DATA MINING 2
Explainability

a.a. 2021/2022




Definitions

* To interpret means to give or provide the
meaning or to explain and present in
understandable terms some concepts.

* In Al, and in data mining and machine
learning, interpretability is the ability to
explain or to provide the meaning in
understandable terms to a human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.


https://www.merriam-webster.com/

What is a Black Box Model?

A black box is a model, whose
internals are either unknown to
the observer or they are known

X1 —
but uninterpretable by humans.
X2
X3 Example:
x4 — * DNN
 SVM
* Ensemble

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.



Interpretable Models

sex?

female

male

. 2@' survived
’ Pclass?
3@ - not survived
y survived
age? \
> 14 not survived

Decision Tree

PREDICTION: p(survived = yes | X) = 0.671
OUTCOME: YES

Feature contribution

PClass | -0.344
Age | -0.034
Sex ’ 1194

Linear Model

if conditiony A conditions A conditions then outcome

Rules

Value

3rd
52

female
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COMPAS recidivism black bias

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest ?»
without violence ’

Subsequent Offenses

:  3drug possessions Subsequent Offenses

i None

LOW RISK 3 HiGHrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.
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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.



* Machine Learning
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Explanation in different Al fields
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Auto-encoder

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains
Its Predictions. AAAI 2018: 3530-3537

1of (TO < 0.6
ROE < 106}

Tt {SOL < N5
TA < 3165570)

Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Representations of Trained Networks. NIPS 1995: 24-30



Explanation in different Al fields

* Machine Learning
* Computer Vision

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (¢) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590
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Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536



Explanation in different Al fields
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* Knowledge Representation and Reasoning
Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)
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Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012



Explanation in different Al fields
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* Knowledge Representation and Reasuvinig
Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization.

* Mu Iti-agent SyStemS AAMAS 2018: 1203-1207
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Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different Al fields
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* Machine Learning =

. . ~0000..0
* Computer Vision :
* Knowledge Representation and Reasoning s 90000

—  — P~ lp.p p)

* Multi-agent Systems — 3 CE”
« NLP L

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different Al fields

* Machine Learning

« Computer Vision A o v O s

* Knowledge Representation and Reasoning f\; Zi

* Multi-agent Systems él /\
* NLP 2 94 ¢y 92 9 o

Human-in-the-loop Planning

* Planning and Scheduling

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different Al fields

Machine Learning
Computer Vision

Robot: [ have decided to turn left.
Human: Why did you do that?

Robot: I believe that the correct action is to turn left
BECAUSE:
I'm being asked to go forward
AND This area in front of me was 20 cm higher than me
*highlights area™

Kn OW I ed ge Re p rese ntat i O N a N d Rea SO N i N g AND the area to the left has maximum protrusions of less

Multi-agent Systems
NLP

Planning and Scheduling
Robotics

than 5 cm *highlights area*
AND I'm tilted to the right by more than 5 degrees.
Here is a display of the path through the tree that lead to
this decision. *displays tree*
Human: How confident are you in this decision?

Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram*
This action is predicted to be correct 67% of the time.

Human: Where did the threshold for the area in front come
from?

Robot: Here is the histogram of all training examples that
reached this leaf. 80% of examples where this area was
above 20 cm predicted the appropriate action to be “drive
forward”.

From Decision Tree to human-friendly information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]
(
r

1
ML Classifier

{

C: I predict FISH

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns



Role-based Interpretability

“Is-the-explanation-terpretable?” - “To whom is the explanation interpretable?”

No Universally Interpretable Explanations!

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system
working as designed?”

* Regulators “ Is it compliant?”

An ideal explainer should model the user
background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Creators

Machine
learning
system

I

|
|
v

Data-subjects

Examiners

E—E—&

Operators Executors Decision:
subjects

[Tomsett et al. 18]



XAl is Interdisciplinary

* For millennia, philosophers have
asked the questions about what Setomee
constitutes an explanation, what
is the function of explanations,
and what are their structure

* [Tim Miller 2018]

Human-Agent
Interaction

- Human-Computer
| Interaction

Artificial
Intelligence
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XAl Taxonomy of Explanation Methods

Explanation
Methods




XAl Taxonomy of Explanation Methods

Explainable By

—>  Design Methods -
(Intrinsic Explainability)

Explanation
Methods

Black Box L

— Explanation Methods
(Post-hoc Explainability)




XAl Taxonomy of Explanation Methods

Explanation
Methods

Explainable By

Desigh Methods -
(Intrinsic Explainability)

Black Box L

Explanation Methods
(Post-hoc Explainability)

Black-box System

N
A

Input Data

"
Interpretability ~ Transparent System

Black-box
Al System
—_—
—_—
Input Data \
—_—

Explanation Sub-system

y

Explanation

)




XAl Taxonomy of Explanation Methods

Explainable By

—>  Design Methods ﬁ{ Global and Model Specific

(Intrinsic Explainability)

Explanation
Methods

Black Box L

— Explanation Methods
(Post-hoc Explainability)




Explainable by Design Method

Dataset

Interpretable
Model

C

Humidity
A

Prediction and

Explanation
y, e=c(X)
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Sunn Rain
L y/]\

Wind Overcast

High  Normal Strong
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No

User
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XAl Taxonomy of Explanation Methods

Explainable By

—>  Design Methods —2, Global and Model Specific

. (Intrinsic Explainability)
Explanation > Global

Methods Black Box can be » Local

— Explanation Methods
(Post-hoc Explainability)




Black Box Explanations: Global vs Local

/

Sunny

Humidity

N

Dataset
X

Outlook

Rain
v

Wind

Overcast

A\

High  Normal Strong

[\
No || Ye

S

Yes

I\ \
No

Black Box
Model
b

Prediction
y = b(X)

Explanation
Method

f

User

Yes

Global Explanation

Explanation

e =f(b, x)

If Outlook = Sunny and Humidity = Normal
then Play Tennis = Yes

 Qutlook:0.7
* Humidity:-0.4
e Wind: 0.0

Local Explanations



XAl Taxonomy of Explanation Methods

Explainable By are
—>  Design Methods —— Global and Model Specific

. (Intrinsic Explainability)
Explanation > Global
Methods Black Box can be » Local
— Explanation Methods —
(Post-hoc Explainability)  —_——— » Model Specific
> Model Agnostic



Black Box Explanations: Specific vs Agnostic

Model Specific

Model Agnostic
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Types of Data

Table of baby-name data
(baby-2010.csv)

Field

name rank gender year w— hames

Jacob 1 bo 2010

b T~ One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010 I m a eS
Sophia 2 girl 2010 g
Michael 3 boy 2010

] ] ]

] ] :

E 2000 rows E '

. all told . '

Tabular
(TAB)




Types of Explanations

* Tabular Data * Images * Text
* Rule-based  Saliency Maps * Sentence
» Decision Tree * Concept Attributions Highlighting
* Features Importance * Prototypes * Attention-based
* Prototypes * Counter-exemplars * Prototypes
* Counter-exemplars * Counter-exemplars
l‘:‘g:t;fa"yk:ef“r’l'i’s"i’s:g Humidity = Normal =9 abele lime sal grad intg elrp

 OQutlook:0.7
* Humidity:-0.4
* Wind:0.0

04 PERER
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TREPAN



Trepan

* Global explainer designed to explain NN e
but usable for any type of black box. T mcaio 15

* It aims at approximating a NN with a DT o
classifier using best-m-of-n rules. e

* At each node split the feature to split is |
selected on the original data extended
with random samples respecting the

.3:; %67 .8(; 0/.020 .8(; %20 .177%83 .0247 ;)6

current path.

* It learns to predict the label returned by
the black box, not the original one.



100%

Tre pan

o7 03 "o e

60% 40%
01 T = root of the tree() @
02 Q = <T p X p {}> niformityCe:ISize<4.5
03 while Q not empty & size(T) < limit
04 N, Xy, Cy = pop(Q) e <25
05 back b Zy = Eandom(XN,hFN) _
06 blackbox , y, = b(z), y = b(Xy) B8 = B &
07 ouditing  jf same class(y UNyZ) )
08 continue
09 S = best split(Xy U Zy, v U v;,)
10 S’'= best m-of-n split(S)
11 N = update with split(N, S')
12 for each condition ¢ in S’
13 C = new child of(N)
14 Cc = CNU {c}
15 X. = select with constraints(Xy, Cy)
16 put(Q, <C, X., C.>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.



LIME



Local Explanation

* The overall decision
boundary is complex

* |In the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




Local Interpretable Model-agnostic Explanations

0 1
* Local model-agnostic explainer that reveals duration_in_month <= ...
« o 0.11
the black box decisions through features —— onea—
importance/saliency maps. nersonsl st N
. . - ~ po7
* It locally approximates the behavior of a installment_as_income...
o o7

black box with a local surrogate expressed
as a logistic regressor (with Lasso or Ridge
penalization).

* Synthetic neighbors are weighted w.r.t. the
distance with the instance to explain.




LIME

Sepal length | Sepal width | Petal length | Petal width mm
3 4 3 6 0.1 0.7 0.2

|

Train a Linear Regressor

1

Returns the coefficients as Explanation




Features Importance

LIME : .

duration_in_month <= ...
0.11

;ccoum_check_stamsz...
.09
01 4 = {} personal_status_sex=...
02 X instance to explain il | T

o . in{;sfgllment_as_mcome...
03 X' = real2interpretable(x) TS
04 for i in {1, 2, .., N} oncHl
05 z;= sample around(x’)
06 z = 1nterpretabel2real(z’)
07 Z = % U {<z;, b(z;), d(x, z)>}
08 w = solve Lasso(Z, k) ™~

black box

09 return w auditing

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?:
Explaining the predictions of any classifier. KDD.




LIME

* LIME turns an image xto a
vector x’ of interpretable
superpixels expressing
presence/absence.

* It generates a synthetic
neighborhood Z by randomly
perturbing x” and labels them
with the black box.

* |t trains a linear regression
model (interpretable and
locally faithful) and assigns a
weight to each superpixel.




LIME Issues

* LIME does not really generate images with different
information: it randomly removes some superpixels, i.e.
it suppresses the presence of an information rather than
modifying it.

* On tabular data LIME generates the neighborhood by
changing the feature values with other values of the
domain. 0
e x = {age=24, sex=male, income=1000} ( x = x’)

e 7 = {age=30 , sex=ma|e, income=800} ( L= Z’) p



LORE



LOcal Rule-based Explainer

* LORE extends LIME adopting as local
surrogate a decision tree classifier
and by generating synthetic
instances through a genetic
procedure that accounts for both

instances with the same labels and
different ones.

* |t can be generalized to work on
images and text using the same data
representation adopted by LIME.

age < 25

.....




LORE

01 X 1lnstance to explain
02 Z. = geneticNeighborhood(x, fitness., N/2)
03 Zz. = geneticNeighborhood(x, fitness,, N/2)
04 Z = %Z2_. U 7., /blackbox
. diti
05 c = buildTree(Z, b(Z)) auelting
06 r = (p —> y) = extractRule(c, X)
07 ¢ = extractCounterfactual(c,
08 return e = <r, ©¢>
age < 25
tru, \%
job mcome < 1500
cley her \
imcome < 900 age < 17 job grant
K \ clery \olther
':dengf : -gmm{‘deny .:gmrli' deny grant

parent 1 | 25 @ clerk
30 | other

_ .

lerk | 10k @ ves

parent 2

i
children 1 other | 5k
children 2 | 30 no
parent 25 | clerk | 10k | yes

r, X)

r = {age < 25, job = clerk, income < 900} -> deny

® = {({income > 900} -> grant),
({17 < age < 25, job = other} -> grant)}




LORE on Medical Images

* The goal is to classify
dermoscopic images among
categories such as: Melanoma
(MEL), Melanocytic Nevus (NV);
Basal Cell Carcinoma (BCC),
Actinic Keratosis (AK), etc.

* The original is classified as AK
* The counterfactual as BCC.




SHAP



Shapely Values

* A prediction can be explained by assuming that each feature value of
the instance is a "player"” in a game where the prediction is the
payout. Shapley values -- a method from coalitional game theory --
tells us how to fairly distribute the "payout" among the features.

* Example: A black box predicts apartment prices. For a certain
apartment it predicts €300,000 and you need to explain this
prediction. The apartment has an area of 50 m?, is located on the 2nd
floor, has a park nearby and cats are banned.

‘ v ==p €300,000

50 m?
2nd floor



Shapely Values and Game Theory

* The average prediction is €310,000. How much has each feature value
contributed to the prediction compared to the average prediction?

* The "game" is the prediction task for a single instance of the dataset.

* The "gain" is the actual prediction for this instance minus the average
prediction for all instances.

* The "players" are the feature values of the instance that collaborate
to receive the gain (= predict a certain value).

* The explanation could be: The park-nearby contributed
€30,000; area-50 contributed €10,000; floor-2nd contributed €0; cat-

banned contributed -€50,000. The contributions add up to -€10,000,
the final prediction minus the average predicted apartment price.



Shapely Values Example

 The Shapley value is the average marginal
contribution of a feature value across all
possible coalitions (combination of fixed feature
values). '

* We evaluate the contribution of cat-banned s
when it is added to a coalition of park- \/ X
nearby and area-50.

* We simulate that only park-nearby, cat-
banned and area-50 are in a coalition by
randomly drawing another apartment from the
data and using its value for the floor feature.

* The floor-2nd is replaced by the randomly
drawn floor-1st.

* Then we predict the price of the apartment
with this combination (€310,000).

=y=) == €310,000

1st floor



Shapely Values Example

* |[n a second step, we remove cat-banned from
the coalition by replacing it with a random value
of the cat allowed/banned from the randomly
drawn apartment. In the example it was cat-
allowed, but it could have been cat-
banned again.

* We predict the apartment price for the coalition
of park-nearby and area-50 (€320,000).

 The contribution of cat-banned was €310,000 -
€320,000 = -€10,000. This estimate depends on
the values of the randomly drawn apartment
that served as a "donor" for the cat and floor
feature values.

* We get better estimates if we repeat this
sampling step and average the contributions.

F 9

V

* 3

V

| =y=) ==  €310,000
50 m’ ><
1st floor

-
=y=) w=p €320,000

1st floor \/




Shapely Values Example

We repeat this computation for all possible coalitions.
The Shapley value is the average of all the marginal

oor

contributions to all possible coalitions. ‘ ‘
50m?

The computation time increases exponentially with the e

number of features. A s [

For each of these coalitions we compute the predicted in

apartment price with and without the feature value cat-
banned and take the difference to get the marginal
contribution.

We replace the feature values of features that are not in a
coalition with random feature values from the apartment
dataset to get a prediction from the black box.

If we estimate the Shapley values for all feature values, we
get the complete distribution of the prediction (minus the
average) among the feature values.




m predICtion

SHAP

“ explanation

M

« SHAP (SHapley Additive 9() = do+ ) i,
exPlanations) assigns each e
feature an importance value  ¢i= ) 20Tl =lol —1)

[fSu{i}(-TSu{i}) — fS(xS)]

: o | |F|!
for a particular prediction by SCF\{i} I
means Of an additive feature 34 18.34 20.34 baSZZ.\;ilue mogili:tpm 26.34 28.34 30.34
attribution method. I G
* It assighs an importance value -
to each feature that represents " B
the effect on the model o
prediction of including that
feature ;g;
Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model CHi:

predictions. Advances in Neural Information Processing Systems. 2017. —



SHAP on Tabular Data
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SHAP on Images
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Saliency Maps



Saliency Maps

* A saliency map is an image in which a pixel's brightness represents how salient the pixel
is. A positive value (red) means that the pixel has contributed positively to the
classification, while a negative one (blue) means that has contributed negatively.

* There are two methods for creating SMs.
1. Assign to every pixel a saliency value.

2. Segment the image into different pixel groups (superpixels or segments) and then assign a
saliency value for each group.

=9 abele Ilime sal grad lntg elrp

Iflw7 ¥

=0 abele Ilime sal grad mtg elrp

E@-@@@




Integrated Gradient

- Mukund Sundararajan, Ankur Taly, Qigi Yan. Axiomatic

* INTGRAD can only be applied to differentiable models.

* INTGRAD constructs a path from the baseline image x” to the input x
and computes the gradients of points along the path.

* The points are taken by overlapping x with x’, and gradually modifying
the opacity of x. Saliency maps are obtained by cumulating the
gradients of these points. 5

Attribution for Deep Networks. arXiv preprint
arXiv:1703.01365. 2017




MASK

01
02
03

04

X 1lnstance to explain black box

/ auditing

the variation runs replacing a region R of x with:

varying x into X’ maximizing b(x)~b(x’)

constant value, noise, blurred image
reformulation: find smallest R such that b(xyz)<b(x)

flute: 0.9973 flute: 0.0007 Learned Mask

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



Example-based Explanations



Example-based Explanations

* Example-based explanation methods select particular instances of the
dataset or generate synthetic instances to explain black box behaviors.

* Example-based explainers are mainly local explainers.

* Example-based explanations only make sense if we can represent an
instance of the data in a humanly understandable way.

* This works well for:
* images
* tabular data with not many features
* short texts



Example-based Explanations

* We mainly recognize the following example-based explanations:

* Prototypes: a selection of representative instances having the
same class of the instance under analysis. Among prototypes we
also recognize:

 Criticisms: instances that are not well represented by prototypes.

* Influential Instances: training points that were the most influential for the
training of the black-box or for the prediction itself.

e Counterfactuals: a selection of representative instances having a
different class w.r.t. the instance under analysis.



Prototypes and Criticism

* A prototype is a data instance that is representative of all the data.

* A criticism is a data instance that is not well represented by the set of
prototypes.

* They can be used independently from a machine learning model to
describe the data, but they can also be used to create an
interpretable model or to make a black box model interpretable.

* Example of prototypes: K-Medoids centroids, K-Means centroids

* Example of criticism: Outliers
* Method to find them: MMD-critic

* Kim, Been and Khanna, Rajiv and Koyejo, Oluwasanmi. Examples Are Not Enough,

Learn to Criticize! Criticism for Interpretability. 2016, NIPS.



Influential Instance

 An influential instance is a

data instance whose removal

has a strong effect on the
trained model.

* The more the model
parameters or predictions
change when the model is
retrained with a particular
instance removed from the
training data, the more
influential that instance is.

5.0

Targety

0.0 4

[ Influential instance].

Feature x

Model training

with influential instance

without influential instance



Counterfactual Explanations

* A counterfactual explanation describes a causal situation in the form:
"If X had not occurred, Y would not have occurred".

* Thinking in counterfactual terms requires imagining a hypothetical
reality that contradicts the observed facts.

* Even if the relationship between the inputs and the outcome to be
predicted might not be causal, we can see the inputs of a model as
the cause of the prediction.

* A counterfactual explanation of a prediction describes the smallest
change to the feature values that changes the prediction to a
predefined output.



Generating Counterfactual Explanations

* A simple and naive approach to generating counterfactual
explanations is searching by trial and error: randomly changing
feature values of the instance of interest and stopping when the
desired output is predicted.

* As an alternative we can define a loss function that consider the
instance of interest, a counterfactual and the desired (counterfactual)
outcome. Then, we can find the counterfactual explanation that
minimizes this loss using an optimization algorithm.

* Many methods proceed in this way but differ in their definition of the
loss function and optimization method.



Optimized CF Search

Wachter et al. suggest minimizing the following loss:
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Partial Dependency Plot



Partial Dependency Plot

* The partial dependence plot (PDP) shows the marginal effect a
feature have on the predicted outcome of a model.
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* In particular, the partial function above tells us for given value(s) of
features S what the average marginal effect on the prediction is,
where x. are actual feature values from the dataset for the features
in which we are not interested, and n is the number of instances.



Partial Dependency Plot

* Introduce random perturbations on input values to understand to
which extent every feature impact the prediction using PDPs.

* The input is changed one variable at a time.
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Open The Black Box!

* To empower individual against undesired effects of
automated decision making

* To reveal and protect new vulnerabilities

e To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

* To help people make better decisions
* To align algorithms with human values
 To preserve (and expand) human autonomy



Open Research Questions

* There is no agreement on what an explanation is
* There is not a formalism for explanations
* How to evaluate the goodness of explanations?

* There is no work that seriously addresses the
problem of quantifying the grade of
comprehensibility of an explanation for humans

* What if there is a cost for querying a black box?




References

* Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods
for explaining black box models. ACM computing surveys (CSUR), 51(5), 1-42.

e Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., & Rinzivillo, S. (2021). Benchmarking and
Survey of Explanation Methods for Black Box Models. arXiv preprint arXiv:2102.13076.

* Molnar, C. (2020). Interpretable machine learning. Lulu. com.

. g/IGi”eE' '£.8(2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence,
7/, 1-38.

* Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence
(XAIl). IEWEE. 2018.

e Artelt, A., & Hammer, B. (2019). On the computation of counterfactual explanations--A survey. arXiv preprint
arXiv:1911.07749.

e Artelt, A., & Hammer, B. (2019). On the computation of counterfactual explanations--A survey. arXiv preprint
arXiv:1911.07749.

 Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications
in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 22071-22080.

* Zhang, Y., & Chen, X. (2018). Explainable recommendation: A survey and new perspectives. arXiv preprint
arXiv:1804.11192.



References

e Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018, October). Explaining explanations:
An overview of interpretaioility of machine learning. In 2018 IEEE 5th International Conference on data
science and advanced analytics (DSAA) (pp. 80-89). IEEE.

e Ribeiro, M. T., et al. " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD. 2016

* Lundberg, S., & Lee, S. I. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874. 2017

e Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., & Turini, F. (2019). Factual and
counterfactual explanations for black box decision making. IEEE Intelligent Systems, 34(6), 14-23.

* Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., & Turini, F. (2019, July). Meaningful

explanations of Black Box Al decision systems. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 33, No. 01, pp. 9780-9784).

* Guidotti, R., Monreale, A., Matwin, S., & Pedreschi, D. (2019, September). Black box explanation by learning
image exemplars in the latent feature space. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 189-205). Springer, Cham.

* Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., & Giannotti, F. (2021). GLocalX-From Local to
Global Explanations of Black Box Al Models. Artificial Intelligence, 294, 103457.

* Guidotti, R. (2021). Evaluating local explanation methods on ground truth. Artificial Intelligence, 291,
103428.



References

* Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box:
Automated decisions and the GDPR. Harv. JL & Tech., 31, 841.

» Mittelstadt, B., Russell, C., & Wachter, S. (2019, January). Explaining explanations in Al. In Proceedings of the
conference on fairness, accountability, and transparency (pp. 279-288).

* Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint
arXiv:1702.08608.

* Freitas, A. A. (2014). Comprehensible classification models: a position paper. ACM SIGKDD explorations
newsletter, 15(1), 1-10.

* Romei, A., & Ruggieri, S. 82014). A multidisciplinary survey on discrimination analysis. The Knowledge
Engineering Review, 29(5), 582-638.

e Craven, M. W., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks.
Advances in neural information processing systems, 24-30.

e Augasta, M. G., & Kathirvalavakumar, T. (2012). Reverse engineering the neural networks for rule extraction
in classification problems. Neural processing letters, 35(2), 131-150.

* Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In
Proceedings of the IEEE International Conference on Computer Vision (pp. 3429-3437).

* Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., & Flach, P. (2020, February). FACE: feasible and
actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on Al, Ethics, and
Society (pp. 344-350).



References

* Cortez, P, & Embrechts, M. J. (2011, April). Opening black box data mining models using sensitivity analysis.
In 2011 IEEE Symposium on Computational Intelligence and Data Mining FCIDM) (pp. 341-348). IEEE.

* Kim, B., Gilmer, J., Wattenberg, M., & Viégas, F. (2018). Tcav: Relative concept importance testing with linear
concept activation

* Mothilal, R. K., Sharma, A., & Tan, C. (2020, January). Explaining machine learning classifiers through diverse
counterfactual explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency (pp. 607-617). vectors.

* Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. (2017). Learning certifiably optimal rule lists
for categorical data. arXiv preprint arXiv:1704.01701.

e Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks. In International
Conference on Machine Learning (pp. 3319-3328). PMLR.

e Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: removing noise by adding
noise. arXiv preprint arXiv:1706.03825.

* Chen, J., Song, L., Wainwright, M., & Jordan, M. (2018, July). Learning to explain: An information-theoretic
perspective on model interpretation. In International Conference on Machine Learning (pp. 883-892). PMLR.

 Dhurandhar, A., Chen, P. Y,, Luss, R., Tu, C. C.,, Ting, P., Shanmugam, K., & Das, P. (2018). Explanations based
on the missing: Towards contrastive explanations with pertinent negatives. arXiv preprint arXiv:1802.07623.



Explanation Toolboxes and Repositories

e https://github.com/jphall663/awesome-machine-learning-interpretability

 https://github.com/pbiecek/xai resources
* https://github.com/ModelOriented/DrWhy
* https://fat-forensics.org/

* https://github.com/Trusted-Al/AIX360
 https://captum.ai/

e https://github.com/interpretml/interpret
e https://github.com/SeldonlO/alibi
* https://github.com/pair-code/what-if-tool



https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/pbiecek/xai_resources
https://github.com/ModelOriented/DrWhy
https://fat-forensics.org/
https://github.com/Trusted-AI/AIX360
https://captum.ai/
https://github.com/interpretml/interpret
https://github.com/SeldonIO/alibi
https://github.com/pair-code/what-if-tool

