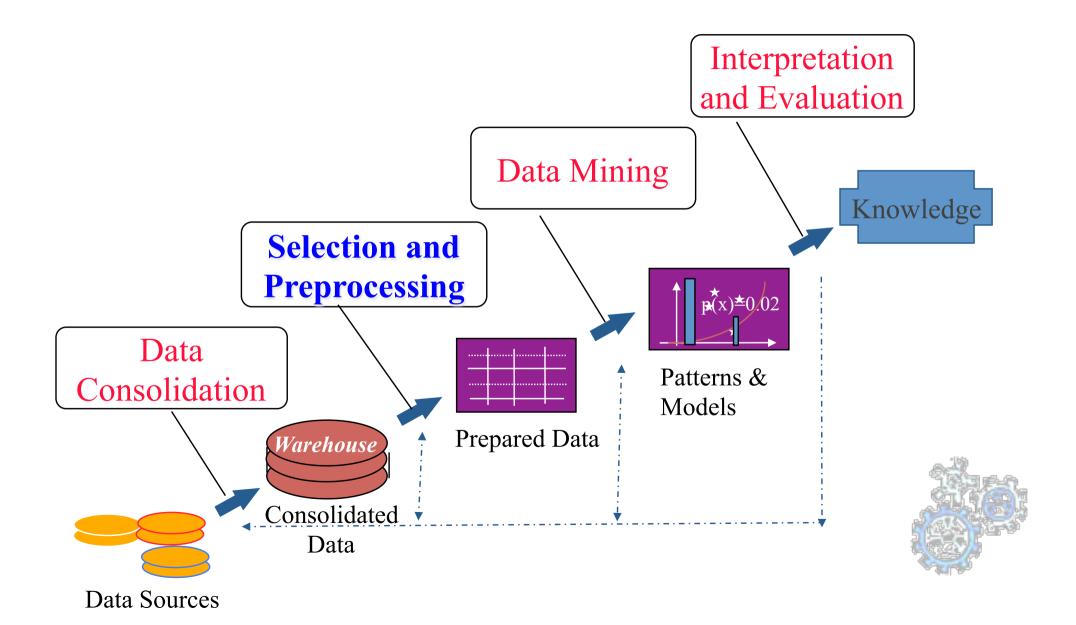
Data Preparation

Anna Monreale

Dino Pedreschi

Università di Pisa

KDD Process



Types of Data

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there
 are m rows, one for each object, and n columns, one for each
 attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n <u>₩</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

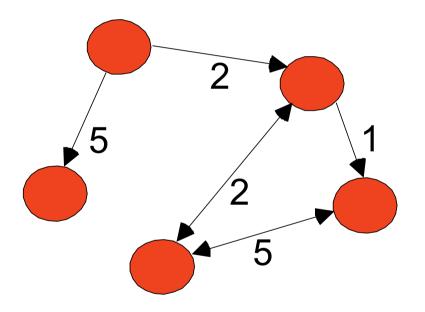
Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph and HTML Links



Data Mining

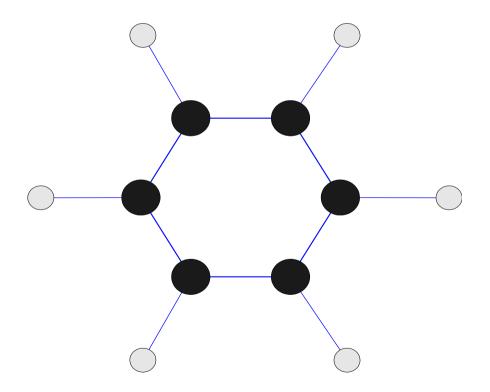
Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

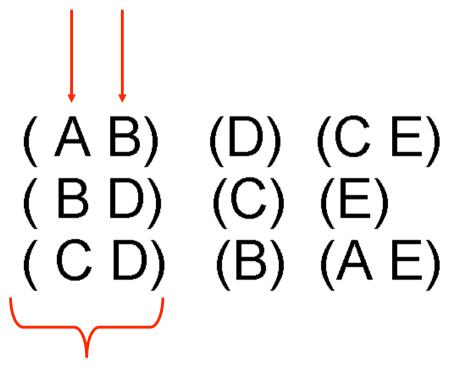
Chemical Data

• Benzene Molecule: C₆H₆



Ordered Data

Sequences of transactions
 Items/Events



•An element of the sequence

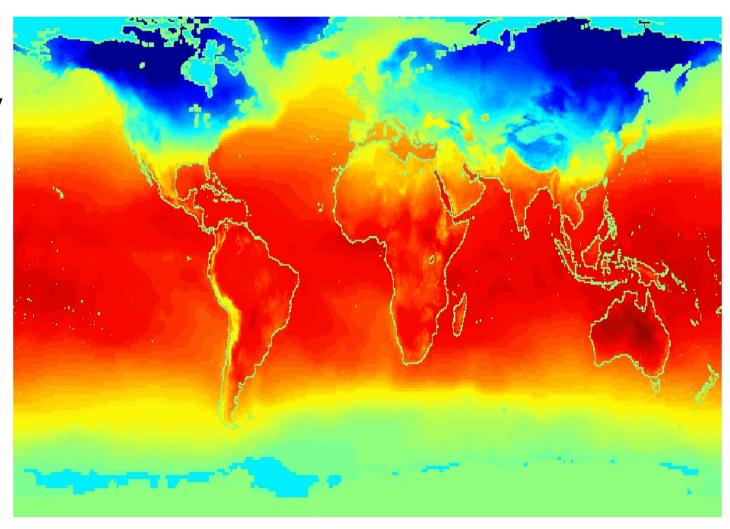
Ordered Data

Genomic sequence data

Ordered Data

Spatio-Temporal Data

Average Monthly Temperature of land and ocean



Data understanding vs Data preparation

Data understanding provides general information about the data like

- the existence and partly also about the character of missing values,
- outliers,
 the character of attributes
- dependencies between attribute.

Data preparation uses this information to

- select attributes,
- reduce the dimension of the data set,
- select records,
- treat missing values,
- treat outliers,
- integrate, unify and transform data
- improve data quality

Data Reduction

- Reducing the amount of data
 - Vertical: reduce the number of records
 - Data Sampling
 - Clustering
 - Horizontal: reduce the number of columns (attributes)
 - Select a subset of attributes
 - Generate a new (an smaller) set of attributes

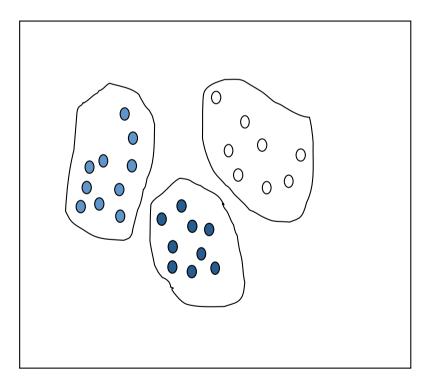
Sampling

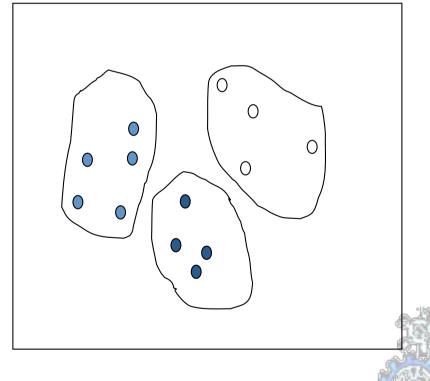
- Improve the execution time of data mining algorithms
- Problem: how to select a subset of representative data?
 - Random sampling: it can generate problem due to the possible peaks in the data
 - Stratified sampling:
 - Approximation of the percentage of each class
 - Suitable for distribution with peaks: each peak is a layer

Stratified Sampling

Raw Data

Cluster/Stratified Sample





Reduction of Dimensionality

- Selection of a subset of attributes that is as small as possible and sufficient for the data analysis.
 - removing (more or less) irrelevant features
 - removing redundant features.

Removing irrelevant/redundant features

- For removing irrelevant features, a performance measure is needed that indicates how well a feature or subset of features performs w.r.t. the considered data analysis task.
- For removing redundant features, either a performance measure for subsets of features or a correlation measure is needed.

Reduction of Dimensionality

Manual

After analyzing the significance and/or correlation with other attributes

Automatic: Selecting the top-ranked features

- Incremental Selection of the "best" attributes
- "Best" = with respect to a specific measure of statistical significance (e.g.: information gain).

Data Cleaning

- How to handle anomalous values
- How to handle di outliers
- Data Transformations

Anomalous Values

- Missing values
 - NULL
- Unknown Values
 - Values without a real meaning
- Not Valid Values
 - Values not significant

Manage Missing Values

- Elimination of records
- 2. Substitution of values

Note: it can influence the original distribution of numerical values

- Use media/median/mode
- Estimate missing values using the probability distribution of existing values
- Data Segmentation and using media/mode/median of each segment
- Data Segmentation and using the probability distribution within the segment
- Build a model of classification/regression for computing missing values

Data Transformation: Motivations

Data with errors and incomplete

- Data not adequately distributed
 - Strong asymmetry in the data
 - Many peaks

Data transformation can reduce these issues

Normalizations

min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization

$$v' = \frac{v - mean_A}{stand _dev_A}$$

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max($|v'|$)<1

Discretization

- Unsupervised vs. Supervised
- Global vs. Local

• Static vs. Dynamic

- Hard Task
 - Hard to understand the optimal discretization
 - We should need the real data distribution

Discretization: Advantages

- Original values can be continuous and sparse
- Discretized data can be simple to be interpreted
- Data distribution after discretization can have a Normal shape
- Discretized data can be too much sparse yet
 - Elimination of the attribute

Unsupervised Discretization

- Characteristics:
 - No label for the instances
 - The number of classes is known

- Techniques of binning:
 - Natural binning → Intervals with the same width
 - Equal Frequency binning -> Intervals with the same frequency
 - Statistical binning variance, Quartile)
 Use statistical information (Mean, variance, Quartile)

Discretization of quantitative attributes

•Solution: each value is replaced by the interval to which it belongs.

• height: 0-150cm, 151-170cm, 171-180cm, >180c

• weight: 0-40kg, 41-60kg, 60-80kg, >80kg

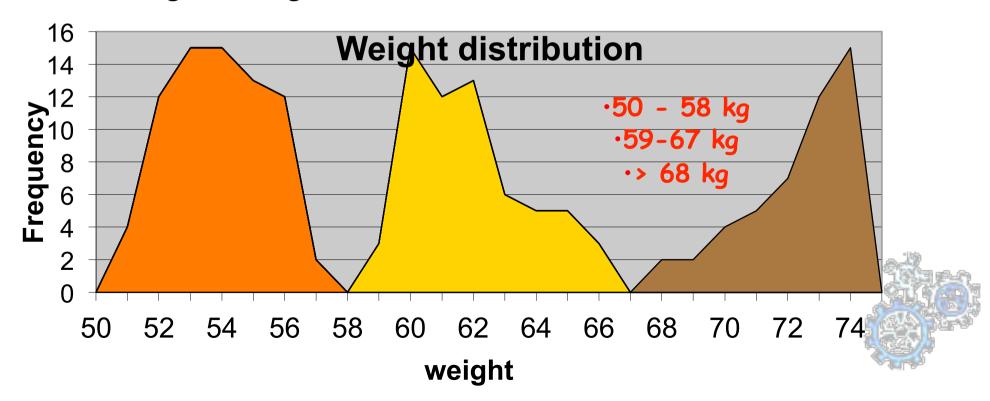
• income: 0-10ML, 11-20ML, 20-25ML, 25-30ML, >30ML

CID	height	weight	income
1	151-171	60-80	>30
2	171-180	60-80	20-25
3	171-180	60-80	25-30
4	151-170	60-80	25-30

Problem: the discretization may be useless (see weight).

How to choose intervals?

- 1. Interval with a fixed "reasonable" granularity Ex. intervals of 10 cm for height.
- 2. Interval size is defined by some domain dependent criterion Ex.: 0-20ML, 21-22ML, 23-24ML, 25-26ML, >26ML
- 3. Interval size determined by analyzing data, studying the distribution or using clustering



Natural Binning

- Simple
- Sort of values, subdivision of the range of values in *k* parts with the same size

$$\delta = \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

 $\delta = \frac{x_{\max} - x_{\min}}{k}$ • Element x_j belongs to the class i if

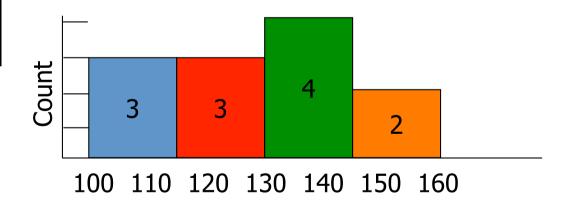
$$x_j \in [x_{min} + i\delta, x_{min} + (i+1)\delta)$$

It can generate distribution very unbalanced

Example

Bar	Beer	Price
A	Bud	100
A	Becks	120
С	Bud	110
D	Bud	130
D	Becks	150
Е	Becks	140
Е	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
I	Bud	135

- $\delta = (160-100)/4 = 15$
- class 1: [100,115)
- class 2: [115,130)
- class 3: [130,145)
- class 4: [145, 160]



Equal Frequency Binning

• Sort and count the elements, definition of k intervals of f, where:

$$f = \frac{N}{k}$$

(N = number of elements of the sample)

• The element x_i belongs to the class j if

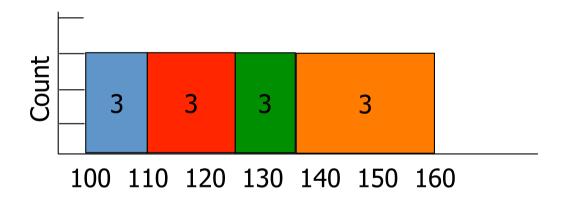
$$j \times f \le i < (j+1) \times f$$

It is not always suitable for highlighting interesting correlations

Bar	Beer	Price
A	Bud	100
A	Becks	120
С	Bud	110
D	Bud	130
D	Becks	150
Е	Becks	140
Е	Bud	120
F	Bud	110
G	Bud	130
Н	Bud	125
Н	Becks	160
I	Bud	135

Example

- f = 12/4 = 3
- class 1: {100,110,110}
- class 2: {120,120,125}
- class 3: {130,130,135}
- class 4: {140,150,160}



How many classes?

- If too few
 - ⇒ Loss of information on the distribution
- If too many
 - => Dispersion of values and does not show the form of distribution
- The optimal number of classes is function of N elements (Sturges, 1929)

$$C = 1 + \frac{10}{3} \log_{10}(N)$$

 The optimal width of the classes depends on the variance and the number of data (Scott, 1979)

$$h = \frac{3.5 \cdot s}{\sqrt{N}}$$

Similarity

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for ONE Attribute

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity		
Type				
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	s =	$\begin{bmatrix} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{bmatrix}$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1	$-\frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	s = -	$-d$, $s = \frac{1}{1+d}$ or $-\frac{d-min_d}{max\ d-min\ d}$	
		s=1	$-\frac{d-min_d}{max_d-min_d}$	

Table 5.1. Similarity and dissimilarity for simple attributes

Many attributes: Euclidean Distance

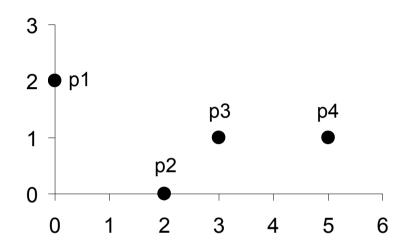
Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the value of k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance



point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k_{th} attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Binary Data

Categorical	insufficient	sufficient	good	very good	excellent
p1	0	0	1	0	0
p2	0	0	1	0	0
р3	1	0	0	0	0
p4	0	1	0	0	0
item	bread	butter	milk	apple	tooth-past
p1	1	1	0	1	(
p2	0	0	1	1	1
р3	1	1	1	0	(
p4	1	0	1	1	(

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

```
p = 1000000000
q = 0000001001
```

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

$$SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Document Data

	team	coach	pla y	ball	score	game	⊐ <u>≷</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$ where indicates vector dot product and ||d|| is the length of vector d.
- Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$\begin{aligned} d_1 & \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ & | |d_1| | = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ & | |d_2| | = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuos)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$p'_k = (p_k - mean(p))$$

$$q'_k = (q_k - mean(q))$$

$$correlation(p,q) = (p' \circ q')/(n-1)std(p)std(q)$$

