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What is a Time Series?

• A time series is a collection of observations made 
sequentially in time, generally at constant time intervals.
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Time Series are Ubiquitous

• You can measure many things … 
and things change over time.

• Blood pressure
• Donald Trump’s popularity rating
• The annual rainfall in Pisa
• The value of your stocks

• In addition other data type can 
thought of as time series 

• Text data: words count
• Images: edges displacement
• Videos: object positioning
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Problems in Working with Time Series

• Large amount of data.
• Similarity is not easy to estimate.
• Different data formats.
• Different sampling rates.
• Noise, missing values, etc.



What We Can Do With Time Series?

• Trends, Seasonality

• Clustering

• Motif Discovery

• Rule Discovery

• Forecasting

• Classification
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Similarity

• All these problems require similarity 
matching.

• What is Similarity?
• It is the quality or state of being similar, likeness, 

resemblance, as a similarity of features. 

• In time series analysis we recognize two 
kinds of similarity:
• Similarity at the level of shape
• Similarity at the structural level



Structural-based Similarities



Structure or Model Based Similarity

• For long time series, shape based similarity give 
very poor results.
• We need to measure similarly based on high 

level structure.
• The basic idea is to:

1. extract global features from the time series, 
2. create a feature vector, and 
3. use it to measure similarity and/or classify

• Example of features: 
• mean, variance, skewness, kurtosis, 
• 1st derivative mean, 1st derivative variance, … 
• parameters of regression, forecasting, Markov model

A
B
C

Feature\Time Series A B C

Max Value 11 12 19

Mean 5.3 6.4 4.8

Min Value 3 2 5

Autocorrelation 0.2 0.3 0.5

… … … …



Compression Based Dissimilarity

• Use as features whatever structure a 
given compression algorithm finds.

• 𝑑 𝑥, 𝑦 = 𝐶𝐷𝑀 𝑥, 𝑦 = !(#,%)
! # '!(%)

Euclidean CDM



Shape-based Similarities



Defining Distance Measures

• Let A and B be two objects from the universe of possible 
objects. The distance (dissimilarity) is denoted by D(A,B).
• Properties in a distance measure.
• D(A,B) = D(B,A) Symmetry 
• D(A,A) = 0 Constancy
• D(A,B) = 0 IIf A = B Positivity
• D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality 
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• Given two time series:
• Q = q1 … qn

• C = c1 … cn

• T1 = < 56,       176,        110,        95  >
• T2 = < 36,       126,        180,        80  >

D(T1,T2) = sqrt [ (56-36)2 + (176-126)2 + (110-180)2 + (95-80)2 ]

Euclidean Distance
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Problems with Euclidean Distance

• Euclidean distance is very sensitive to “distortions” in the data.
• These distortions are dangerous and should be removed.
• Most common distortions:
• Offset Translation
• Amplitude Scaling
• Linear Trend
• Noise

• They can be removed by using the appropriate transformations.



Transformation I: Offset Translation
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Transformation II: Amplitude Scaling

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Q = (Q - mean(Q)) / std(Q)

C = (C - mean(C)) / std(C)
D(Q,C)



Transformation III: Linear Trend

• Removing linear trend: fit the best fitting straight line to the time 
series, then subtract that line from the time series.
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Transformation IV: Noise

• The intuition behind removing noise is to average each datapoints 
value with its neighbors.
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Moving Average

• Noise can be removed by a moving 
average (MA) that smooths the TS.
• Given a window of length w and a TS t, 

the MA is applied as follows

• 𝑡( =
)
*
∑+,(-*//
*// 𝑡+ for 𝑖 = 1,… , 𝑛

• For example, if w=3 we have

• 𝑡( =
)
0
(𝑡(-) + 𝑡( + 𝑡('))
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Dynamic Time Warping

• Sometimes two time series that are 
conceptually equivalent evolve at different 
speeds, at least in some moments.

E.g. correspondence of peaks in 
two similar time series

Fixed Time Axis. Sequences are 
aligned “one to one”. Greatly suffers 
from the misalignment in data.
Euclidean.

Warped Time Axis. Nonlinear 
alignments are possible. Can correct 
misalignments in data.
Dynamic Time Warping.
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How is DTW Calculated?

• We create a matrix the size of |Q| by |C|, 
then fill it in with the distance between 
every pair of point in our two time series.
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The Euclidean distance works only on the 
diagonal of the matrix. The sequence of 
comparisons performed:
• Start from pair of points (0,0)
• After point (i,i) move to (i+1,i+1)
• End the process on (n,n)



How is DTW Calculated?

• The DTW distance can “freely” move 
outside the diagonal of the matrix
• Such cells correspond to temporally 

shifted points in the two time series
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How is DTW Calculated?

• Every possible warping between two 
time series, is a path through the matrix. 

• The constrained sequence of 
comparisons performed:
• Start from pair of points (0,0)
• After point (i,j), either i or j increase by one, 

or both of them
• End the process on (n,n)
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How is DTW Calculated?

• Every possible warping between two time 
series, is a path through the matrix. 
• We find the best one using a recursive 

definition of the DTW:

• Idea: best path must pass through (i-1,j), 
(i-1,j-1) or (i,j-1)

g(i,j)   = cost of best path reaching cell (i,j)
= d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }
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wk = cost of the k-th points comparison
• wk = | Qi – Cj |
• wk = ( Qi – Cj ) ^ 2
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Dynamic Programming Approach

Step 1: compute the matrix of all d(qi,cj)

• Point-to-point distances D(i,j) =  | Qi – Cj |

Step 2: compute the matrix of all path costs  g(i,j)
• Start from cell (1,1)

• Compute (2,1), (3,1), …, (n,1)
• Repeat for columns 2, 3, …, n

• Final result in last cell computed

Step 3: find the path with the lowest value (best alignment)

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }
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Dynamic Programming Approach

Step 2: compute the matrix of all path costs  g(i,j)
• Start from cell (1,1)

g(1,1)   =   d(q1,c1) + min{ g(0,0), g(0,1), g(1,0)} 
=   d(q1,c1)
=   D(1,1)

• Compute (2,1), (3,1), …, (n,1)
g(i,1)   =   d(qi,c1) + min{ g(i-1,0), g(i-1,1), g(i,0) } 

=   d(qi,c1) + g(i-1,1)
=   D(i,1) + g(i-1,1)

• Repeat for columns 2, 3, …, n
– The general formula applies

D(1,1)

+ 
D(i,1)

min + 
D(i,1)

X X X

X X

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }



Dynamic Programming Approach

Example
• c = < 3, 7, 4, 3, 4 > 
• q = < 5, 7, 6, 4, 2 > 

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }



Dynamic Time Warping – A Real Example

• A Real Example
• This example shows 2 one-

week periods from the 
power demand time series.
• Note that although they 

both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.



Comparison of Euclidean Distance and DTW
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Comparison of Euclidean Distance and DTW

• Classification using 1-NN
• Class(x) = class of most similar 

training object
• Leaving-one-out evaluation
• For each object: use it as test set, 

return overall average

Dataset Euclidean DTW
Word Spotting 4.78 1.10
Sign language 28.70 25.93
GUN 5.50 1.00
Nuclear Trace 11.00 0.00
Leaves# 33.26 4.07
(4) Faces 6.25 2.68
Control Chart* 7.5 0.33
2-Patterns 1.04 0.00

Error Rate



Comparison of Euclidean Distance and DTW

• Classification using 1-NN
• Class(x) = class of most similar 

training object
• Leaving-one-out evaluation
• For each object: use it as test set, 

return overall average
• DTW is two to three orders of 

magnitude slower than Euclidean 
distance.

Milliseconds
Dataset Euclidean DTW

Word Spotting 40 8,600
Sign language 10 1,110
GUN 60 11,820
Nuclear Trace 210 144,470
Leaves 150 51,830
(4) Faces 50 45,080
Control Chart 110 21,900
2-Patterns 16,890 545,123



What we have seen so far… 

• Dynamic Time Warping gives much better results than Euclidean 
distance on many problems.
• Dynamic Time Warping is very very slow to calculate!
• Is there anything we can do to speed up similarity search under DTW? 



Fast Approximations to DTW

• Approximate the time series with some compressed or downsampled
representation, and do DTW on the new representation. 
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Fast Approximations to DTW

• There is strong visual evidence to suggests it works well
• In the literature there is good experimental evidence for the utility of 

the approach on clustering, classification, etc.
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Global Constraints

• Slightly speed up the calculations
• Prevent pathological warpings
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Global Constraints

• A global constraint constrains the indices of the warping path wk = 
(i,j)k such that j-r £ i £ j+r, where r is a term defining allowed range of  
warping for a given point in a sequence.
• r can be considered as a window that reduces the number of calculus.
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Accuracy vs. Width of Warping Window
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Summary of Time Series Similarity

• If you have short time series
• use DTW after searching over the warping window size

• If you have long time series
• if you do know something about your data =>

extract features
• and you know nothing about your data => 

try compression/approximation based dissimilarity
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Exercises Dynamic Time Warping



DTW – Exercise 1

• Given the following input time series:

• A) Compute the distance between “t1” and “t2”, using the DTW with 
distance between points computed as d(x,y) = |x – y|.
• B) If we repeat the computation of point (A) above, this time with a 

Sakoe-Chiba band of size r=1, does the result change? Why?
• C) If we compute DTW(T1,T2), where T1 is equal to t1 in reverse order

(namely T1=<0,1,6,3,4>) and similarly for T2 (namely T2=<1,0,7,6,3>), 
is it true that DTW(T1,T2) = DTW(t1,t2)? Discuss the problem without
providing any computation.
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DTW – Exercise 1 - Solution
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• A)

g(i,j)   =   d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }
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DTW – Exercise 1 - Solution

t1
t2

t1
t2

t1
t2

• A)

• B) No. Because the DTW optimal path remains inside the band of size r=1

• C) Yes. The optimal path in one direction is the same in the opposite direction. 
Though, the cumulative costs matrix might look different.



DTW – Exercise 2

• Given the following time series:

compute 
• (i) their Manhattan and Euclidean distance, 
• (ii) their DTW, and (iii) their DTW with Sakoe-Chiba band of size r=1 

(i.e. all cells at distance <= 1 from the diagonal are allowed). 
• For points (ii) and (iii) show the cost matrix and the optimal path

found.



DTW – Exercise 2 - Solution

• Euclidean = sqrt(74) = 8.6, Manhattan = 20 

• DTW = 14

• DTW r=1  = 17



DTW – Exercise 3

• Given the following time series:

• Compute the distances among all pairs of time series adopting a 
Dynamic Time Warping distance, and computing the distances
between single points as d(x,y) = | x – y |. For each pair of time series
compared also show the matrix used to compute the final result.



DTW – Exercise 3 - Solution
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