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Gradient Descent

* GD is a very effective and widely usable mathematical technique to
find the best parameters in many and various tasks such as

* Linear Regression
* Logistic Regression
* Neural Networks



GD for Linear Regression

Predicted Height = intercept + slope x Weight

\

So let’s learn how Gradient
Descent can fit a line to data by
finding the optimal values for the

Height - Intercept and the Slope.




GDtofindb

Height -

Predicted Height ={intercept

+ slope x Weight

\

Actually, we’ll start by using
Gradient Descent to find the
Intercept.



GDtofindb

Height -

Predicted Height = intercept + slopelx Weight

f

So for now, let’s just plug in
the Least Squares estimate
for the Slope, 0.64.



GDtofindb

Predicted Height = intercept + 0.64 x Weight

...and we’ll use Gradient

_ Descent to find the the
Height - / optimal value for the
Intercept.
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GDtofindb

Predicted Height = intercept + 0.64 x Weight

...and we’ll use Gradient
Descent to find the the
optimal value for the
Intercept.




GDtofindb

Predicted Height = intercept + 0.64 x Weight

The first thing we do is
pick a random value for
the Intercept.
Height =




GDtofindb

Height -

Predicted Height = intercept + 0.64 x Weight

The first thing we do is
pick a random value for
the Intercept.

This is just an initial
guess that gives
Gradient Descent

something to improve
upon.



GDtofindb ==

Predicted Height 4 0 |+ 0.64 x Weight

\

In this case, we’ll use 0,
but any number will do.

Height -




GDtofindb =

Predicted Height 5 0 |+ 0.64 x Weight

And that gives us the
equation for this line.




GDtofindb

In this example, we will evaluate
how well this line fits the data
with the
Sum of the Squared Residuals.




GDtofindb

Height -

In this example, we will evaluate
how well this line fits the data
with the
Sum of the Squared Residuals.

NOTE: In Machine Learning lingo, The
Sum of the Squared Residuals is a type of
Loss Function.



GDtofindb

We'll start by
calculating this
residual.




GDtofindb

We get the Predicted
Height, the point on
the line...

...by plugging
Weight = 0.5 into the

equation for the Iine...\

Predicted Height = 0 + 0.64 x Weight




GDtofindb

We get the Predicted
Height, the point on
the line...

...by plugging
Weight = 0.5 into the

equation for the Iine...\

Predicted Height =0 + 0.64 x 0.5




GDtofindb

...and the Predicted Height
is 0.32.

—~——
Predicted Height =0 + 0.64 x 0.5 = 0.32




GDtofindb

The residual is the difference
between the Observed Height,
and the Predicted Height...

Weight Predicted Height = 0 + 0.64 x 0.5 = 0.32



GDtofindb

The residual is the difference
between the Observed Height,
and the Predicted Height...

/\

Residual = Observed Height - Predicted Height

Predicted Height =0 + 0.64 x 0.5 = 0.32



GDtofindh

um of squared residuals = \

We'll keep track of the Sum of the
Squared Residuals up here.

Residual =1.4-0.32 = 1.1




Sum of squared residuals = 1.12 + 0.42 + 1.32 4 3.1

|

| @ In the end, 3.1 is the Sum of
: the Squared Residuals.




Sum of squared residuals = 1.12 + 0.42 + 1.32 =

~[2]

Now, just for fun,
we can plot that
® value on a graph.
Sum of
Squared =«
Residuals
0 1

Intercept



Sum of squared residuals = 1.12 + 0.42 + 1.32 = 3.1

o — This point

represents the Sum
of the Squared

Residuals when the
Intercept = 0.

0 1 2

Intercept




GDtofindb

However, if the
Intercept = 0.25...

Height -

Weight



G D tO fl n d b ...then we would get

this point on the
graph.
©
Sum of
Heiaht - Squared =
J Residuals ®

A 0 1

Weight Intercept



GDtofindb

And if the
Intercept = 0.5...

Height -

Weight



GDtofindb

...then we would get
this point.

Sum of
Squared
Residuals

Height -

: 0 1
Weight Intercept



GDtofindb

And for increasing values for the
Intercept, we get these points.

: Sum of
Height - : Squared +
9 ¥ Residuals @
V77 ¢
ey . ‘

: 0 1
Weight Intercept



GDtofindb

And for increasing values for the
Intercept, we get these points.

Sum of @
Height = Squared =
9 Residuals ®
@
@
0e®

: 0 1
Weight Intercept



GDtofindb

Of the points that we
calculated for the graph,
this one has the lowest
Sum of Squared
Residuals...

Sum of
Squared
Residuals

Intercept



GDtofindb

...but is it the best we can do?

Sum of
Squared «
Residuals

Intercept



G D tO flnd b What if the best value

for the Intercept is
somewhere between
these values?

Sum of
Squared «
Residuals
o P o
0 1

Intercept



GDtofindb

A slow and painful method for
finding the minimal Sum of the
Squared Residuals is to plug and
chug a bunch more values for the
Intercept.

Sum of
Squared «
Residuals

Intercept



GDtofindb

Gradient Descent only does a
few calculations far from the
optimal solution... i

Sum of
Squared «
Residuals

0 1

Intercept



GDtofindb

Gradient Descent only does a
few calculations far from the
optimal solution...

Sum of
Squared «
Residuals .

Intercept



GDtofindb

...and increases the number of

calculations closer to the

optimal value.

Sum of
Squared
Residuals

1

Intercept



GDtofindb

...and increases the number of

calculations closer to the
optimal value.

Sum of
Squared
Residuals

Intercept



GDtofindb

...and increases the number of

calculations closer to the

optimal value.

Sum of
Squared
Residuals

% o

Intercept



GDtofindb

optimal value.

...and increases the number of
calculations closer to the

Sum of
Squared
Residuals

Intercept



GDtofindb

In other words, Gradient
Descent identifies the optimal
value by taking big steps when

it is far away...

Sum of
Squared =
Residuals

0 1

Intercept



GDtofindb

...and baby steps
when it is close.

Sum of
Squared «
Residuals

0 1

Intercept



G D tO fl N d b So let’s get back to using Gradient

Descent to find the optimal value for the
Intercept, starting from a random value. In
this case, the random value was 0.

/




When we calculated the
Sum of the Squared
Residuals...

Sum of squared residuals

Sum of
Squared «
Residuals

0 1

Intercept




Sum of squared residuals = (observed - predicted)?

...the first residual
was the difference
between the
Observed Height...

Height




Sum of squared residuals = (1.4 - predicted)?

...and the
Predicted
Height...

Height




Height -

Sum of squared residuals = (1.4 - predicted)?

\

...S0 we replace

Predicted Height...

Predicted Height = intercept + 0.64 x weight

Weight



Sum of squared residuals = (1.4 - (intercept + 0.64 x weight))?

{

...with the equation
for the line.

Height -

Predicted Height = intercept + 0.64 x weight

Weight




Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

/

...we replace weight
with 0.5.




Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

+ (1.9 - (intercept + 0.64 x 2.3))
+ (3.2 - (intercept + 0.64 x 2.9))2

Now we can easily
plug in any value for
the intercept...

1

Intercept




Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))?

+ (1.9 - (intercept + 0.64 x 2.3))?
+ (3.2 - (intercept + 0.64 x 2.9))

@

Sum of
Squared =
...and get the Sum  Residuals
of the Squared
Residuals.
0

1

Intercept



Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

+ (1.9 - (intercept + 0.64 x 2.3))2
+ (3.2 - (intercept + 0.64 x 2.9))2

Sum of
Squared =
...and get the Sum Residuals
of the Squared
Residuals.

Intercept



Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

+ (1.9 - (intercept + 0.64 x 2.3))2
+ (3.2 - (intercept + 0.64 x 2.9))2

Sum of
Squared «
Residuals

Thus, we now
have an equation
for this curve...

Intercept



...and we can take the SSum 02
i . ; quared «
derivative Qf this function Residuals
and determine the slope at
any value for the Intercept. "
0 1

Intercept



...and we can take the SSum 0;
ivati : - quared «
derivative of this function Residuals

and determine the slope at =
any value for the Intercept. 1>

Intercept



Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

+ (1.9 - (intercept + 0.64 x 2.3))2
+ (3.2 - (intercept + 0.64 x 2.9))2

So let’s take the derivative Sum of
f the Sum of the Squared -
v Residuals

Squared Residuals with
respect to the Intercept.

0 1

Intercept



Sum of squared residuals = (1.4 - (intercept + 0.64 x 0.5))2

+ (1.9 - (intercept + 0.64 x 2.3))2
+ (3.2 - (intercept + 0.64 x 2.9))2

d
d intercept

Sum of squared residuals =



Sum of squared residuals ={(1.4 - (intercept + 0.64 x 0.5))2

...the derivative of
the first part...

, d Sum of squared residuals = = d (1.4 - (intercept + 0.64 x 0.5))2
d intercept d intercept




Sum of squared residuals =

+ (1.9 - (intercept + 0.64 x 2.3))2

...plus the
derivative of the
second part...
. g Sum of squared residuals =
d intercept

+ —2 . (1.9- (intercept + 0.64 x 2.3)
d intercept



Sum of squared residuals =

+ (3.2 - (intercept + 0.64 x 2.9))2

...plus the derivative
of the third part.

d
d intercept

Sum of squared residuals =

d
* d intercept

(3.2 - (intercept + 0.64 x 2.9))2



d
d intercept

d
d intercept

(1.4 - (intercept + 0.64 x 0.5))2 = 2(1.4 - (intercept + 0.64 x 0.5)) x -1

=-2(1.4 - (intercept + 0.64 x 0.5))

/ ...is the derivative

...and this...

of the first part...

/

Sum of squared residuals =

— 9 (1.4 - (intercept + 0.64 x 0.5
d intercept




. d (1.4 - (intercept + 0.64 x 0.5))2 = 2(1.4 - (intercept + 0.64 x 0.5)) x -1
d intercept

=-2(1.4 - (intercept + 0.64 x 0.5))

...80 we plug it in.

d
d intercept

Sum of squared residuals § -2(1.4 - (intercept + 0.64 x 0.5))




GDtofindb

d
d intercept

Now we need to take the
derivative of the next two parts.

Sum of squared residuals =

v

d
d intercept

-

. d
d intercept

(1.9 - (intercept + 0.64 x 2.3))

(3.2 - (intercept + 0.64 x 2.9))2




GDtofindb

d
d intercept

Sum of squared residuals = -2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3))

+ -2(3.2 - (intercept + 0.64 x 2.9))



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3))
+ -2(3.2 - (intercept + 0.64 x 2.9))

Now that we have the derivative,
Gradient Descent will use it to find
where the Sum of Squared S~

Sum of

Squared .

Residuals

Residuals is lowest.

Ll

Intercept

[\D-



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3)) Sum of
+-2(3.2 - (intercept + 0.64 x 2.9)) ek

Residuals

NOTE: If we were using Least
Squares to solve for the optimal 0 1
value for the Intercept, we would\ Intercept

simply find where the the slope of
the curve = 0.

Nd



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3))
+ -2(3.2 - (intercept + 0.64 x 2.9))

In contrast, Gradient Descent
finds the minimum value by taking
steps from an initial guess until it
reaches the best value.

Sum of
Squared .
Residuals

X
"

n

1

Intercept



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3))
+ -2(3.2 - (intercept + 0.64 x 2.9))

In contrast, Gradient Descent
finds the minimum value by taking _

Sum of
Squared .
Residuals

x—X—
0 1 2
/ Intercept

steps from an initial guess until it
reaches the best value.



by td tSum of squared residuals =
- dintercep -2(1.4 - (intercept + 0.64 x 0.5)
+-2(1.9 - (intercept + 0.64 x 2.3)) Sum of
+-2(3.2 - (intercept + 0.64 x 2.9)) :;?SLZ?S ]
X—XX—

In contrast, Gradient Descent

0 1
finds the minimum value by taking \_/ Intercept

steps from an initial guess until it
reaches the best value.



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + 0.64 x 0.5)

+-2(1.9 - (intercept + 0.64 x 2.3))
+ -2(3.2 - (intercept + 0.64 x 2.9))

This makes Gradient Descent very
useful when it is not possible to
solve for where the derivative = 0,
and this is why Gradient Descent
can be used in so many different
situations.

Sum of
Squared .
Residuals
0 1 2
Intercept



by td tSum of squared residuals = |
MEICEP (1.4 - (intercept + 0.64 x 0.5)
+-2(1.9 - (intercept + 0.64 x 2.3)) Siifeh
+-2(3.2- (intercept + 0.64x2.9)  Sauared -
Remember, we started by setting A X '
the Intercept to a random number. . Integcept

In this case, that was 0.



= td tSum of squared residuals = |
—_d intercep -2(1.4 - (0 + 0.64 x 0.5)
+-2(1.9 - (0 + 0.64 x 2.3)) Sum of
+-2(3.2- (0 +0.64 x2.9)) S;?SLZ?S '
. x l
So we plug 0 into 0

M Intercept
the derivative... &



= td tSum of squared residuals = |
. dinercept 0 4 (0+064%05)
+-2(1.9 - (0 + 0.64 x 2.3)) Sum of
+-2(3.2- (0 +0.64x2.9) ot |
=57
X .
...and we get -5.7. 0

Intercept



d
d intercept

Sum of squared residuals =
-2(1.4 - (0 + 0.64 x 0.5)

+-2(1.9 - (0 + 0.64 x 2.3))
+-2(3.2 - (0 + 0.64 x 2.9))

=-9.7

So when the Intercept = 0,

the slope of the curve = -5.7.

Sum of

Squared .

Residuals

L]

1

Intercept



Sum of
Squared
Residuals

X—

NOTE: The closer we get to the 0
optimal value for the Intercept, the
closer the slope of the curve gets to 0.

Intercept



Sum of
Squared .
Residuals

' X
This means that when _/0'/' 1
Intercept

the slope of the curve is
closeto0...



Sum of
Squared .
Residuals

...then we should take baby O/T::iept

steps, because we are close
to the optimal value...




Sum of
Squared .
Residuals

...and when the slope is Intercept
far from O...



Sum of
Squared .
Residuals

0 1
...then we should take big steps, Intercept
because we are far from the S

optimal value.




Sum of
Squared .
Residuals

; X

X
0 1 2
However, if we take a Intercept
super huge step...



Sum of
Squared .
Residuals

...then we would increase Intercept

the Sum of the Squared
Residuals!



Sum of
Squared .
Residuals

So the size of the step should be X ; X
iy 0 1 2
related to the slope, since it tells us Intercept
if we should take a baby step or a
big step, but we need to make sure
the big step is not too big.



d
d intercept

Sum of squared residuals =
-2(1.4 - (0 + 0.64 x0.5)

+-2(1.9 - (0 + 0.64 x 2.3))
+-2(3.2 - (0 + 0.64 x 2.9))

=-9.7

Step Size =-5.7

Gradient Descent determines the
Step Size by multiplying the slope...

)

Sum of
Squared .
Residuals
X ; :
0 1 2
Intercept



Sum of
Squared .
Residuals
Step Size =-5.7 x 0.1 ) 4 :
x 0 1
Intercept

...by a small number called
The Learning Rate.



Sum of
Squared .
Residuals

Step Size =-5.7x0.1 =-0.57 ) 4 :
\ 0 1
Intercept

When the Intercept = 0, the
Step Size = -0.57.



Sum of
Squared .
Residuals
Step Size =-5.7 x0.1 =-0.57 ) 4 :
J Intercept
With the Step Size,

New Intercept = € \ye can calculate a
New Intercept.



Sum of
Squared .
Residuals

X .

0 1
/ Intercept

New Intercept = Old Intercept
The New Intercept is

the Old Intercept...



Step Size =-5.7x0.1 H4-0.57

New Intercept = Old Intercept - Step Size

...minus the Step Size.

Sum of

Squared .

Residuals

Intercept



Sum of
Squared .
Residuals

x—X—
0 1
Intercept
New Intercept = 0 - (-0.57) 40.57 \ /

...and the the New Intercept = 0.57.



Sum of
Squared .
Residuals

Intercept

Going back to the original
data and the original line,
with the Intercept = 0...



Sum of
Squared .
Residuals

Intercept

...we can see how much the
residuals shrink when the
Intercept = 0.57.



Sum of
Squared .
Residuals

%——X—X .

Intercept

New Intercept = 0.57 - (-0.23) 40.8 \

...and the New Intercept = 0.8




Sum of
Squared .
Residuals

x—Xx

0

Intercept

Now we can compare the
residuals when the
Intercept = 0.57...



Sum of
Squared .
Residuals

%—X—X .

Intercept

...to when the
Intercept = 0.8



Sum of
Squared .
Residuals

x—Xx

0 1
V Intercept

Notice that the first step was
relatively large compared to
the second step.



Sum of
Squared .
Residuals
| T I3 ) 0 1
We'ght Intercept

Then we take another step and
the New Intercept = 0.92...



Sum of
Squared .
Residuals
| T I3 ) 0 1
Welght Intercept

...and then we take another
step and the
New Intercept = 0.94...



Sum of
Squared .
Residuals
| | : [} ) 0 1
Weight Intercept

...and then we take another
step and the
New Intercept = 0.95.



GDtofindb

After 6 steps, the Gradient Descent
estimate for the Intercept is 0.95.

Sum of
Squared .
Residuals
0 1 2

Intercept



GDtofindb

Gradient Descent stops
when the Step Size is Very
Close To 0.

Step Size = Slope x Learning Rate

Sum of
Squared .
Residuals
0 1 2

Intercept



GDtofindb

The Step Size will be Very
Close to 0 when the Slope
s very close to 0.

v/

Step Size - Slope x Learning Rate

—

Sum of

Squared .

Residuals

1

Intercept



GDtofindb

In practice, the
Minimum Step Size = 0.001
or smaller.

Step Size = Slope x Learning Rate

Sum of
Squared .
Residuals
0 1 2

Intercept



GDtofindb

That said, Gradient
Descent also includes a
limit on the number of steps
it will take before giving up.

Sum of
Squared .
Residuals
0 1 2

Intercept



GDform, b

Predicted Height = intercept + 0.64 x Weight

\

Now that we understand
how Gradient Descent can
estimate the Intercept...

Height -




GDform, b

Predicted Height = intercept + slope x Weight

V

...let’s talk abut how to
estimate the Intercept and
the Slope.

Height =




Sum of squared residuals = (1.4 - (intercept + slope x 0.5))?

Height =

+ (1.9 - (intercept + slope x 2.3))?

+ (3.2 - (intercept + slope x 2.9))2

\

Just like before, we will use the Sum
of the Squared Residuals as the
Loss Function



Sum of squared residuals = (1.4 - (intercept + slope x 0.5))?

+ (1.9 - (intercept + slope x 2.3))2
+ (3.2 - (intercept + slope x 2.9))?

This is a 3-D graph of the
Loss Function for different
values for the Intercept and
the Slope




Sum of squared residuals = (1.4 - (intercept + slope x 0.5))?

Height -

+ (1.9 - (intercept + slope x 2.3))2

+ (3.2 - (intercept + slope x 2.9))?

\

So, just like before, we need to take
the derivative of this function...



...and just like before, we’ll take
the derivative with respect to the
Intercept...

Height -
d

/' d intercept

Sum of squared residuals




...but unlike before, we’ll also take
the derivative with respect to the
Slope!

. . v ; d Sum of squared residuals

d slope




— \We'll start by taking the derivative

/ with respect to the intercept.

Sum of squared residuals =

d
d intercept




Sum of squared residuals ={(1.4 - (intercept + slope x 0.5))?

Just like before, we take the derivative of each part...

. g Sum of squared residuals =| = d
d intercept d intercept

(1.4 - (intercept + slope x 0.5))2




Sum of squared residuals =

+ (3.2 - (intercept + slope x 2.9))

Just like before, we take the derivative of each part...

d
d intercept

Sum of squared residuals =

d
Td intercept

(3.2 - (intercept + slope x 2.9))2




d
d intercept

d
d intercept

(1.4 - (intercept + slope x 0.9))2 = 2(1.4 - (intercept + slope x 0.5)) x -1

= -2(1.4 - (intercept + slope x 0.5))

/ ...is the derivative

...and this...

of the first part...

/

Sum of squared residuals =

d
d intercept

(1.4 - (intercept + slope x 0.5))?




GDform, b

Likewise, we replace these
terms with their derivatives...

d
d intercept

Sum of squared residuals =

+-2(1.9 - (intercept + slope x 2.3))

+ -2(3.2 - (intercept + slope x 2.9))




Now let’s take the derivative of the Sum of
the Squared Residuals with respect to the
Slope.

d

Sum of squared residuals =
d slope 4



Sum of squared residuals 5 (1.4 - (intercept + slope x 0.5))?

Just like before, we take the derivative of each part...

d : d
Sum of squared residuals =
d slope 4 SSEN d slope

(1.4 - (intercept + slope x 0.5))2




Sum of squared residuals =

+ (3.2 - (intercept + slope x 2.9))2

Just like before, we take the derivative of each part...

d
d slope

Sum of squared residuals =

d
d slope

(3.2 - (intercept + slope x 2.9))2




d
d slope

d
d slope

A

...and this...

(1.4 - (intercept + slope x 0.9))2 = 2(1.4 - (intercept + slope x 0.5)) x -0.5

= -2 x 0.5(1.4 - (intercept + slope x 0.5))

...Is the derivative
of the first part...

/

Sum of squared residuals =

d

(1.4 - (intercept + slope x 0.5))2
d slope




d
d slope

(1.4 - (intercept + slope x 0.9))2 = 2(1.4 - (intercept + slope x 0.5)) x -0.5

= -2 x 0.5(1.4 - (intercept + slope x 0.5))

...80 we plug it in.

d
d slope

Sum of squared residuals H -2 x 0.5(1.4 - (intercept + slope x 0.5))




Likewise, we replace these
terms with their derivatives.

!

d
d slope

Sum of squared residuals = ¢

+ -2 x 2.3(1.9 - (intercept + slope x 2.3))

+ -2 x 2.9(3.2 - (intercept + slope x 2.9))




d

Sum of squared residuals =

T—=_d intercept . Here’s the derivative of the
-2(1.4 - (intercept + slope x 0.5) Sum of the Squared
+-2(1.9 - (intercept + slope x 2.3)) Residuals with respect to
+ -2(3.2 - (intercept + slope x 2.9)) the Intercept...
...and here’s the derivative
with respect to the Slope.
d /

Sum of squared residuals =
-2 x 0.5(1.4 - (intercept + slope x 0.5))

+ -2 x 2.9(3.2 - (intercept + slope x 2.9))
+ -2 x 2.3(1.9 - (intercept + slope x 2.3))

d slope



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + slope x 0.5)

+-2(1.9 - (intercept + slope x 2.3))
+ -2(3.2 - (intercept + slope x 2.9))

NOTE: When you have two or
more derivatives of the same
function, they are called a

Gradient.
d

d slope

Sum of squared residuals =
-2 x 0.5(1.4 - (intercept + slope x 0.5))

+ -2 x 2.9(3.2 - (intercept + slope x 2.9))
+ -2 x 2.3(1.9 - (intercept + slope x 2.3))



d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + slope x 0.5)

+-2(1.9 - (intercept + slope x 2.3)) We will use this Gradient to

+ -2(3.2 - (intercept + slope x 2.9)) descend to lowest point in the
Loss Function, which, in this
case, is the Sum of the Squared
Residuals...

...thus, this is why this algorithm is
- S/C(J') ~ Sum of squared residuals = called Gradient Descent!
-2 x 0.5(1.4 - (intercept + slope x 0.5))
+ -2 x 2.9(3.2 - (intercept + slope x 2.9))
+ -2 x 2.3(1.9 - (intercept + slope x 2.3))




Just like before, we will start by
picking a random number for the
Intercept. In this case we'll set the
Intercept =0...

...and we’ll pick a random number
for the Slope. In this case we’ll set
the Slope = 1.



Thus, this line, with Intercept =0 ===
and Slope = 1, is where we will
start.




d
d intercept

Sum of squared residuals =
-2(1.4 - (intercept + slope x 0.5)

+-2(1.9 - (intercept + slope x 2.3))
+ -2(3.2 - (intercept + slope x 2.9))

\ Now let’s plug in 0 for the

Intercept and 1 for the Slope...

d
d slope

Sum of squared residuals
-2 x 0.5(1.4 - (intercept + slope x 0.5))

+ -2 x 2.9(3.2 - (intercept + slope x 2.9))
+ -2 x 2.3(1.9 - (intercept + slope x 2.3))



d
d intercept

Sum of squared residuals =
-2(1.4-(0+1x0.5)

+-2(1.9- (0 +1x2.3)
+-23.2-(0+1x2.9))

I
I
A
(o]

...and that gives us
two Slopes...

d
d slope

Sum of squared residuals =
-2x0.51.4-(0+1x0.5)

+-2x2.9(3.2-(0+1x2.9)
+-2x2.3(1.9- (0 + 1x2.3))

I
1
O
oo




d
d intercept

Sum of squared residuals =
-2(1.4-(0+1x0.95) Step Sizeintercept = -1.6 x Learning Rate

+-2(1.9- (0 + 1x2.3) /
+-23.2-(0+1x29)|=-1.6
...now we plug the

Slopes into the Step
Size formulas...

d
d slope

Sum of squared residuals = Step Sizesiope = -0.8 x Learning Rate
-2x0.5(1.4 - (0 + 1 x0.5))

+-2x2.9(3.2-(0+1x2.9)
+-2x2.3(1.9-(0 +1x2.3))

I
1
o
oo




Step Sizentercept = -1.6 x Learning Rate

/

...and multiply by the
Learning Rate, which
this time we set t0 0.01...

/

Step Sizesiope = -0.8 x Learning Rate



New Intercept = Old Intercept - Step Size

Now we calculate the
New Intercept and New
Slope by plugging in the

Old Intercept and the

Old Slope...

/

New Slope = Old Slope - Step Size



New Intercept = 0 - (-0.016) = 0.016

f

...and we end up
with a New Intercept
and a New Slope.

|

New Slope = 1 - (-0.008) = 1.008



GDform, b

Height -

Wit

New Intercept = 0 - (-0.016) = 0.016

This is the line we
started with...
Slope = 1 and
Intercept = 0)

New Slope = 1 - (-0.008) = 1.008



GDform, b

Height -

New Intercept = 0 - (-0.016) = 0.016

\ ...and this is the new line
(with Slope = 1.008 and
Intercept = 0.016) after

the first step.

New Slope = 1 - (-0.008) = 1.008



GDform, b

Now we just repeat what we did
until all of the Steps Sizes are very
small or we reach the Maximum
Number of Steps.

Height -




GDform, b

Now we just repeat what we did
until all of the Steps Sizes are very
small or we reach the Maximum
Number of Steps.

Height -




GDform, b

Now we just repeat what we did
until all of the Steps Sizes are very
small or we reach the Maximum
Number of Steps.

Height -




GDform, b

Now we just repeat what we did
until all of the Steps Sizes are very
small or we reach the Maximum
Number of Steps.




GD form, b

Now we just repeat what we did

Height =
> until all of the Steps Sizes are very
g small or we reach the Maximum
A Number of Steps.




GDform, b

This is the best fitting line,

Height - with Intercept = 0.95 and
Slope = 0.64, the same
- values we get from Least
P Squares.




GD form, b

We now know how Gradient
Descent optimizes two parameters,
the Slope and Intercept.

Height -




GD for more parameters and variables

: If we had more parameters,
Height - then we’d just take more
derivatives and everything else
BMI stays the same.




Gradient Descent Recap

Step 1: Take the derivative of the Loss Function for each parameter in it.
In fancy Machine Learning Lingo, take the Gradient of the Loss Function.



Gradient Descent Recap

Step 2: Pick random values for the parameters.



Gradient Descent Recap

Step 3: Plug the parameter values into the derivatives (ahem, the Gradient).



Gradient Descent Recap

Step 4: Calculate the Step Sizes: Step Size = Slope x Learning Rate



Gradient Descent Recap

Step 5: Calculate the New Parameters:

New Parameter = Old Parameter - Step Size



Gradient Descent Recap

Now go back to Step 3 and repeat until
Step Size is very small, or you reach
the Maximum Number of Steps.

Step 3: Plug the parameter values into the derivatives (ahem, the Gradient).

Step 4: Calculate the Step Sizes: Step Size = Slope x Learning Rate

Step 5: Calculate the New Parameters:

New Parameter = Old Parameter - Step Size



Stochastic Gradient Descent

In our example, we only had
three data points, so the math
didn’t take very long...

Height -

Weight



Stochastic Gradient Descent

...but when you have millions of
data points, it can take a long
time.

Height -

Weight



Stochastic Gradient Descent

Height -

So there is a thing called
Stochastic Gradient Descent
that uses a randomly selected
subset of the data at every step

rather than the full dataset.

This reduces the time spent
calculating the derivatives of the
Loss Function.



GD Summary

e GD is an optimization algorithm.

* You can use GD to find minimum (or maximum, then it is called
Gradient Ascent) of many different functions.

* GD does not really care what is the function that it minimizes, it just
does what it was asked for.

e Using GD, you must know how tell if one value of the parameter of
interest is "better" than the other.

* You must provide GD some function to minimize/maximize, and GD
will deal with finding its optimum value.
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