
DATA MINING 2
Imbalanced Learning
Riccardo Guidotti

a.a. 2023/2024

Imbalanced Classes

• Most classification methods assume classes are reasonably balanced.

50.0%

50.0%

Imbalanced Classes

• In reality it is quite common to have a very popular class and a rare
(yet interesting) class.

99.997%

0.003% This occurs when
there is a large
discrepancy between
the number of
examples with each
class label.

E.g. for 1M example
dataset only about 30
represent an event.

Examples

• About 2% of credit card accounts are defrauded per year1. (Most
fraud detection domains are heavily imbalanced.)

• Medical screening for a condition is usually performed on a large
population of people without the condition, to detect a small
minority with it (e.g., HIV prevalence in the USA is ~0.4%).

• Disk drive failures are approximately ~1% per year.

• Factory production defect rates typically run about 0.1%.

What happens on classification?

• A classifier that always predict the most common class has an
accuracy of 99.997%.

99.997%

0.003%

Evaluating Classifiers on Imbalanced Data

• When classes are slightly imbalanced, no balancing is need.

• Yet, take that into consideration when evaluating performances

• Assume the test set contains 100 records

• Positive cases = 75, Negative cases = 25
• Is a classifier with 70% accuracy good?
• No, the trivial classifier (always positive) reaches 75%

• Positive cases = 50, Negative cases = 50
• Is a classifier with 70% accuracy good?
• At least much better than the trivial classifier

Multiclass Problem

• Assume N classes

• If classes are perfectly balanced, a trivial classifier (e.g. majority) will
yield Atrivial ~100/N % accuracy

• N=2 → Atrivial ~ 50%

• N=4 → Atrivial ~ 25%

• Goodness of accuracy of a model should be compared against Atrivial

• E.g., If N=5, an accuracy of 40% would look large

Handling Imbalanced Data

• Balance the training set
• Undersampling the majority class

• Oversampling the minority class

• Balance at the algorithm level
• Adjust the class weight by making the algorithm more sensitive to rare classes

• Adjust the decision threshold

• Design new algorithm to perform well on imbalanced data

• Switch to Anomaly Detection

• Do nothing and hope to be lucky

Undersampling

Undersampling the Majority Class

• Random Undersampling

• Neighbor-based approaches,
e.g., Condensed Nearest
Neighbor, Tomek Links, etc.

Random Undersampling

• Under-sample the majority class(es) by randomly picking samples
with or without replacement.

Tomek Links

• Tomek Links uses a rule to selects the pair of observation (a, b) that
respect these properties:
• a nearest neighbor is b

• b nearest neighbor is a.

• a and b belong to a different class; minority and majority (or vice versa)

• Tomek Links are used to find samples of data from the majority class
that is having the lowest distance with the minority class data (i.e.,
the data from the majority class that is closest with the minority class
data, thus make it ambiguous to distinct), and then remove it.

Edited Nearest Neighbor

• The ENN method works as follows

• First, by finding the kNN of each observation,

• Then by checking whether the majority class from the
observation’s kNN is the same as the observation’s class or not,
i.e., if kNN is miscallyfying or not

• Then, if the majority class of the observation’s kNN and the
observation’s class is different, the observation and its kNN are
deleted from the dataset.

• Main idea: remove instances and neighbors for which a kNN fails.

Condensed Nearest Neighbor

• Perform a smart undersampling by removing majority points having
as k-NN a minority point, i.e., identify a subset which, when used as a
stored reference set for kNN, correctly classifies all the remaining
points in the sample set.

Condensed Nearest Neighbor

• Store {}

• REPEAT

• FOR all x in X (in random order)

• Find x’ in Store such that d(x, x’) = min D(x, x’’)

• IF class(x) is not equal class(x’) THEN

• Add x to Store

• UNTIL Store does not change

• Store used for classification instead of X.

Objective: Enumerate the examples in the
dataset X and adding them to the “store”
only if they cannot be classified correctly by
the current contents of the store.

Condensed Nearest Neighbor

P. Hart, “The condensed nearest neighbor rule,” In
Information Theory, IEEE Transactions on, vol. 14(3),
pp. 515-516, 1968

store

Undersampling by Cluster Centroids

• Undersampling by generating centroids based on clustering methods.

• Under samples the majority class by replacing a cluster of majority
samples by the cluster centroid of a KMeans algorithm.

• KMeans keeps K majority samples by fitting it with K cluster to the
majority class and using the coordinates of the K cluster centroids as
the new majority samples.

Oversampling

Oversampling the Majority Class

• Random Oversampling

• Synthetic Minority Oversampling
Technique (SMOTE)

• Adaptive Synthetic (ADASYN)
sampling approach

Random Oversampling

• Over-sample the minority class(es) by picking samples at random with
replacement.

SMOTE Oversampling

• Over-sample the minority class(es) by adding points through
interpolation.

SMOTE

• It operates in the “feature space” rather than in the “data space”, and
effectively forces the decision region of the minority class to become
more general.

• The minority class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbors.

• Depending upon the amount of over-sampling required, neighbors
from the k nearest neighbors are randomly chosen (by default k=5).

• E.g., if the amount of over-sampling needed is 200%, only two
neighbors from the five are chosen and one sample is generated in
the direction of each.

SMOTE – Samples Generation

• Take the difference between the feature vector (sample) under
consideration and its nearest neighbor.

• Multiply this difference by a random number between 0 and 1, and
add it to the feature vector under consideration.

• This causes the selection of a random point along the line segment
between two specific features.

Select only minority

class points

For each point

get k-NNs

Compute

mid-points

Add mid-points

to dataset

SMOTE alternatives

• SMOTENC: Over-sample for continuous and categorical features.

• BorderlineSMOTE: Over-sample using the borderline variant.

• SVMSMOTE: Over-sample using the SVM variant.

• ADASYN: Over-sample using ADASYN.

ADASYN - Adaptive Synthetic

• Step1: Calculate the ratio of minority to majority examples using d= min/maj

• Step2: Calculate the total number of synthetic minority to generate with G =
(maj-min)β where β is the ratio of minority, i.e., with β=1 is required a
perfectly balanced dataset

• Step3: Find the kNN of each minority sample and calculate the ratio of maj
for the neighborhood over k as ri = maji/k and normalize it by dividing ri for
the sum of all the ri.

• Step4: (Adaptive step) Calculate the number of synthetic samples to
generate per neighborhood as Gi = Gri

ADASYN - Adaptive Synthetic

• Step 5: Generate Gi samples for each neighborhood by taking two
minority samples (xi, yi) within the neighborhood and generating a
synthetic one as SMOTE, i.e., si = xi + (yi - xi)λ where λ is a random
number between 0 and 1.

Undersampling & Oversampling

• In the literature there are many solution combining SMOTE with
Undersampling approaches and using them in sequence in order to
oversample the minority class while undersampling the majority one
and mitigating the negative effects of these approaches.

Balancing at the Algorithm Level

Adjust the Class Weight

• The classifier can be trained
considering different costs to be
paid for misclassification errors
on minority classes.

• This is generally done using a
“class weight’’.

Adjust the Class Weight

• Each outcome with respect to a confusion matrix can be associated to
a weight in a corresponding weight (or cost) matrix.

• Thus, the objective of the classification algorithm is to find the model
that minimizes the total cost.
• σ𝑋𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 𝑓𝑟𝑒𝑞(𝑥)

Actual

P
re

d
icte

d

Y N

Y 50 7

N 3 40

Confusion
Matrix

Weight
Matrix

Actual

P
re

d
icte

d

Y N

Y 0 95

N 5 0

Cost = 0.03*5 + 0.07*95

Meta-Cost Sensitive Classifier

• Apply a classifier getting probability of a class label P(j|x)

• Compute expected risk of classifying x with class i:

• Consider the train data with the class i having lower risk

• Learn a model on the cost-sensitive train data

Adjust the Decision Threshold

• Several classification methods compute scores in terms of probability
of belonging to a class, and then assign class.

• Generally we have:

• Score p > 50% → class = Y

• Otherwise → class = N

• E.g.: decision trees have p = #positive/#negative cases over each leaf

Adjust the Decision Threshold

• What if we generalize the schema into:

• Score p > THR% → class = Y

• Otherwise → class = N

• For each THR (in [0-100]) we get a different set of predictions

• The confusion matrix changes and all indicators derived from it change

• Accuracy

• True Positive Rate (TPR)

• False Positive Rate (FPR)

• ….

References

• I. Tomek, “Two modifications of CNN,” In Systems, Man, and Cybernetics,
IEEE Transactions on, vol. 6, pp 769-772, 2010.

• N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic
minority over-sampling technique,” Journal of artificial intelligence
research, 321-357, 2002.

• Domingos, Pedro. "Metacost: A general method for making classifiers cost-
sensitive." Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining. 1999.

• P. Hart, “The condensed nearest neighbor rule,” In Information Theory, IEEE
Transactions on, vol. 14(3), pp. 515-516, 1968.

• Python imblearn library: https://imbalanced-
learn.readthedocs.io/en/stable/index.html

https://imbalanced-learn.readthedocs.io/en/stable/index.html
https://imbalanced-learn.readthedocs.io/en/stable/index.html

	Slide 1: DATA MINING 2 Imbalanced Learning
	Slide 2: Imbalanced Classes
	Slide 3: Imbalanced Classes
	Slide 4: Examples
	Slide 5: What happens on classification?
	Slide 6: Evaluating Classifiers on Imbalanced Data
	Slide 7: Multiclass Problem
	Slide 8: Handling Imbalanced Data
	Slide 9: Undersampling
	Slide 10: Undersampling the Majority Class
	Slide 11: Random Undersampling
	Slide 12: Tomek Links
	Slide 13: Edited Nearest Neighbor
	Slide 14: Condensed Nearest Neighbor
	Slide 15: Condensed Nearest Neighbor
	Slide 16: Condensed Nearest Neighbor
	Slide 19: Undersampling by Cluster Centroids
	Slide 20: Oversampling
	Slide 21: Oversampling the Majority Class
	Slide 22: Random Oversampling
	Slide 23: SMOTE Oversampling
	Slide 24: SMOTE
	Slide 25: SMOTE – Samples Generation
	Slide 26: SMOTE alternatives
	Slide 27: ADASYN - Adaptive Synthetic
	Slide 28: ADASYN - Adaptive Synthetic
	Slide 29: Undersampling & Oversampling
	Slide 30: Balancing at the Algorithm Level
	Slide 31: Adjust the Class Weight
	Slide 32: Adjust the Class Weight
	Slide 33: Meta-Cost Sensitive Classifier
	Slide 34: Adjust the Decision Threshold
	Slide 35: Adjust the Decision Threshold
	Slide 36: References

