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Ideally we should minimize the number of 
misclassification and the number of observation within 

the margin to avoid overfitting
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From One to Two Dimensions



Maximum Margin Hyperplanes

• Find a linear hyperplane (decision 
boundary) that separates the data.



Maximum Margin Hyperplanes

• One possible solution.
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Maximum Margin Hyperplanes

• Another possible solution.
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Maximum Margin Hyperplanes

• Other possible solutions.
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Maximum Margin Hyperplanes

• Let’s focus on B1 and B2.

• Which one is better?

• How do you define better?
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Maximum Margin Hyperplanes

• The best solution is the hyperplane 
that maximizes the margin.

• Thus, B1 is better than B2.
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Linear SVM: Separable Case

• A linear SVM is a classifier that searches 
for a hyperplane with the largest margin 
(a.k.a. maximal margin classifier).

• w and b have to be learned.

• Given w and b the classifiers work as
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Example calculus dot product
w = [.3  .2]   x = [1 2]   b = -2
w ∙ x + b = .3*1 + .2*2 +(-2) = -1.3

support vectors



Linear SVM: Separable Case

• What is the distance expression for a 
point x to a line wx+b= 0 (the decision 
boundary)?
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Linear SVM: Separable Case

• The distance between 
B1 and b11 is 1/ 𝑤

• The distance between 
b11 and b12, i.e., the 
margin is

• In order to maximize 
the margin we need to 
minimize 𝑤
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Learning a Linear SVM

• Learning the SVM model is equivalent to 
determining w and b.

• How to find w and b?

• Objective is to maximize the margin. 

• Which is equivalent to minimize

• Subject to to the following constraints

• This is a constrained optimization 
problem that can be solved using the 
Lagrange multiplier method.

• Introduce Lagrange multiplier 𝜆 (or α)
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Constrained Optimization Problem
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Lagrange multiplier method is a technique 
for finding a maximum or minimum of a 
function F subject to a constraint.



6=1.4

A Geometrical Interpretation

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0

7=0

8=0.6

9=0

10=0

Implies that only support vectors matter; 
other training examples are ignorable. 



Example of Linear SVM

x1 x2 y l
0.3858 0.4687 1 65.5261

0.4871 0.611 -1 65.5261

0.9218 0.4103 -1 0

0.7382 0.8936 -1 0

0.1763 0.0579 1 0

0.4057 0.3529 1 0

0.9355 0.8132 -1 0

0.2146 0.0099 1 0

Support vectors

𝜆 = α



Linear SVM: Non-separable Case 

• What if the problem is not 
linearly separable?

• We must allow for errors in our 
solution.



Slack Variables

• The inequality constraints must be 
relaxed to accommodate the 
nonlinearly separable data.

• This is done introducing slack 
variables 𝜉 (xi) into the constrains of 
the optimization problem.

• 𝜉 provides an estimate of the error of 
the decision boundary on the 
misclassified training examples.
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Learning a Non-separable Linear SVM

• Objective is to minimize

• Subject to to the constraints

• where C and k are user-specified 
parameters representing the 
penalty of misclassifying the 
training instances

• Lagrangian multipliers are 
constrained to 0 ≤ 𝜆 ≤ 𝐶.
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https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html#sphx-glr-auto-examples-svm-plot-linearsvc-support-vectors-py

https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html
























































Non-linear SVM







































































































































































































Non-linear SVM

• What if the decision boundary is not linear?

• How about… mapping data to a higher-dimensional space:

0

x2

x

0

Linearly separable

Non-linearly separable



Non-linear SVMs:  Feature Spaces

Idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable.

Φ:  x→φ(x)



Non-linear SVM

• The trick is to transform the data 
from its original space 𝑥 into a new 
space Φ(𝑥) (phi) so that a linear 
decision boundary can be used.

• Decision boundary 0)( =+• bxw




Learning a Nonlinear SVM

• Optimization problem

• Which leads to the same set of equations but involve Φ(𝑥)
instead of 𝑥.

Issues:

• What type of mapping function Φ should be used?

• How to do the computation in high dimensional space?
• Most computations involve dot product Φ(𝑥) ∙ Φ(𝑥)

• Curse of dimensionality?



The Kernel Trick

• Φ 𝑥 ∙ Φ 𝑥 = 𝐾(𝑥𝑖 , 𝑥𝑗)

• 𝐾(𝑥𝑖 , 𝑥𝑗) is a kernel function 
(expressed in terms of the 
coordinates in the original space)

• Examples:

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html#sphx-glr-auto-examples-exercises-plot-iris-exercise-py

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html


Examples of Kernel Functions

• Polynomial kernel with degree d

• Radial basis function kernel with width 

• Closely related to radial basis function neural networks

• The feature space is infinite-dimensional

• Sigmoid with parameter  and 
• It does not satisfy the Mercer condition on all  and 

• Choosing the Kernel Function is probably the most tricky part of using SVM.



The Kernel Trick

• The linear classifier relies on inner product between vectors K(xi,xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some transformation Φ:  x→ φ(x), 
the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is a function that is equivalent to an inner product in some feature space.

• Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] =

= φ(xi)
Tφ(xj),    where φ(x) = [1,  x1

2 , √2 x1x2 , x2
2 , √2x1 , √2x2]

• Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to 
compute each φ(x) explicitly).



The Kernel Trick

Advantages of using kernel:

• Don’t have to know the mapping function Φ.

• Computing dot product Φ(𝑥) ∙ Φ(𝑦) in the 
original space avoids curse of dimensionality.

Not all functions can be kernels

• Must make sure there is a corresponding Φ in 
some high-dimensional space.

• Mercer’s theorem (see textbook) that ensures 
that the kernel functions can always be 
expressed as the dot product in some high 
dimensional space.

K(xi,z)

Mercer theorem: the function must be 
“positive-definite”

This implies that the n by n kernel matrix, 
in which the (i,j)-th entry is the K(xi, xj), is 
always positive definite

This also means that optimization problem 
can be solved in polynomial time!



Constrained Optimization Problem with Kernel
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K(xi,xj)
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Example

1 2 4 5 6

class 2 class 1class 1



Example

• Suppose we have 5 one-dimensional data points
• x1=1, x2=2, x3=4, x4=5, x5=6, with values 1, 2, 6 as class 1 and 4, 5 as class 2 

•  y1=1, y2=1, y3=-1, y4=-1, y5=1

• We use the polynomial kernel of degree 2
• K(x,z) = (xz+1)2

• C is set to 100

• We first find i (i=1, …, 5) by



Example

• We get
• 1=0, 2=2.5, 3=0, 4=7.333, 5=4.833
• Note that the constraints are indeed satisfied
• The support vectors are {x2=2, x4=5, x5=6}

• The discriminant function is

• b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as x2 and x5 lie on the 
line                                       and x4 lies on the line                              

• All three give b=9



Example
Value of discriminant function

1 2 4 5 6

class 2 class 1class 1



Support Vector Machine (SVM)

• SVM represents the decision boundary 
using a subset of the training examples, 
known as the support vectors.

• The basic idea behind SVM lies within the 
concept of maximal margin hyperplane.



Characteristics of SVM

• Since the learning problem is formulated as a convex optimization 
problem, efficient algorithms are available to find the global minima 
of the objective function (many of the other methods use greedy 
approaches and find locally optimal solutions).

• Overfitting is addressed by maximizing the margin of the decision 
boundary, but the user still needs to provide the type of kernel 
function and cost function.

• Difficult to handle missing values.

• Robust to noise.

• High computational complexity for building the model.
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• Support Vector Machine (SVM). Chapter 5.5. 
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