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Let’s start by imagining we measured
the mass of a bunch of mice...
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The red dots represent mice are not obese...



...and the green dots represent mice are obese.
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Based on these observations, we can pick a threshold...
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...and when we get a new observation that
has less mass than the threshold...



Mass (q): —CQ00CD0—

...we can classify it as not obese.
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And when we get a new observation with more mass
than the threshold...
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...we can classify it as obese.
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However, what if get a new observation here?
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Because this observation has more mass than the
threshold, we classify it as obese.



But that doesn’t make sense, because it is much closer
to the observations that are not obese.
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So this threshold is pretty lame.
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Can we do better?



Mass (9): —@-@0ED-@-0—

Going back to the original training dataset...
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...we can focus on the observations on
the edges of each cluster...



...and use the midpoint between
them as the threshold.
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Now, when a new observation falls
on the left side of the threshold...
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...it will be closer to the
observations that are not obese...



...than it is to the obese
observations.
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So it makes sense to classify this
new observation as not obese.



The shortest distance between
the observations and the
threshold is called the margin.



Since we put the threshold
halfway between these two
observations...
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...the distances between the
observations and the threshold
are the same and both reflect the
margin.



When the threshold is halfway
between the two observations, the
margin is as large as it can be.
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For example, if we moved the
threshold to the left a little bit...



...then the distance between the

threshold and the observation
that is not obese would be
smaller...
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...and thus, the margin
would be smaller than it
was before.
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And if we moved the threshold to
the right a little bit...



...then the distance between the
obese observation and the
threshold would get smaller...



...and again, the margin
would be smaller.



When we use the threshold that
gives us the largest margin to
make classifications...



...We are using a
Maximal Margin Classifier.



Maximal Margin Classifiers
seem pretty cool...
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...but what if our training data
looked like this....
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...and we had an outlier
observation that was classified as
not obese, but was much closer

to the obese observations.
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...and we had an outlier
observation that was classified as
not obese, but was much closer

to the obese observations.
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In this case, the Maximum
Margin Classifier would be
super close to the obese
observations...



...and really far from the majority
of the observations that are not
obese.



Now, if we got this new
observation...
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...we would classify it as not
obese, even though most of the
not obese observations are much
further away than the obese
observations.



...we would classify it as not
obese, even though most of the
not obese observations are much
further away than the obese
observations.
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...we would classify it as not
obese, even though most of the
not obese observations are much
further away than the obese
observations.
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So Maximal Margin Classifiers
are super sensitive to outliers in the
training data and that makes them

pretty lame.
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Can we do better?
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To make a threshold that is not so
sensitive to outliers we must allow
misclassifications.



For example, if we put the threshold
halfway between these two
observations...
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...then we will misclassify this
observation.
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However, now when we get a
new observation here...
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...we will classify it as obese...



...and that makes sense
because it is closer to most of
the obese observations.
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Choosing a threshold that allows
misclassifications is an example of
the Bias/Variance Tradeoff that
plagues all of machine learning.
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In other words, before we allowed
misclassifications, we picked a
threshold that was very sensitive
to the training data (low bias)...
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...and it performed poorly when
we got new data (high variance).
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In contrast, when we picked a
threshold that was less sensitive
to the training data and allowed
misclassifications (higher bias)...
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In contrast, when we picked a
threshold that was less sensitive
to the training data and allowed
misclassifications (higher bias)...
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...it performed better when we got
new data (low variance).



When we allow misclassifications, the
distance between the observations and the
threshold is called a Soft Margin.



So the question is “How do we know
that this soft margin...



So the question is “How do we know
that this soft margin...

...Is better than this Soft Margin?”
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We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.
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We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.



Mass (9):

We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.
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We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.
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We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.



We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.



We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.



We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.
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We can determine how many
misclassifications and observations to
allow inside of the Soft Margin to get the
best classification.

Ideally we should minimize the number of
misclassification and the number of observation within
the margin to avoid overfitting



When we use a Soft Margin to determine the
location of a threshold...
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...then we are using a Soft Margin Classifier aka
a Support Vector Classifier to classify
observations.



The name Support Vector Classifier comes from
the fact that the observations on the edge and within
the Soft Margin are called Support Vectors.
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GREEN ifwx+b>=1
RED ifwx+b<=-1



wx+b=0

WXx+b=-1 wx+b=1
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GREEN if10x+-2>=1
RED if10x+-2<=-1



From One to Two Dimensions



Maximum Margin Hyperplanes

* Find a linear hyperplane (decision
boundary) that separates the data.




Maximum Margin Hyperplanes

* One possible solution.
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Maximum Margin Hyperplanes

* Another possible solution.
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Maximum Margin Hyperplanes

e Other possible solutions.




Maximum Margin Hyperplanes

* Let’s focus on B, and B,.
* Which one is better?

 How do you define better?
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Maximum Margin Hyperplanes

. . B
* The best solution is the hyperplane 5
that maximizes the margin. e O
* Thus, B, is better than B.,.
O
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Linear SVM: Separable Case

* Alinear SVM is a classifier that searches

O
for a hyperplane with the largest margin © O
(a.k.a. maximal margin classifier). / O
decision boundarV ) ©
* wand b have to be learned. WeX+b=0 / 0 support vectors
] " | o
WeX+hb=-1
[
N
* Given w and b the classifiers work as = |
_ 1 If wWeX+b>1 = ..b11
f(X)= L L] |
-1 iIfweX+b<-1 -

Example calculus dot product
w=[3 .2] x=[12] b=-2
W-Xx+b=.3*1+.2%2 +(-2) =-1.3
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Linear SVM: Separable Case

* What is the distance expression for a
point x to a line wx+b= 0 (the decision
boundary)?

d(x) =

X-w+b) 3 X-w+b)

M _ \/Z?ﬂwﬁ

decision boundarV

weX+b=0

WeX+b=-1
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Linear SVM: Separable Case

* The distance between /

B, and b, is 1/||w]||

* The distance between
b,; and b,,, i.e., the

Margin = ——
Wi
WeX+b=-1

* |In order to maximize
the margin we need to

minimize ||w/||

- decision boundarV/'
margin Is 2 WeX+b=0 /
H
H
H
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Learning a Linear SVM

* Learning the SVM model is equivalent to

determining w and b. Margin:é

e How to find wand b? W]l

* Objective is to maximize the margin. o

* Which is equivalent to minimize L(W) = wir

* Subject to to the following constraints 2

* This is a constrained optimization 1 If weX, +b=>1
problem that can be solved using the Yi = {_1 if WexX +b<—1

Lagrange multiplier method. _
* Introduce Lagrange multiplier A (or a) y(wex. +b)>1 i=12,..N



Constrained Optimization Problem

Minimize|| w ||= (w - w) subject to y; ((x; -w) +b) > 1for all i
Lagrangian method : maximize inf , L(w,b, ), where

Lw,b,) = W= a1 [(y, W) +b)-1]

At the extremum, the partial derivative of L with respect
both w and b must be 0. Taking the derivatives, setting them
to O, substituting back into L, and simplifying yields:

Maximize ) o, —%Z yiyjaiaj<xi -Xj>
i i j

subjectto > y,; =0 and ¢; >0

Lagrange multiplier method is a technique
for finding a maximum or minimum of a
function F subject to a constraint.



A Geometrical Interpretation

Implies that only support vectors matter;
other training examples are ignorable.

n‘.‘ T .
Class 1 W X+ b=




Example of Linear SVM

1
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-6.6431x, - 9.3232x, +7.9327 =0

O

0

Support vectors
x1 X2 \A
0.3858| 0.4687 1|/765.526
0.4871 0.611 -1\ 65.5261 )
0.9218| 0.4103 -1 0
0.7382 0.8936 -1 0
0.1763| 0.0579 1 0
0.4057 0.3529 1 0
0.9355[ 0.8132 -1 0
0.2146| 0.0099 1 0




Linear SVM: Non-separable Case

 What if the problem is not

linearly separable?

* We must allow for errors in our o,
solution. |
H

H




Slack Variables

* The inequality constraints must be
relaxed to accommodate the

nonlinearly separable data.

* This is done introducing slack
variables & (xi) into the constrains of

the optimization problem.

¢ provides an estimate of the error of
the decision boundary on the
misclassified training examples.
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Learning a Non-separable Linear SVM

* Objective is to minimize L(W) = | W ||2 4 C(iékj
* Subject to to the constraints 2 =
* where Cand k are user-specified 1 PR
If WeX. +
parameters representing the y. = { o :  +b @
penalty of misclassifying the -1 ifweX;, +Db S

training instances

e Lagrangian multipliers are
constrainedto 0 <A <C.

https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html#tsphx-glr-auto-examples-svm-plot-linearsvc-support-vectors-py



https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html

Height (cm):

NOTE: If each observation
" had a mass measurement...




Height (cm):

...and a height O
measurement...




...then the data would .
T be 2-Dimensional.

Height (cm):




When the data are 2-
Dimensional, a Support
Vector Classifier is a line...

3
*
“
*
E
‘O
..
’0
L]
*
.0
‘0
*
*
‘0
..
A
’.
*
*
*
*
..
..
*
.0
L
L i 1 1
v

. I | |
.0



...and, in this case, the Soft o o
Margin is measured form
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The blue parallel lines give us
a sense of where all of the
other points are in relation to
the Soft Margin.




These observations are
outside of the Soft Margin...




These observations are o A
outside of the Soft Margin...




These observations are
outside of the Soft Margin...




. ...and this observation is -
inside the Soft Margin and |

misclassified. |




Height (cm):

Now, If each each
observation had a mass...
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E ...a height...
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Height (cm):

...and an age...
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...then the data would
T be 3-Dimensional.
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NOTE: The axis that age is
on is supposed to represent
depth... @)

o

Height (cm): == 0




Height (cm):

...and these circles are larger
in order to to appear closer,
* and thus younger...
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... Age
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...and these circles are
smaller in order to look
-+ further away, and thus, older. ©
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When the data are 3-Dimensional,
the Support Vector CIassnfler forms
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...and we classify new
observations by determining o
" which side of the plane they ..
areon. .o -
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For example, if this
wereanew e




...we would classify it as
not obese sinceitis e
above the Support ......................................
Vector Classifier. .- @)




But we know that when the data
are 1-Dimensional, the Support
Vector Classifier is a single point
on a 1-Dimensional number line.
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And when the data are in 2
Dimensions, the Support Vector
Classifier is a 1-Dimensional /ine ;




And when the data are 3-
Dimensional, the Support Vector
Classifier is a 2-Dimensional plane
in a 3-Dimensional space.

.......



And when the data are in 4 or
more Dimensions, the Support
Vector Classifier is a hyperplane.



NOTE: Technically speaking, all flat affine
subspaces are called hyperplanes.

So, technically speaking, this 1-Dimensional
line is a hyperplane...




Non-linear SVM



Support Vector Classifiers seem pretty cool
because they can handle...
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...outliers...
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...and, because they allow misclassifications,
they can handle overlapping classifications...




...but what if this was our training
data and we had tons of overlap?

Dosage (mg):



In this new example, with tons of
overlap, we are now looking at
Drug Dosages...
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...and the red dots represent
patients that were not cured...

Dosage (mg):




...and the green dots represent
patients that were cured.

A
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In other words, the drug
doesn’t work if the dosage is
too small...

Dosage (mg):




...or too large.

AN
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It only works when the
dosage is just right.

Dosage (mg):



Dosage (mg):

Now, no matter where we put
the classifier, we will make a
lot of misclassifications.
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Now, no matter where we put
the classifier, we will make a
lot of misclassifications.

Dosage (mg):




Dosage (mg):

Now, no matter where we put
the classifier, we will make a
lot of misclassifications.
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So Support Vector Classifiers are are
only semi-cool, since they don’t perform
well with this type of data.
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Can we do better than Maximal Margin
Classifiers and Support Vector
Classifiers?
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We start by adding a y-axis
SO we can draw a graph.

y-axis /
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The x-axis coordinates

in this graph will be the

dosages that we have
already observed...

y-axis /\

—0-0-0—8—C0@ED -o—
Dosage (mg):




...and the y-axis
coordinates will be the
square of the dosages

y-axis (Dosage?).
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So, for this observation, with
Dosage = 0.5 on the x-axis...
y-axis

Dosage (mg):




...the y-axis value = Dosage?
y-axis

Dosage (mg):




y-axis

0.25

...the y-axis value = Dosage?
= 0.52
= 0.25.
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y-axis

Now we use Dosage? for
this y-axis coordinate...

Dosage (mg):




y-axis

Now we use Dosage? for
this y-axis coordinate...

Dosage (mg):




y-axis

...and then we use Dosage? for
the y-axis coordinates for the
remaining observations.
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...and then we use Dosage? for
the y-axis coordinates for the
remaining observations.

y-axis
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...and then we use Dosage? for
the y-axis coordinates for the
remaining observations.

y-axis O
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Dosage (mg):




...and then we use Dosage? for
the y-axis coordinates for the 0O
remaining observations.

y-axis O
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Dosage (mg):



Since each observation has x
and y-axis coordinates, the data 0
are now 2-Dimensional.
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y-axis

And now that the data are
2-Dimensional, we can draw a
Support Vector Classifier that
separates the people who were

cured from the people who were

not cured... \




y-axis

...and the Support Vector
Classifier can be used to
classify new observations. ® .




y-axis

For example, if a new
observation had this Dosage...
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y-axis

...then we could calculate a / A

y-axis coordinate by squaring 0 fo

the Dosage...
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y-axis

...and classify the observation =—> @

as not cured because it ended A
up on this side of the Support ® S
Vector Classifier.




y-axis

On the other hand, if we got a
new observation with this
Dosage...




...then we would square the
Dosage to get a y-axis
coordinate...

y-axis




y-axis

...and classify this observation
as cured because it falls on the
other side of the Support

Vector Classifier.




y-axis

The main ideas behind
Support Vector Machines
are...




y-axis

1) Start with data in a
relatively low dimension...

{
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y-axis

2) Move the data into a
higher dimension...
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3) Find a Support Vector
Classifier that separates the
higher dimensional data into

two groups.
y-axis .




That’s all there is to it.
y-axis
I I
! 1




Going back to the original
1-Dimensional data...
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y-axis

...you may be wondering why
we decided to create y-axis 0O
coordinates with Dosage?.
O

o O

8.2 om0

Dosage (mg):



y-axis

Why not Dosage3? O

O
O
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y-axis

Dosage (mg):



In other words, how do
we decide how to

y-axis transform the data?
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y-axis

In order to make the
mathematics possible, Support
Vector Machines use
something called Kernel
Functions to systematically find O
Support Vector Classifiers in
higher dimensions. @
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y-axis

So let me show you how a Kernel
Function systematically finds
Support Vector Classifiers in 0O
higher dimensions.
O
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y-axis

For this example, | used the
Polynomial Kernel, which has a
parameter, d, which stands for
the degree of the polynomial.
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When d = 1, the Polynomial
Kernel computes the
relationships between each pair
of observations in 1-Dimension...
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When d = 1, the Polynomial
Kernel computes the
relationships between each pair
of observations in 1-Dimension...
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When d = 1, the Polynomial
Kernel computes the
relationships between each pair
of observations in 1-Dimension...
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When d = 1, the Polynomial
Kernel computes the
relationships between each pair
of observations in 1-Dimension...
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When d = 1, the Polynomial
Kernel computes the
relationships between each pair
of observations in 1-Dimension...
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...and these relationships are
used to find a Support Vector
Classifier.
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y-axis

When d = 2, we get a 2nd
dimension based on 0O
Dosages?...
O

o

8.8 om0
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y-axis

...and the Polynomial Kernel
computes the 2-Dimensional
relationships between each pair 0O
of observations...
O

@

@
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y-axis

...and the Polynomial Kernel
computes the 2-Dimensional
relationships between each pair
of observations... "

N
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Dosage (mg):




y-axis

...and those relationships are
used to find a Support Vector 0

Classifier. \




y-axis

And if we set d = 3, then we
would get a 3rd dimension
based Dosagess...
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y-axis

...and the Polynomial Kernel
computes the 3-Dimensional
relationships between each pair
of observations...
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...and those relationshipsare | -
used to find a Support Vector
Classifier. =~ ..o

.......
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y-axis .

Dosage (mg):
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And when d = 4 or more, then we get even more
dimensions to find a Support Vector Classifier.



In summary, the Polynomial Kernel
systematically increases dimensions
by setting d, the degree of the
polynomial...
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y-axis

= In summary, the Polynomial Kernel
systematically increases dimensions
by setting d, the degree of the
polynomial...
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y-axis

= In summary, the Polynomial Kernel
systematically increases dimensions
by setting d, the degree of the
polynomial...

d=3
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...and the relationships between each
pair of observations are used to find a
Support Vector Classifier. © ..owil
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Dosage (mg):



Last but not least, we can find a
good value for d with Cross
Validation.

d=1
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y-axis

Last but not least, we can find a
good value for d with Cross
Validation.

d=2 O
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y-axis

Last but not least, we can find a
good value for d with Cross
Validation.

Dosage (mg):




Last but not least, we can find a
good value for d with Gross . i
Validation. ® .ol
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Another very commonly used Kernel is the
Radial Kernel, also known as the Radial Basis
Function (RBF) Kernel.



However, when using it on a new
observation like this...
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...the Radial Kernel behaves like a
Weighted Nearest Neighbor model.
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In other words, the closest
observations (aka the nearest
neighbors) have a lot of influence on
how we classify the new
observation...




...and observations that are further
away have relatively little influence
on the classification.




So, since these observations are the
closest to the new observation...

\
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...the Radial Kernel uses their
classification for the new
observation.
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Although the examples | have
given show the data being
transformed from a relatively
low dimension...
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...to a relatively high 0
dimension...
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...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don’t actually ®
do the transformation.
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...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don'’t actually ®
do the transformation.
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...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don'’t actually ®
do the transformation.
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...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don’t actually ®
do the transformation.

Dosagev('mg):



...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don’t actually ®
do the transformation.
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...Kernel functions only
calculate the relationships
between every pair of points as
if they are in the higher
dimensions; they don’t actually ®
do the transformation. ..,
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...Kernel functions only
calculate the relationships
between every pair of points as

ifthey are in the higher
dimensions; they don't actually ®
do the transformation. ..,
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y-axis

...Kernel functions only
calculate the relationships
between every pair of points as

ifthey are in the higher
dimensions; they don't actually ®
do the transformation. ..,
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This trick, calculating the high-
dimensional relationships
without actually transforming the
data to the higher dimension, is ®

called The Kernel Trick.

...........
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" The Kernel Trick reduces the
amount of computation
required for Support Vector
Machines by avoiding the
math that transforms the data ®
from low to high dimensions... ...,

.............
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...and it makes calculéting
relationships in the infinite

dimensions used by the Radial ™ ®
Kernel possible. g
y-axis @
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However, regardless of how the
relationships are calculated, the
concepts are the same.

—@—CO@Y —He—
Dosage (mg):



When we have 2 categories, but
no obvious linear classifier that
separates them in a nice way...
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...Support Vector Machines
work by moving the data into a
relatively high dimensional ®
space...
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y-axis

...and finding a relatively high

dimensional Support Vector

Classifier that can effectively
classify the observations.




Linearly separable

Non-linear SVM e e

* What if the decision boundary is not linear?

Non-linearly separable

o—© HOI o000 —0 & *—

* How about... mapping data to a higher-dimensional space:




Non-linear SVMs: Feature Spaces

|dea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable.

. """"
""""
* .
5
5
“
—
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s
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Non-linear SVM

e The trick is to transform the data
from its original space x into a new

0 T T T .
space ®(x) (phi) so that a linear O
o e 005 D
decision boundary can be used.
.r'f —r1 + .r-'_% — x9 = —0.46. ~ 0 -
>,< 015 D
D (1. m0) — {;rr%. .r:_'%_, '.,r.-"IE;I.‘l. vﬁ.r-_g_. 1. < 0
_ _ 0.2 |
wars + wars + w2y + w2 + wo = 0. o0 D
025} £ O O

* Decision boundary wWe®(X)+b=0 0% oz L 0% 01 00



Learning a Nonlinear SVM

g min HWHE
* Optimization problem w
subject to yi(w- P(x) +b) = 1, V{(z. i)}

* Which leads to the same set of equations but involve ®(x)

instead of x. n

flz) =signiw - ®(z)+b) = .e-s'_a_’,rra{z Ay P(xg) - P(z) + b).
i=1

Issues:

* What type of mapping function ® should be used?

* How to do the computationin high dimensional space?

* Most computations involve dot product ®(x) - ®(x)
e Curse of dimensionality?



The Kernel Trick

* D(x) - @(x) = K(x;,%;)

* K(x;,x;) is a kernel function 1
(expressed in terms of the Z:
coordinates in the original space) .

* Examples: -

& 05 0

K(x,y) = (x"y + 1) S

K(x,y) = exp(-|lx—y|[*/(20%)) = =

K(x,y) = tanh(sxly + ) :

4

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html#tsphx-glr-auto-examples-exercises-plot-iris-exercise-py



https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html

Examples of Kernel Functions

* Polynomial kernel with degree d
K(x,y) = (x'y + 1)

e Radial basis function kernel with width o
K(x,y) = exp(—|/x —y||[?/(202))

* Closely related to radial basis function neural networks
* The feature space is infinite-dimensional

 Sigmoid with parameter k and 6 K(x,y) = tanh(kx!y + 0)
* It does not satisfy the Mercer conditionon all Kk and 0

* Choosing the Kernel Function is probably the most tricky part of using SVM.



The Kernel Trick

* The linear classifier relies on inner product between vectors K(x,-,xj)=x,-ij

 If every datapoint is mapped into high-dimensional space via some transformation ®©: x = ¢(x),
the inner product becomes:
K(x;, %)= (x;) "d(x;)

* A kernel function is a function that is equivalent to an inner product in some feature space.
* Example:
2-dimensional vectors x=[x; x,]; let K(x;x;)=(1 + x;'x;)*
Need to show that K(x;x;)= &(x;) "d(x;):
K(x;,x:)=(1 + X;1%;)%= 1+ X;1°X;12 + 2 Xi3X;1 XioXio+ Xi2°X;2° + 2Xi1Xj1 + 2X;2Xj2=
= [1 x;1% V2 XiiXip Xig% V2Xi3 V2X5)T[1 X;1% V2 Xj1Xi0 X7 V2Xj1 V2Xj5] =
= (x;) "d(x;), where &(x) = [1, x;%, V2 X3X5, X5%, V2X1, V2X;)]

* Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to
compute each ¢$(x) explicitly).



T
flz) = sign(w - ®(z) +b) = -@'J;TMEZ Aivi| K(x;,z) [+ D).

The Kernel Trick

Advantages of using kernel:
* Don’t have to know the mapping function ®.

* Computing dot product ®(x) - ®(y) in the
original space avoids curse of dimensionality.

Not all functions can be kernels

* Must make sure there is a corresponding @ in

some high-dimensional Space. ! This implies that the n by n kernel matrix,

I

:

Y, lin which the (i,j)-th entry is the K(x; x)), is :

* Mercer’s theorem (see textbook) that ensures | . s positive definite
I

I

I

that the kernel functions can always be
expressed as the dot product in some high ' This also means that optimization problem
dimensional space. ' can be solved in polynomial time!



Constrained Optimization Problem with Kernel

Minimize|| w ||= (w - w) subject to y; ((x; -w) +b) > 1for all i
Lagrangian method : maximize inf , L(w,b, ), where

Lw,b,) = [IWI= Yt [(y, W) +b)-1]

At the extremum, the partial derivative of L with respect
both w and b must be 0. Taking the derivatives, setting them
to O, substituting back into L, and simplifying yields:

. 1
Maximize ) o, _EZ Viyjeie| K(x;,x;)
i i |

subjectto > y,; =0 and ¢; >0



Example

class 1 class 2 class 1

e OO x——
1 2 4 5 6



Example

e Suppose we have 5 one-dimensional data points
* X;=1, X,=2, X3=4, X,=5, x-=6, with values 1, 2, 6 as class 1 and 4, 5 as class 2
* =V,=1,¥,=1, y3=-1, y,=-1, y5=1
* We use the polynomial kernel of degree 2
* K(x,z) = (xz+1)?
* Cissetto 100

* We first find o, (i=1, ..., 5) by

subject to 100 Z ay; =0



Example

* We get
* 04=0, a,=2.5, 03=0, a,=7.333, 0,;=4.833
* Note that the constraints are indeed satisfied
* The support vectors are {x,=2, X;,=5, x;=6}

* The discriminant function is S K(z,x5)

o AU

= 2.5(1)(22 4+ 1)2 4+ 7.333(=1)(52+ 1)° 4+ 4.833(1)(62 + 1)? + b
= 0.66672° — 5.3332 4 b

* b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as X, and X lie on the
line ¢ (w)Tp(x) +b=1 andx,liesontheline 4(w)Tp(x)+b=—1

* Allthree giveb=9 == f(2) = 0.666722 — 5.3332+ 9



Example

Value of discriminantfunction

class 1

class 2

A

N X

)
|\
4

0O
|~
5

class 1



Support Vector Machine (SVM)

* SVM represents the decision boundary
using a subset of the training examples,
known as the support vectors.

SVC with linear kernel LinearSVC (linear kernel)

Sepal width

Sepal width

Sepal length Sepal length

* The basic idea behind SVM lies within the
concept of maximal margin hyperplane.

SVC with RBF kernel SVC with polynomial (degree 3) kernel

.
.Al P
.S b !
5
oo

Sepal width
Sepal width

Sepal length Sepal length



Characteristics of SVM

* Since the learning problem is formulated as a convex optimization
problem, efficient algorithms are available to find the global minima
of the objective function (many of the other methods use greedy
approaches and find locally optimal solutions).

* Overfitting is addressed by maximizing the margin of the decision
boundary, but the user still needs to provide the type of kernel
function and cost function.

* Difficult to handle missing values.
* Robust to noise.
* High computational complexity for building the model.



Multiclass Classification



Multiclass Classification

 Combining binary classifiers
* One-vs-all
e All-vs-all

* Training a single classifier
 Multiclass SVM
e Constraint classification



Binary to Multiclass

e Can we use a binary classifier to construct a multiclass classifier?
 Decompose the prediction into multiple binary decisions

* How to decompose?
* One-vs-all
e All-vs-all

231



One-vs-all Classification

* Assumption: Each class individually separable from all the others

* Learning: Given a dataset D = {<x, y.>},
Note: x;, 2<",y;2 {1, 2, --+, K}
 Decompose into K binary classification tasks

* For class k, construct a binary classification task as:
» Positive examples: Elements of D with label k
* Negative examples: All other elements of D

* Train K binary classifiers wy, w,, --- w, using any learning algorithm we have seen

* Prediction: “Winner Takes All” Question: What is the
dimensionality of

argmax; w;'x each w.?

232



Visualizing One-vs-All

@
% °
® (Y X ) From the full dataset, construct three
¢ ° binary classifiers, one for each class
e® oo

O
O O O
O O @) L
o~ 000 070\ voe
@) O
N e
.. ©° O 0O ‘
e o o 28
WblueTx >0 T
for blue :ched xd >0 Wereen'X > 0
. rr
inputs for re for green
Inputs Inputs

Notation:Score

Winner Take All will predict the right answer. Only the
for blue label

correct label will have a positive score
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One-vs-All May not Always Work

Black points are not separable with a single binary
classifier

The decomposition will not work for these cases!

0% \__° 0% O
o (Y Y o 000
o0\ @ e® O
o O ¢ O ® ©
o~ O o O
O O o @) Oo
Wy e X >0 W,.q'x >0 W, een' X >0
blue red green ?7?7?
for blue for red for green
inputs inputs inputs

234



One-vs-All Classification: Summary

e Easy to learn
* Use any binary classifier learning algorithm

* Problems

* No theoretical justification

e Calibration issues

* We are comparing scores produced by K classifiers trained independently. No reason for
the scores to be in the same numerical range!

 Might not always work

* Yet, works fairly well in many cases, especially if the underlying binary classifiers are
tuned, regularized

235



AI I-VS-AI I CI aSSiﬁcatiOn Sometimes called one-vs-one, used by sklearn

. Every pair of classes is separable

: Given a dataset D = {<x,, y;>},
Note: x;, 2<",y:2 {1, 2, --+, K}
* For every pair of labels (j, k), create a binary classifier with:

* Positive examples: All examples with label j
* Negative examples: All examples with label k

eK0 K(K-1
* Train +=g classifiers in all
82 g 2
* Prediction: More complex, each label get K-1 votes

* How to combine the votes? Many methods
* Majority: Pick the label with maximum votes
e Organize a tournament between the labels

236



All-vs-All Classification

* Every pair of labels is linearly separable here
* When a pair of labels is considered, all others are ignored

1. O(K?) weight vectors to train and store

2. Size of training set for a pair of labels could be very small, leading to
overfitting

3. Prediction is often ad-hoc and might be unstable

Eg: What if two classes get the same number of votes? For a tournament, what is the
sequence in which the labels compete?

237



Training a Single Classifier: Motivation

 Decomposition methods
* Do not account for how the final predictor will be used
* Do not optimize any global measure of correctness

* Goal: To train a multiclass classifier that is “global”

238



Multiclass Margin

Defined as the score difference between the highest
scoring label and the second one

/ Multiclass Margin
N

.

M Blue
Score for = Red
a label
= W pe X Green
MW Black

Labels
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Multiclass SVM (Intuition)

e Recall: Binary SVM

* Maximize margin

* Equivalently,
Minimize norm of weights such that the closest points to the hyperplane have a score §1

* Multiclass SVM
* Each label has a different weight vector (like one-vs-all)
* Maximize multiclass margin

e Equivalently,

Minimize total norm of the weights such that the true label is scored at least 1 more than
the second best one

240
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