DATA MINING 2
Anomaly & Outliers Detection

Riccardo Guidotti

a.a. 2023/2024

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining and from Kriegel, Kröger, Zimek Tutorial on Outlier Detection Techniques
What is an Outlier?

Definition of Hawkins [Hawkins 1980]:

• “An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism”

Statistics-based intuition

• Normal data objects follow a “generating mechanism”, e.g. some given statistical process

• Abnormal objects deviate from this generating mechanism
Anomaly/Outlier Detection

• What are anomalies/outliers?
 • The set of data points that are considerably different than the remainder of the data

• Natural implication is that anomalies are relatively rare
 • One in a thousand occurs often if you have lots of data
 • Context is important, e.g., freezing temps in July

• Can be important or a nuisance
 • 10 foot tall 2 year old
 • Unusually high blood pressure
Applications of Outlier Detection

• Fraud detection
 • Purchasing behavior of a credit card owner usually changes when the card is stolen
 • Abnormal buying patterns can characterize credit card abuse

• Medicine
 • Unusual symptoms or test results may indicate potential health problems of a patient
 • Whether a particular test result is abnormal may depend on other characteristics of the patients (e.g. gender, age, ...)

• Public health
 • The occurrence of a particular disease, e.g. tetanus, scattered across various hospitals of a city indicate problems with the corresponding vaccination program in that city
 • Whether an occurrence is abnormal depends
Importance of Anomaly Detection

Ozone Depletion History

• In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels.

• Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?

• The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!
Causes of Anomalies

• Data from different classes
 • Measuring the weights of oranges, but a few grapefruit are mixed in

• Natural variation
 • Unusually tall people

• Data errors
 • 200 pound 2 year old
Distinction Between Noise and Anomalies

• Noise is erroneous, perhaps random, values or contaminating objects
 • Weight recorded incorrectly
 • Grapefruit mixed in with the oranges

• Noise does not necessarily produce unusual values or objects
• Noise is not interesting
• Anomalies may be interesting if they are not a result of noise
• Noise and anomalies are related but distinct concepts
General Issues: Number of Attributes

- Many anomalies are defined in terms of a single attribute
 - Height
 - Shape
 - Color

- Can be hard to find an anomaly using all attributes
 - Noisy or irrelevant attributes
 - Object is only anomalous with respect to some attributes

- However, an object may not be anomalous in any one attribute
General Issues: Anomaly Scoring

• Many anomaly detection techniques provide only a binary categorization
 • An object is an anomaly or it is not
 • This is especially true of classification-based approaches

• Other approaches assign a score to all points
 • This score measures the degree to which an object is an anomaly
 • This allows objects to be ranked

• In the end, you often need a binary decision
 • Should this credit card transaction be flagged?
 • Still useful to have a score

• How many anomalies are there?
Other Issues for Anomaly Detection

- Find all anomalies at once or one at a time
 - Swamping
 - Masking

- Evaluation
 - How do you measure performance?
 - Supervised vs. unsupervised situations

- Efficiency

- Context
Variants of Anomaly Detection Problems

• Given a data set D, find all data points $x \in D$ with anomaly scores greater than some threshold t

• Given a data set D, find all data points $x \in D$ having the top-n largest anomaly scores

• Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D
Model-Based Anomaly Detection

Build a model for the data and see

- **Unsupervised**
 - Anomalies are those points that don’t fit well
 - Anomalies are those points that distort the model
 - Examples:
 - Statistical distribution
 - Clusters
 - Regression
 - Geometric
 - Graph

- **Supervised**
 - Anomalies are regarded as a rare class
 - Need to have training data
If the ground truth of anomalies is available we can prepare a classification problem to unveil outliers.

As classifiers we can use all the available machine learning approaches: Ensembles, SVM, DNN.

The problem is that the dataset would be very unbalanced.

Thus, ad-hoc formulations/implementation should be adopted.
Unsupervised Anomaly Detection Techniques

- **Proximity-based**
 - Anomalies are points far away from other points
 - Can detect this graphically in some cases

- **Density-based**
 - Low density points are outliers

- **Pattern matching**
 - Create profiles or templates of atypical but important events or objects
 - Algorithms to detect these patterns are usually simple and efficient
Outliers Detection Approaches Taxonomy

• **Global vs local** outlier detection
 • Considers the set of reference objects relative to which each point’s “outlierness” is judged

• **Labeling vs scoring** outliers
 • Considers the output of an algorithm

• **Modeling properties**
 • Considers the concepts based on which “outlierness” is modeled
Global versus Local Approaches

• Considers the resolution of the reference set w.r.t. which the “outlierness” of a particular data object is determined

• **Global approaches**
 • The reference set contains all other data objects
 • Basic assumption: there is only one normal mechanism
 • Basic problem: other outliers are also in the reference set and may falsify the results

• **Local approaches**
 • The reference contains a (small) subset of data objects
 • No assumption on the number of normal mechanisms
 • Basic problem: how to choose a proper reference set

• **Notes**
 • Some approaches are somewhat in between
 • The resolution of the reference set is varied e.g. from only a single object (local) to the entire database (global) automatically or by a user-defined input parameter
Labeling versus Scoring

- Considers the output of an outlier detection algorithm

Labeling approaches
- Binary output
- Data objects are labeled either as normal or outlier

Scoring approaches
- Continuous output
- For each object an outlier score is computed (e.g. the probability for being an outlier)
- Data objects can be sorted according to their scores

Notes
- Many scoring approaches focus on determining the top-n outliers (parameter n is usually given by the user)
- Scoring approaches can usually also produce binary output if necessary (e.g. by defining a suitable threshold on the scoring values)
Model-based Approaches

Approaches classified by the properties of the underlying modeling

• Intuition
 • Apply a model to represent normal data points
 • Outliers are points that do not fit to that model
• Sample approaches
 • Probabilistic tests based on statistical models
 • Depth-based approaches
 • Deviation-based approaches
 • Some subspace outlier detection approaches
Model-based Approaches

Proximity-based Approaches

• Intuition
 • Examine the spatial proximity of each object in the data space
 • If the proximity of an object considerably deviates from the proximity of other objects it is considered an outlier

• Sample approaches
 • Distance-based approaches
 • Density-based approaches
 • Some subspace outlier detection approaches
Model-based Approaches

Angle-based approaches

• Intuition
 • Examine the spectrum of pairwise angles between a given point and all other points
 • Outliers are points that have a spectrum featuring high fluctuation
Visual Approaches

- Boxplots
- Scatter plots

Limitations
- They do not return explicit values
- Subjective
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q3 and Q1. \(IQR = Q3 - Q1 \)

- x is an outlier if \(x < Q1 - k IQR \) or \(x > Q3 + k IQR \) (generally \(k=1.5 \))

- In a boxplot, the highest and lowest occurring value within this limit are indicated by whiskers of the box and any outliers as individual points.
HBOS - Histogram-based Outlier Score

• *It assumes feature independence* and calculates the outlier scores by building histograms.
• Univariate histogram for each single feature
 • Categorical data: Simple counting
 • Numerical data:
 1. Bin width with \(k \) bins having equal width
 2. Bin width with \(N/k \) instances per bin (equal frequency)
• Frequency (relative amount) of records in a bin is used as density estimation
• Histograms are normalized to \([0,1]\) for each single feature
• HBOS for each record \(p \) is computed as a product of the inverse of the estimated density:

\[
HBOS(p) = \sum_{i=0}^{d} \log\left(\frac{1}{\text{hist}_i(p)}\right)
\]
Statistical Approaches
Statistical Approaches

Probabilistic definition of an outlier: An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?
Normal Distributions

One-dimensional Gaussian

Two-dimensional Gaussian
Statistical-based – Grubbs’ Test

• Detect outliers in univariate data
• Assume data comes from normal distribution
• Detects one outlier at a time, remove the outlier, and repeat
 • H_0: There is no outlier in data
 • H_A: There is at least one outlier
• Grubbs’ test statistic:
 one-sided test with α/N
 two-sided test with $\alpha/2N$
• Reject null hypothesis H_0 of no outliers if:
 $$G > \frac{(N - 1)}{\sqrt{N}} \sqrt{N - 2 + \frac{t^2_{\alpha/N, N-2}}{N}}$$
 where $t_{\alpha/N, N-2}$ is the upper critical value of the Student’s t-distribution with $\frac{\alpha}{2}$ significance and $N - 2$ degrees of freedom.
Statistical-based – Likelihood Approach

• Assume the data set D contains samples from a mixture of two probability distributions:
 • M (majority distribution)
 • A (anomalous distribution)

• General Approach:
 • Initially, assume all the data points belong to M
 • Let $L_t(D)$ be the log likelihood of D at time t
 • For each point x_t that belongs to M, move it to A
 • Let $L_{t+1}(D)$ be the new log likelihood.
 • Compute the difference, $\Delta = L_t(D) - L_{t+1}(D)$
 • If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A
Statistical-based – Likelihood Approach

• Data distribution, \(D = (1 - \lambda) M + \lambda A \)
 - \(M \) is a probability distribution estimated from data
 • Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
 - \(A \) is initially assumed to be uniform distribution
 - Likelihood at time \(t \):

\[
L_t(D) = \prod_{i=1}^{N} P_D(x_i) = \left(1 - \lambda\right)^{|M_t|} \prod_{x_i \in M_t} P_{M_t}(x_i) \left(\lambda^{|A_t|} \prod_{x_i \in A_t} P_{A_t}(x_i)\right)
\]

\[
LL_t(D) = |M_t| \log(1 - \lambda) + \sum_{x_i \in M_t} \log P_{M_t}(x_i) + |A_t| \log \lambda + \sum_{x_i \in A_t} \log P_{A_t}(x_i)
\]
Strengths/Weaknesses of Statistical Approaches

Pros
• Firm mathematical foundation
• Can be very efficient
• Good results if distribution is known

Cons
• In many cases, data distribution may not be known
• For high dimensional data, it may be difficult to estimate the true distribution
• Anomalies can distort the parameters of the distribution
 • Mean and standard deviation are very sensitive to outliers
Deviation-based Approaches
Deviation-based Approaches

• General idea
 • Given a set of data points (local group or global set)
 • Outliers are points that do not fit to the general characteristics of that set, i.e., the variance of the set is minimized when removing the outliers

• Basic assumption
 • Outliers are the outermost points of the data set
Deviation-based Approaches

Model [Arning et al. 1996]

- Given a smoothing factor \(SF(I) \) that computes for each \(I \subseteq DB \) how much the variance of DB is decreased when I is removed from DB
- With equal decrease in variance, a smaller exception set \(E \) is better
- The outliers are the elements of \(E \subseteq DB \) for which the following holds: \(SF(E) \geq SF(I) \) for all \(I \subseteq DB \)

Discussion:

- Similar idea like classical statistical approaches (assuming one distribution) but independent from the chosen kind of distribution
- Naïve solution is in \(O(2n) \) for \(n \) data objects
- Heuristics like random sampling or best first search are applied
- Applicable to any data type (depends on the definition of SF)
- Originally designed as a global method
- Outputs a labeling
Depth-based Approaches
Depth-based Approaches

• General idea
 • Search for outliers at the border of the data space but independent of statistical distributions
 • Organize data objects in convex hull layers
 • Outliers are objects on outer layers

• Basic assumption
 • Outliers are located at the border of the data space
 • Normal objects are in the center of the data space
Depth-based Approaches

Model [Tukey 1977]

- Points on the convex hull of the full data space have depth = 1
- Points on the convex hull of the data set after removing all points with depth = 1 have depth = 2
- ...
- Points having a depth \(\leq k \) are reported as outliers
Depth-based Approaches

• Similar idea like classical statistical approaches (k = 1 distributions) but independent from the chosen kind of distribution
• Convex hull computation is usually only efficient in 2D / 3D spaces
• Originally outputs a label but can be extended for scoring easily (take depth as scoring value)
• Uses a global reference set for outlier detection

• Sample algorithms
 • ISODEPTH [Ruts and Rousseeuw 1996]
 • FDC [Johnson et al. 1998]
Elliptic Envelope

- It creates an imaginary elliptical area around a given dataset.
- The elliptic envelope finds the center of the data samples and then draws an ellipsoid around that center.
- Values that fall inside the envelope are considered normal data and anything outside the envelope is returned as outliers.
- The algorithm works best if data has a Gaussian distribution.
Distance-based Approaches
Distance-based Approaches

• General Idea
 • Judge a point based on the distance(s) to its neighbors
 • Several variants proposed

• Basic Assumption
 • Normal data objects have a dense neighborhood
 • Outliers are far apart from their neighbors, i.e., have a less dense neighborhood
Distance-based Approaches

• Several different techniques
• Approach 1: An object is an outlier if a specified fraction of the objects is more than a specified distance away (Knorr, Ng 1998)
 • Some statistical definitions are special cases of this
• Approach 2: The outlier score of an object is the distance to its k-th nearest neighbor
Outlier scoring based on kNN distances

General models

• Take the kNN distance of a point as its outlier score [Ramaswamy et al 2000]
• Aggregate the distances of a point to all its 1NN, 2NN, ..., kNN as an outlier score [Angiulli and Pizzuti 2002]

Algorithms - General approaches

• Nested-Loop
 • Naïve approach: For each object: compute kNNs with a sequential scan
 • Enhancement: use index structures for kNN queries

• Partition-based
 • Partition data into micro clusters
 • Aggregate information for each partition (e.g. minimum bounding rectangles)
 • Allows to prune micro clusters that cannot qualify when searching for the kNNs of a particular point
One Nearest Neighbor - One Outlier

Outlier Score

D

0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

Outlier Score

0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
One Nearest Neighbor - Two Outliers
Six Nearest Neighbors - Small Cluster
Distance-based Approaches

DB(ε, π)-Outliers

• Basic model [Knorr and Ng 1997]
• Given a radius ε and a percentage π
• A point p is considered an outlier if at most π percent of all other points have a distance to p less than ε, i.e., it is close to few points

\[\text{OutlierSet}(\varepsilon, \pi) = \{p \mid \frac{\text{Card}(\{q \in DB \mid \text{dist}(p,q) < \varepsilon\})}{\text{Card}(DB)} \leq \pi\} \]
Outlier Detection using In-degree Number

• Idea: Construct the kNN graph for a data set
 • Vertices: data points
 • Edge: if \(q \in kNN(p) \) then there is a directed edge from \(p \) to \(q \)
 • A vertex that has an indegree less than equal to \(T \) (user threshold) is an outlier

• Discussion
 • The indegree of a vertex in the kNN graph equals to the number of reverse kNNs (RkNN) of the corresponding point
 • The RkNNs of a point \(p \) are those data objects having \(p \) among their kNNs
 • Intuition of the model: outliers are
 • points that are among the kNNs of less than \(T \) other points
 • have less than \(T \) RkNNs
 • Outputs an outlier label
 • Is a local approach (depending on user defined parameter \(k \))
Strengths/Weaknesses of Distance-Based Approaches

Pros

• Simple

Cons

• Expensive – $O(n^2)$
• Sensitive to parameters
• Sensitive to variations in density
• Distance becomes less meaningful in high-dimensional space
Five Nearest Neighbors - Differing Density
Density-based Approaches
Density-based Approaches

• General idea
 • Compare the density around a point with the density around its local neighbors
 • The relative density of a point compared to its neighbors is computed as an outlier score
 • Approaches differ in how to estimate density

• Basic assumption
 • The density around a normal data object is similar to the density around its neighbors
 • The density around an outlier is considerably different to the density around its neighbors
Density-based Approaches

- **Density-based Outlier**: The outlier score of an object is the inverse of the density around the object.
 - Can be defined in terms of the k nearest neighbors
 - One definition: Inverse of distance to kth neighbor (a.k.a. SimpleLOF)
 - Another definition: Inverse of the average distance to k neighbors
 - DBSCAN definition

- If there are regions of different density, this approach can have problems
Relative Density Outlier Scores
Relative Density

- Consider the density of a point relative to that of its k nearest neighbors

\[
\text{average relative density}(x, k) = \frac{\text{density}(x, k)}{\sum_{y \in N(x, k)} \text{density}(y, k) / |N(x, k)|}.
\]

Algorithm 10.2 Relative density outlier score algorithm.

1: \{ k is the number of nearest neighbors\}
2: for all objects x do
3: \quad Determine $N(x, k)$, the k-nearest neighbors of x.
4: \quad Determine $\text{density}(x, k)$, the density of x, using its nearest neighbors, i.e., the objects in $N(x, k)$.
5: end for
6: for all objects x do
7: \quad Set the outlier score$(x, k) = \text{average relative density}(x, k)$ from Equation 10.7.
8: end for
Local Outlier Factor (LOF) [Breunig et al. 1999], [Breunig et al. 2000]

Motivation:
• Distance-based outlier detection models have problems with different densities
• How to compare the neighborhood of points from areas of different densities?

Example
• DB(ε,π)-outlier model
 • Parameters ε and π cannot be chosen so that o₂ is an outlier but none of the points in cluster C₁ (e.g. q) is an outlier
• Outliers based on kNN-distance
 • kNN-distances of objects in C₁ (e.g. q) are larger than the kNN-distance of o₂

Solution: consider relative density
Local Outlier Factor (LOF)

• For each point, compute the density of its local neighborhood

• Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors

• Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach finds both p_1 and p_2 as outliers
Local Outlier Factor (LOF)

- Reachability distance
 - Introduces a smoothing factor

\[
reach - dist_k(p, o) = \max \{ k - \text{distance}(o), \text{dist}(p, o) \}
\]

- Local reachability distance (lrd) of point \(p \)
 - Inverse of the average reach-dists of the kNNs of \(p \)

\[
lrd_k(p) = \frac{1}{\frac{\sum_{o \in kNN(p)} reach - dist_k(p, o)}{\text{Card}(kNN(p))}}
\]

- Local outlier factor (LOF) of point \(p \)
 - Average ratio of lrd of neighbors of \(p \) and lrd of \(p \)

\[
\text{LOF}_k(p) = \frac{\sum_{o \in kNN(p)} \frac{lrd_k(o)}{lrd_k(p)}}{\text{Card}(kNN(p))}
\]
Local Outlier Factor (LOF)

Properties
• LOF ≈ 1: point is in a cluster (region with homogeneous density around the point and its neighbors)
• LOF >> 1: point is an outlier

Discussion
• Choice of k (MinPts in the original paper) specifies the reference set
• Originally implements a *local* approach (resolution depends on the user’s choice for k)
• Outputs a scoring (assigns an LOF value to each point)
Connectivity-based outlier factor (COF) [Tang et al. 2002]

- **Motivation**
 - In regions of low density, it may be hard to detect outliers
 - Choose a low value for k is often not appropriate

- **Solution**
 - Treat “low density” and “isolation” differently

- **Example**
COF

- Introduced because although a high-density set can represent a pattern, not all patterns need to be high-density.
- COF differs from LOF as it uses the chaining distance to calculate the kNN.
- The average chaining distance in contrast to the local reachability distance of does not use the distance between the point to the points in its neighborhood.
- Idea: the chaining distance for a point can be seen as the minimum of the total sum of the distances linking all neighbors. Practically is calculated using a graph-like structure, i.e., a minimum spanning tree.
- COF is then calculated as the ratio between the average chaining distance of the record and the mean average chaining distance of the records in the kNN.

\[
COF_k(p) = \frac{|N_k(p)|ac - dist_{N_k(p)}(p)}{\sum_{o \in N_k(p)} ac - dist_{N_k(o)}(o)}
\]

\[
ac - dist_{N_k(p_1)}(p_1) = \sum_{i=1}^{r} \left(\frac{2(r-1+1)}{r(r+1)} \right) CDS_i, \quad r = |N_k(p_1)|
\]

\(CDS_i \) cost description sequence of removing the i-th neighbor
Influenced Outlierness (INFLO) [Jin et al. 2006]

Motivation
• If clusters of different densities are not clearly separated, LOF will have problems

Idea
• Take symmetric neighborhood relationship into account
• Influence space $kIS(p)$ of a point p includes its kNNs ($k\text{NN}(p)$) and its reverse kNNs ($Rk\text{NN}(p)$)
Influenced Outlierness (INFLO) [Jin et al. 2006]

Model

• Density is simply measured by the inverse of the kNN distance, i.e.,
 • \(\text{den}(p) = 1/k\text{-distance}(p) \)

• Influenced outlierness of a point \(p \)

\[
INFLO_k(p) = \frac{\sum_{\omega \in kIS(p)} \text{den}(\omega)}{\text{Card}(kIS(p)) \cdot \text{den}(p)}
\]

• INFLO takes the ratio of the average density of objects in the neighborhood of a point \(p \) (i.e., in \(kNN(p) \cup RkNN(p) \)) to \(p \)’s density
Influenced Outlierness (INFLO) [Jin et al. 2006]

Properties
• Similar to LOF
• $\text{INFLO} \approx 1$: point is in a cluster
• $\text{INFLO} >> 1$: point is an outlier

Discussion
• Outputs an outlier score
• Originally proposed as a local approach (resolution of the reference set kIS can be adjusted by the user setting parameter k)
Strengths/Weaknesses of Density-Based Approaches

Pros
• Simple

Cons
• Expensive – $O(n^2)$
• Sensitive to parameters
• Density becomes less meaningful in high-dimensional space
Clustering-based Approaches
Clustering and Anomaly Detection

• Are outliers just a side product of some clustering algorithms?
 • Many clustering algorithms do not assign all points to clusters but account for noise objects (e.g. DBSCAN, OPTICS)
 • Look for outliers by applying one algorithm and retrieve the noise set

• Problem:
 • Clustering algorithms are optimized to find clusters rather than outliers
 • Accuracy of outlier detection depends on how good the clustering algorithm captures the structure of clusters
 • A set of many abnormal data objects that are similar to each other would be recognized as a cluster rather than as noise/outliers
Clustering-Based Approaches

- **Clustering-based Outlier:** An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - For density-based clusters, an object is an outlier if its density is too low (noise points)
 - For graph-based clusters, an object is an outlier if it is not well connected (community discovery)
- Other issues include the impact of outliers on the clusters and the number of clusters
Distance of Points from Closest Centroids
Relative Distance of Points from Closest Centroid
CBLOF - Cluster-Based Local Outlier Factor

• First, perform clustering on the dataset.
• Then, it classifies the clusters into small clusters (SC) and large clusters (LG) using parameters alpha and beta.
• The anomaly score is calculated w.r.t. the size of the cluster the point belongs to as well as the distance to the nearest large cluster.
• If the record lies in a SC, CBLOF is measured as a product of the size of the cluster the record belongs to and the distance to the center of the closest LC.
• If the record belongs to a LC, CBLOF is measured as a product of the size of the cluster that the record belongs to and the distance between the record and the center of the cluster it belongs to.

\[
CBLOF(p) = \begin{cases}
|C_i| \cdot \min(d(p, C_j)) & \text{if } C_i \in SC \text{ where } p \in C_i \text{ and } C_j \in LC \\
|C_i| \cdot d(p, C_i) & \text{if } C_i \in LC \text{ where } p \in C_i
\end{cases}
\]

[Diagram showing clusters C1, C2, and C3, with a point p being classified based on its distance to the nearest large cluster and the size of the cluster it belongs to.]
Strengths/Weaknesses of Clustering-Based Approaches

Pros
- Simple
- Many clustering techniques can be used

Cons
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters and on clustering parameters
- Outliers can distort the clusters
High-dimensional Approaches
Challenges

Curse of dimensionality
• Relative contrast between distances decreases with increasing dimensionality
• Data is very sparse, almost all points are outliers
• Concept of neighborhood becomes meaningless

Solutions
• Use more robust distance functions and find full-dimensional outliers
• Find outliers in projections (subspaces) of the original feature space
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

- Angles are more stable than distances in high dimensional spaces (e.g. the popularity of cosine-based similarity measures for text data)
- Object o is an outlier if most other objects are located in similar directions
- Object o is no outlier if many other objects are located in varying directions
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

• Basic assumption
 • Outliers are at the border of the data distribution
 • Normal points are in the center of the data distribution

• Model
 • Consider for a given point \(p \) the angle between any two instances \(x \) and \(y \)
 • Consider the spectrum of all these angles
 • The broadness of this spectrum is a score for the outlierness of a point, i.e., a low variance (small spectrum) highlights an outlier
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

• Model
 • Measure the variance of the angle spectrum
 • Weighted by the corresponding distances (for lower dimensional data sets where angles are less reliable)

\[
ABOD(p) = VAR_{x,y \in DB} \left(\frac{\langle \vec{x}_p, \vec{y}_p \rangle}{\| \vec{x}_p \|^2 \cdot \| \vec{y}_p \|^2} \right)
\]

\(\vec{x}_p\) denotes the difference vector \(x-p\)
\(\langle \vec{x}_p, \vec{y}_p \rangle\) denotes the scalar product
scalar product \(\langle a,b \rangle = \sum a_i b_i\)

• Properties
 • Small ABOD => outlier
 • High ABOD => no outlier
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

Algorithms
• Naïve algorithm is in $O(n^3)$
• Approximate algorithm based on random sampling for mining top-n outliers
 • Do not consider all pairs of other points x, y in the database to compute the angles
 • Compute ABOD based on samples => lower bound of the real ABOD
 • Filter out points that have a high lower bound
 • Refine (compute the exact ABOD value) only for a small number of points

Discussion
• Global approach to outlier detection
• Outputs an outlier score
Grid-based Subspace Outlier Detection [Aggarwal and Yu 2000]

Model

- Partition data space by an equi-depth grid ($\Phi =$ number of cells in each dimension)
- Sparsity coefficient $S(C)$ for a k-dimensional grid cell C
 \[
 S(C) = \frac{\text{count}(C) - n \cdot \left(\frac{1}{\Phi}\right)^k}{\sqrt{n \cdot \left(\frac{1}{\Phi}\right)^k \cdot (1 - \left(\frac{1}{\Phi}\right)^k)}
 \]
- where count(C) is the number of data objects in C
- $S(C) < 0 \Rightarrow \text{count}(C)$ is lower than expected
- Outliers are those objects that are located in lower-dimensional cells with negative sparsity coefficient

$k = \text{nbr dimensions (e.g. 3)}$
$\phi = \text{nbr of equi-depth ranges (e.g 3)}$
Grid-based Subspace Outlier Detection [Aggarwal and Yu 2000]

• Algorithm
 • Find the m grid cells (projections) with the lowest sparsity coefficients
 • Brute-force algorithm is in $O(\Phi d)$

• Discussion
 • Results need not be the points from the optimal cells
 • Very coarse model (all objects that are in cell with less points than to be expected)
 • Quality depends on grid resolution and grid position
 • Outputs a labeling
 • Implements a global approach (key criterion: globally expected number of points within a cell)
Ensemble-based Approaches
FeaBag - Feature Bagging

• FeaBag exploits a set of OD methods, each of them applied on a random set of features selected from the original feature space.
• Each OD method identifies different outliers and assigns to all instances outlier scores that correspond to their probability of being outliers.
• The combination of such scores is returned as the final output.
LODA - Lightweight On-line Detector of Anomalies

• An extension of HBOS is LODA.

• LODA is an ensemble OD method particularly useful in real-time scenarios domains where many records need to be processed.

• LODA approximates the joint probability using a collection of one-dimensional histograms, where every one-dimensional histogram is efficiently constructed on an input space projected onto a randomly generated vector.

• Even though one-dimensional histograms are weak OD methods, their collection yields a strong OD approach.
Model-based Approaches

Slides revisited from Isolation Forest for Anomaly Detection, Sahand Hariri
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.

Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
• Anomalies will be isolated in only few steps
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
- Generate multiple trees -> forest
- Anomalies will be isolated in only few steps
- Nominal points in more
Isolation Forest

Single Tree scores for anomaly and nominal points

Forest plotted radially. Scores for anomaly and nominal shown as lines

\[h(x) = \text{path length as number of edges from the root to a leaf} \]
\[E(h(x)) = \text{average path length (E stands for expectation)} \]
\[c(m) = \text{average } h(x) \text{ given } m \text{ used to normalize } h(x) \]
\[H = \text{harmonic number estimated as } H(i) = \ln(i) + \gamma \text{ with } \gamma = 0.57 \]
\[m = \text{size of samples} \]

if \(s \) is close to 1 then \(x \) is very likely to be an anomaly
if \(s \) is smaller than 0.5 then \(x \) is likely to be a normal value

\[s(x, m) = 2 \frac{E(h(x))}{c(m)} \]
\[c(m) = \begin{cases} 2H(m - 1) - \frac{2(m-1)}{m} & \text{for } m > 2 \\ 1 & \text{for } m = 2 \\ 0 & \text{otherwise} \end{cases} \]
Anomaly Detection with Isolation Forest

- Isolation Forest
 - Computationally Efficient
 - Parallelizable
 - Handle high dimensional data
 - Inconsistent scoring can be observed
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
Extended Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a normal vector
 - Randomly select an intercept
 - Draw a straight line through the data at that value and split data
 - Repeat until the tree is complete
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
 • Repeat until the tree is complete
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
 • Repeat until the tree is complete
• Generate multiple trees -> forest
Anomaly Detection with Isolation Forest

• Isolation Forest
 • Computationally Efficient
 • Parallelizable
 • Handle high dimensional data
 • Inconsistent scoring can be observed

• Extended Isolation Forest
 • Computationally Efficient
 • Parallelizable
 • Handle high dimensional data
 • Consistent scoring
Summary

• Different models are based on different assumptions
• Different models provide different types of output (labeling/scoring)
• Different models consider outlier at different resolutions (global/local)
• Thus, different models will produce different results
• A thorough and comprehensive comparison between different models and approaches is still missing
References

• Anomaly Detection. Chapter 10. Introduction to Data Mining.

• Liu, Fei Tony; Ting, Kai Ming; Zhou, Zhi-Hua (December 2008). "Isolation Forest". 2008 Eighth IEEE International Conference on Data Mining: 413–422

Exercises – Outlier Detection
Outlier Detection – Exercise 1

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: $\text{DB}(\varepsilon,n)$ (2 points)
Are A and/or B outliers, if thresholds are forced to $\varepsilon = 2.5$ and $n = 0.15$? The point itself should not be counted.

b) Density-based: LOF (2 points)
Compute the LOF score for points A and B by taking $k=2$, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points)
Compute the depth score of all points.
Distance-based

• No outliers because within their radius there are 0.4 and 0.5 points for A and B, respectively
Outlier Detection – Exercise 1 – Solution

Density-based

• $\text{LRD}(A) = 1/ \left[\frac{(1 + 2)}{2} \right] = 0.666$

• $\text{LRD}(B) = 1/ \left[\frac{(1 + \sqrt{2})}{2} \right] = 0.828$

• $\text{LRD}(6) = 1/ \left[\frac{(2 + 2)}{2} \right] = 0.500$

• $\text{LOF}(A) = \left(\frac{\text{LRD}(B) + \text{LRD}(6)}{2} \right) / \text{LRD}(A) = \left(\frac{0.828 + 0.500}{2} \right) / 0.666 = 1.003$

• $\text{LRD}(4) = 1/ \left[\frac{(1 + \sqrt{2})}{2} \right] = 0.828$

• $\text{LOF}(B) = \left(\frac{\text{LRD}(A) + \text{LRD}(4)}{2} \right) / \text{LRD}(B) = \left(\frac{0.666 + 0.828}{2} \right) / 0.828 = 0.902$

• Both are smaller or very close to 1, so they are most likely no outliers.
Outlier Detection – Exercise 1 – Solution

Depth-based

• A is an outlier for depth = 2
• For depth <= 1 neither A or B are outliers
Outlier Detection – Exercise 2

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: DB(ε,n) (2 points)
Are A and/or B outliers, if thresholds are forced to ε = 2.1 and n = 0.15? The point itself should not be counted.

b) Density-based: LOF (2 points)
Compute the LOF score for points A and B by taking k=2, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points)
Compute the depth score of all points. Are A and/or B outliers of depth 1?
Outlier Detection – Exercise 2 – Solution

\[LRD(A) = \frac{1}{\left(\frac{2 + \sqrt{5}}{2}\right)} = 0.472 \]
\[LRD(5) = \frac{1}{\left(\frac{\sqrt{5} + \sqrt{5}}{2}\right)} = 0.447 \]
\[LRD(6) = \frac{1}{\left(\frac{2 + \sqrt{5}}{2}\right)} = 0.472 \]
\[LOF(A) = \frac{\left(\frac{LRD(5) + LRD(6)}{2}\right)}{LRD(A)} = \frac{\left(\frac{0.472 + 0.447}{2}\right)}{0.472} = 0.973 \]

\[LRD(B) = \frac{1}{\left(\frac{2 + \sqrt{2}}{2}\right)} = 0.586 \]
\[LRD(3) = \frac{1}{\left(\frac{\sqrt{2} + \sqrt{2} + \sqrt{2}}{3}\right)} = 0.707 \]
\[LRD(4) = \frac{1}{\left(\frac{2 + 2 + \sqrt{2}}{3}\right)} = 0.554 \]
\[LOF(B) = \frac{\left(\frac{LRD(3) + LRD(4)}{2}\right)}{LRD(B)} = \frac{\left(\frac{0.707 + 0.554}{2}\right)}{0.586} = 0.929 \]
Outlier Detection – Exercise 3

Given the dataset of 10 points below (A, B, 1, 2, ..., 8), consider the outlier detection problem for points A and B, adopting the following three methods:

a) **Distance-based: DB(ε,π)** (2 points)
Are A and/or B outliers, if thresholds are forced to $ε = 2.5$ and $π = 0.3$? Show the density of the two points. (Notice: in computing the density of a point P, P itself should not be counted as neighbour).

b) **Density-based: LOF** (3 points)
Compute the LOF score for points A and B by taking $k=2$, i.e. comparing each point with its 2-NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) **Depth-based** (1 points)
Compute the depth score of all points.