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Dimensionality Reduction

 Dimensionality reduction is mmmmmmmm

the process of reducing the 11 10 03 05 15 13 a
number of variables under 12 12 03 07 A O D 19 18 P
consideration by obtaining a

set of principal variables.

* Approaches can be divided
into feature selection and
feature projection. X | Xo
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Feature Selection

* Select a subset of the features according to different strategies:
* the filter strategy (e.g. information gain),
* the wrapper strategy (e.g. search guided by accuracy),

* the embedded strategy (selected features add or are removed
while building the model based on prediction errors).

* Classification and/or regression or can be done in the reduced space
more accurately than in the original space.



Feature Selection

» Variance Threshold. It removes all features whose variance does not meet some
threshold. By default, it removes all zero-variance features, i.e. features that have the
same value in all samples.

* Univariate Feature Selection. It selects the best features based on univariate statistical
tests. For instance, it removes all but the k highest scoring features. An example of
statistical test is the ANOVA F-value between label/feature.
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* where Y;denotes the sample mean in the it" group, n; is the number of observations in
the ith group, denotes the overall mean of the data, Y is the jth observation in the ith out
of K groups, K denotes the number of groups, N the overaII sample size.

* F-value is large if the numerator is large, which is unlikely to happen if the population
means of the groups all have the same value.



Recursive Feature Elimination (RFE)

* Given an external estimator that assigns weights to features (e.g., the
coefficients of a linear model, or feature importance of decision tree),
RFE selects features by recursively considering smaller and smaller
sets of features.

* First, the estimator is trained on the initial set of features and the
importance of each feature is obtained.

* Then, the least important features are pruned from current set of
features.

* That procedure is recursively repeated on the pruned set until the
desired number of features to select is eventually reached.



Feature Projection (a.k.a Feature Extraction)

* It transforms the data in the high-dimensional space to a space of
fewer dimensions.

* The data transformation may be linear, or nonlinear.

* Approaches:
 Random Subspace Projection (RSP)
* Principal Component Analysis (PCA)
* Non-negative matrix factorization (NMF)
* Linear Discriminant Analysis (LDA)
* Multidimensional Scaling (Sammon, IsoMap, t-SNE)
* Autoencoder
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Random Subspace Projection

* High-dimensional data is projected into low-dimensional space using
a random matrix whose columns have unit length.

* No attempt to optimize criterion.
* Preserve structure of data (e.g. distances)
 Computationally cheap.




Principal Component Analysis (PCA)

* The goal of PCA is to find a new set of
dimensions (attributes or features) that
better captures the variability of the data.

* The first dimension is chosen to capture as

much of the variability as possible. \/
* The second dimension is orthogonal to the

first and, subject to that constraint, captures

as much of the remaining variability as

possible, and so on.

* It is a linear transformation that chooses a
new coordinate system for the data set



How to construct PC?

* The first principal component accounts for
the largest possible variance in the data set.

* | want to fix the black line such that the spread on
them of the red points, i.e., the original points
projected on the black line, is maximised.

* The second principal componentis calculated in
the same way, with the condition that it is
uncorrelated with the first principal component
and that it accounts for the next highest o
variance. o2 0 s




PCA — Conceptual Algorithm

* Find a line such that, when the data is projected onto that line, it has
the maximum variance; minimize the sum-of-squares of the

projection errors. /



PCA — Conceptual Algorithm

* Find a line such that, when the data is projected onto that line, it has
the maximum variance; minimize the sum-of-squares of the
projection errors.




PCA — Conceptual Algorithm

* Find a second line, orthogonal to the first, that has maximum
projected variance.




PCA — Conceptual Algorithm

e Repeat until have k orthogonal lines.

* The projected position of a point on these lines gives the coordinates
in the k-dimensional reduced space.




Background: Covariance, Eigenvalue and Eigenvectors

* The covariance of two attributes is a measure of how strongly the
attributes vary together.

I
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 Eigenvector of matrix X: a vector v such that Xv=Av
* A: eigenvalue of eigenvector v

e A square symmetric matrix X of rank r, has r orthonormal
eigenvectors vy, v,,..., vV,.with eigenvalues 1, 1,, ..., 4.

* Eigenvectors define an orthonormal basis for the column space of X



Background: Covariance key factor in PCA

* Variance and Covariance are a measure of the “spread” of a set of
points around their center of mass (mean)

* Variance — measure of the deviation from the mean for points in one
dimension e.g. heights

e Covariance as a measure of how much each of the dimensions vary
from the mean with respect to each other.

e Covariance is measured between 2 dimensions to see if there is a
relationship between the 2 dimensions
* e.g. number of hours studied & marks obtained.

* The covariance between one dimension and itself is the variance



Steps in PCA

e Step 1: Standardize the dataset.
 Step 2: Calculate the mean value of the data of every dimension

 Step 3: Calculate the covariance matrix of all pairs of attributes

* Given matrix of data X, remove the mean of each column from the column vectors to
get the centered matrix C

e The matrix 2 = CTC is the covariance matrix of the row vectors of X.

 Step 4: Calculate eigenvalues and eigenvectors of 2 and pick the k with
largest eigenvalues
* Methods: power iteration method, Singular Value Decomposition
 Eigenvector with largest eigenvalue A, is the 15t PC
* Eigenvector with k" largest eigenvalue A, is the k" PC
* A/ Z;\ is the proportion of variance captured by the kth PC

e Step 5: Transform the original dataset X



Compute Covariance Matrix

* The covariance of two attributes is a measure of how strongly the
attributes vary together.

I
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e PCA calculates the covariance matrix of all pairs of attributes

e Given matrix X of data

* remove the mean of each column from the column vectors to get the centered
matrix C (standardization).

« Compute the matrix V = CTC, i.e., the covariance matrix of the row vectors of C.



Covariance Matrix

* Diagonal is the variances of x, y and z
* cov(x,y) = cov(y,x) hence matrix is symmetrical about the diagonal

e Suppose we have 3 attributes. The covariance matrix
V =C"C is as follows:

[ Cov(z,z) Cov(z,y) Cov(z,z) |
Cov(y,z) Covly,y) Cou(y,z)
- Cov(z,z) Couv(z,y) Cov(z,z)




Meaning of Covariance

* Exact value is not as important as it’s sign.

* A positive value of covariance indicates both dimensions increase or
decrease together

e e.g. as the number of hours studied increases, the marks in that subject increase.

* A negative value indicates while one increases the other decreases, or
vice-versa

* If covariance is zero: the two dimensions are independent of each other
* e.g. heights of students vs the marks obtained in a subject



|dentify the Principal Components

* |dentify the PC of data by computing the eigenvectors and eigenvalues
from the covariance matrix.

 What are Principal Components?
e New variables that are constructed as linear combinations of the initial variables
e These new variable are uncorrelated

* Most of the information within the initial variables is squeezed or compressed
into the first components

e PCA tries to put maximum possible information in the first component, then
maximum remaining information in the second and so on



|dentify the Principal Components

Given 10-dimensional data you get 10 principal components but only the first
PCs capture most of the variability of the data

30~

Percentage of explained variances

Principal Components

Discarding the components with low information and considering the remaining
components as your new variables.



PCAviaSVD

* Create mean-centered data matrix X
e Solve SVD: X = USVT

e Columns of V are the eigenvectors of 2 sorted from largest to smallest
eigenvalues.

e Limits of PCA:

* Limited to linear projections



Singular Value Decomposition - SVD

mxn

| X:our m x n data
matrix, one row
per data point

X=US.VT
) S vT
p—t X X
nxn nxn
Singular matrix: Cols of V are \
a diagonal eigenvectors of|
matrix, S2is I's E=X"X
mxn . .
i-th eigenvalue
Each row of US

gives coordinates of
a data point in the
projected space

X Xv; = VSUP UV vy = 57w




Singular Value Decomposition - SVD

mXxn

X:ourmx n data
matrix, one row
per data point

X =US.VT

U S vT
) X X
nxn nxn
Singular matrix: Cols of V are
a diagonal eigenvectors of
matrix, S? is I's Z=X'X
mxn 2 A
I-th eigenvalue
Each row of US

gives coordinates of
a data point in the
projected space

~

If X is centered, then cols of V
are the principal components




Applying the PCA

* The full set of PCs comprise a new orthogonal basis for feature space,
whose axes are alighed with the maximum variances of original data.

* Projection of original data into first k PCs gives a reduced
dimensionality representation of the data.

* Transforming reduced dimensionality projection back into original
space gives a reduced dimensionality reconstruction of the data.

e Reconstruction will have some error.
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Select the dimension k

* Rank eigenvalues in decreasing order.

 Select eigenvectors that retain a fixed percentage of variance (e.g., at
least a minimum threshold.

Varance (%)
|




Example
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Multi-Dimensional Scaling (MDS)

* Given a pairwise dissimilarity matrix (no need to be a metric), the goal
of MDS is to learn a mapping of data into a lower dimensionality such
that the relative distances are preserved.

* If two points are close in the feature space, it should be close in the
latent factor space.
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MDS methods

 MDS is a family of different algorithms designed to map data into a
very low configuration, e.g., k=2 or k=3.

* MDS methods include
 Classical MDS
* Metric MDS
* Non-metric MDS

e MDS cannot be inverted



Distance, dissimilarity and similarity

 Distance, dissimilarity and similarity (or proximity) are defined for any
pair of objects in any space. In mathematics, a distance function (that
gives a distance between two objects) is also called metric, satisfying:
* d(x, y) 20,
* dix, y)=iff x=y,
* d(x, y)=d(y, x)
* d(x, z)<d(x, y) + dly, 2)

* |f the last condition does not hold, than dis a distance function but it
IS not a metric.



MDS — Conceptual Algorithm

* Given a pairwise dissimilarity matrix D and the dimensionality k, find
a mapping such that d; = [ [x; - x;/ | for all points in D.

* Usually, a gradient descent approach is adopted to solve an
optimization problem that aims at minimizing the function

* J(x) = 21" 2/ dl(dij/ d,(x, Xj))
* Depending on the distances adopted to calculate D and the distance
function used for d; and d, the approach returns a different result.

* The Classic MDS adopts the Euclidean distance for every calculus.
* Metric-MDM adopts metrics as distances
* Non metric-MDS deals with ranks of distances instead of their values



Sammon Mapping

« Sammon mapping is a generalization of the usual metric MDS.

* It introduces a weighting system that normalizes the squared-errors in
pairwise distances by using the distance in the original space.

* J(x) = 2" 2" di(d;, dy(x; Xj))/dij
* As a result, Sammon mapping preserves the small dj;, giving them a

greater degree of importance in the fitting procedure than for larger
values of d;



Classic-MDS vs Sammon Mapping

« Sammon mapping better preserves inter-distances for smaller
dissimilarities, while proportionally squeezes the inter-distances for
larger dissimilarities.
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Isometric Feature Mapping (IsoMap)

* Preserves the intrinsic geometry of the data

* Uses the geodesic manifold distances between all pairs.
* Itis a MDS method.

* IsoMap Handles non-linear manifold

PCA projection IsoMap projection
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IsoMap Algorithm

* Step 1
* Determine neighboring points within a fixed radius based on the input space
distance (Euclidean)

* These neighborhood relations are represented as weighted graph G over the
data points.

* Step 2

e Estimate the geodesic distance between all pairs of points on the manifold by
computing their shortest path distances on the graph G

* Step 3
e Constructan embedding of the data in a k dimensional Euclidean space that
best preserves the manifold geometry



t-Distributed Stochastic Neighbor Embedding (t-SNE)

* PCA tries to find a global structure
* Low dimensional subspace

e Can lead to local inconsistencies
* Far away points can become neighbors

* t-SNE tries to preserve local structure

e Local dimensional neighborhood should be the same as original
neighborhood

 Distance Preservation
* Neighbor Preservation

* Unlike PCA almost only used for visualization



PCAvs t-SNE

O NMOMTOONDO®

—boT000 0N
TN oM Ok YS
@ TP e0—T %N
Dl SoN 0w g Y e
N8 ~~T\wn oI
NOWCQNWvwad O 75
NDNORNDNQ NI o
rwvRN=—=cnN oI
wN-Sw XA ~N\
MmN TN oQ N




SNE Intuition

* Measure pairwise similarities between high-dimensional and low-
dimensional objects.

High Dim Low Dim
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Stochastic Neighbor Embedding (SNE)

* Encode high dimensional neighborhood information as a distribution

* Intuition: Random walk between data points.
* High probability to jump to a close point
* Find low dimensional points such that their neighborhood
distribution is similar.

* How do you measure distance between distributions?
* Most common measure: KL divergence



Neighborhood Distributions

* Consider the neighborhood around an input data point x;
* Imagine that we have a Gaussian distribution centered around Xx;

* Then the probability that x; chooses some other datapoint x; as its
neighbor is in proportion with the density under this Gaussian

* A point closer to x; will be more likely than one further away



Probabilities

* This p;; probability is the probability that point x; chooses x; as its
neighbor
exp(—||xi — xjl|*/207)

p. o =—
WS ez exp(—||xi — xk|[2/207)

* The parameter sigma sets the size of the neighborhood
* Very low sigma -> all the probability is in the newest neighbor
* Very high sima -> uniform weights

* We set sigma differently for each data point

* Results depend heavily on sigma as it defines the neighborhood we
are trying to preserve

* The final distribution over pairs is symmetrized p; = 1/2N(p;;; + p;;;)



Perplexity

* For each distribution p;;; depends on sigma we define the perplexity
* perp(p;;) = 2" where H(p) = - 2 p log(p) is the entropy

* If p is uniform over k elements perplexity is k
* Smooth version of kin kNN
* Low perplexity equals to small sigma
* High perplexity equals to large sigma
e Typically values of sigma between 5-50 work well

* Important parameter that can capture different scales in the data



SNE objective

* Given xy, ..., X, € R™ define the distribution p;
* Goal: find good embedding y,, .., y, ER* for k <m
* How do we measure embedding quality?

* For points y,, .., y, we can define distribution g similarly to the same (but
not sigma and not symmetric)

_exp(=llyi — yjl*)
Zk;éi exp(—||yi — y«l[?)

djli

* The idea is to optimize g to be close to p by minimizing the KL-divergence
* The embeddings y;,, .., y, are the parameters we are optimizing



KL-divergence

e Measures distance between two distributions, P and Q

C = Z KL(P,HQ,) = Z Zpﬂilogpj'i
I / J

djli

* It is not a metric function as is not symmetric

* Based on the information theory intuition: if we are transmitting
information distributed according to p then the optimal lossless
compression will need to send on average H(p) bits

* Thus, K(P[/[Q) is the penalty for using a wrong distribution



Distances to Conditional Probabilities

* Converting the high-dimensional Euclidean distances into conditional

probabilities that represent similarities
exp(—|xi — xjl|*/207)

* Similarities of datapoints in High Dimension  pjj = 5~ ——— == 75 5 5
ki — || X i

* Similarity of datapoints in Low Dimension exp(=llyi — yl1?)
T T o=y = wlP)

. . - Pj|i
e Cost function € =_KL(Pi[|@) = ZZPJI""’ga
i i !

[ ] L] L] L] L] aC
* Minimize C using gradient descent By > (pjii — gj1i + Pitj — a1)) (i — ¥))
L



SNE problems

* Not a convex problem! No guarantees, can use multiple restarts.

* Crowding problem

* In high dim we have a lot of different neighbors

* In 2 dimensions we have few neighbors at the same distance and far from
each other

* Thus, we do not have space to accommodate all neighbors

* t-SNE solution: change the Gaussian in Q to a heavy tailed distribution

i (1+ |lyi — y;ill?)~*
T k(L lyk = wil|?) 78

Student-t Probability Density



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x],x2,....x, },

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation 9" = {y|.y2.....v, }.

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
Pji*+Pilj
Set pij = e T -

sample initial solution 9% = {y|.y1.....y,,} from A (0, 10~4])

for r=/to 7" do
compute low-dimensional affinities ¢;; (using Equation 4)

compute gradient % (using Equation 5)

set 9’(’} e Df(l—l) +n§‘§ +Ot(t) (9/(!—]) i 9/(/_2))
end

end
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Complete slides available here: https://kawahara.ca/visualizing-data-using-t-sne-slides/



https://kawahara.ca/visualizing-data-using-t-sne-slides/

|
I Data: data set X = {x;,x2.....X,}, M.l

cost function parameters: perplexity Perp, ~~~__

optimization parameters: number of iterations 7, learnihg<sate 1, momentum o.(¢).

Result: low-dimensional data representation 9"'") = {y.y,....9%3~ _ _

begin RRRe
compute pairwise affinities p ;; with perplexity Perp (using Equation 1) B
] ]—“ ’I ;
set pij = “ACPU 2”’ J

sample initial solution 9% = {y;.y5.....y,} from A (0,10~4])
for 1=/ to 7 do
compute low-dimensional affinities ¢;; (using Equation 4)

compute gradient S‘T (using Equation 5)

set 9’(1) — 9/‘(/—1] +n88_(7 +o?) (9/(/—]) _9,-(,_3))
end

end



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Random Sampling of MNIST

Data: data set X = {x;.x2.....X,},
cost function parameters: perplexity Perp,
_QleleﬂUQleIcmlLlQrS.. number of iterations 7', learning rate n ~momentum ou(7).

l Result: low-dimensional data representation 9'") = {y;.y2.....y, }. l
“hégin T~ T T T T TTTTTToS S ’
compute pairwise affinities p ;; wnth‘mrpluxnty Perp (using Equation 1)
PjitPij \
set ‘I),, 0 S

sample initial solution 9% = {y; . y1.....y, }\ﬁ;om AN(0.10741)
for 1=/ to 7 do
compute low- dlmelmonal affinities g;; (usmo Eduatlon 4)

compute gradlem 57 (using Equation 5) \\
/) —1) i=1) (1—2 s
set ¥ = =D +a(r) (0D -9g0-2) "~
\
end \\\ .
end .
s |
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(a) Visualization by t-SNE



cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).

Result: low-dimensional data representation 9" = {y|.y2.....v, }.

DOt — - - -

!'| compute pairwise affinities p;;; with perplexity Perp (using Equation | }

| set pij= l”jz*npr :

| “sample initial solution " ={y{ y7, ...y, } from AL(0.107%7)
for 1=/ to T do '

|
compute low-dimensional af’ﬁpities ¢i; (using Equation 4)
compute gradient 5‘7 (using Eguation 5)

set 9’(1) = 9/‘(/—1] _*_n% +0‘(f|) (9/-(/—1) _9,(,_3))

Compute probabilities P that xi
and xj are neighbors
(based on Euclidian distance in high-d

—
~

——

(a) Visualization by t-SNE.



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Random Sampling of MNIST

Data: data set X = {x;.x2.....X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation 9'") = {y;.y2.....y, }.

begin |mmmmmmmm e
compute pairwise affinities p ;; with pcrp‘lcxnty Perp (using Equation 1)

set Pij = ’—;’
sample iﬂ‘itial solution 99 = {y;.y5.....y,} from A (0,1074])
for =1 td T do

compute.low dlmensnonal affinities g;; (usmo Equation 4)
c,ompuicLE'rdth*nr - (usmg Equation 5 -

set 9/(/\_9/(/ l|_+_nST_+_b (9/(/ 1) 9/([—2))
end \ \

end

' Key assumption is that the high-
' d P and the low-d Q probability :
:L distributions should be the same |

XN

(a) Visualization by t-SNE



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Random Sampling of MNIST

Data: data set X = {x;.x2.....X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation 9'") = {y;.y2.....y, }.

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
J ’l

amplc initial solution YO =Ly .y, ...y, } from AL(0, 10741)

for 1=/ to 7 do
compute low- dlmensnonal affinities ¢;; (using Equation 4)

compute gradlent 3" (usnho Equation 5)

set 9/(: 9/(/—'T| 8( ( )(9/(/ 1) 9/4/—2))

Find a low-d map that minimizes the difference between the
P (high-d) and Q (low-d) distributions

(if xi,xj has high probability of being neighbors in high-d,

then yi,yj should have high probability in low-d) | L A5 ‘:;3&'
T TTTTTTTTTTTTTTmTmTmTmoSmmmomomoomomome e Y il

(a) Visualization by t-SNE



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Random Sampling of MNIST

Data: data set X = {x;.x2.....X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation 9'") = {y;.y2.....y, }.

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
set pij = —”";”"'

— e - - e e e e o= - ol — -

compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient g‘—, (using Equation 5)

set 9/“) - Qf"*l" +n§§ + ot) (9’“_” _9/4:—2))

-
~

—— e e e R e R e e R M M M M R R M e R M M M M M M R e e M R M M M e e e ey

We will minimize the difference between the
high-d and low-d maps using gradient descent

(a) Visualization by t-SNE
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