https://kdd.isti.cnr.it/xkdd2019/

Tutorial on eXplainable Knowledge Discovery in Data Mining

Oxford Dictionary of English

Definitions

explanation | εksplə'neı∫(ə)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of population trends.

interpret | In'təIprIt |

verb (interprets, interpreting, interpreted) [with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.

- Explainable-AI explores and investigates methods to produce or complement AI models to make accessible and interpretable the internal logic and the outcome of the algorithms, making such process understandable by humans.
- Explicability, understood as incorporating both intelligibility ("how does it work?") for non-experts, e.g., patients or business customers, and for experts, e.g., product designers or engineers) and accountability ("who is responsible for").
- 5 core principles for ethical AI:
 - beneficence, non-maleficence, autonomy, and justice
 - a new principle is needed in addition: explicability

Motivating Examples

Opinion

OP-ED CONTRIBUTOR

When a Computer Program Keeps You in Jail

The New Hork Times

- Criminal Justice
 - People wrongly denied
 - Recidivism prediction
 - Unfair Police dispatch
- Finance:
 - Credit scoring, loan approval
 - Insurance quotes
- Healthcare
 - AI as 3^{rd-}party actor in physician patient relationship
 - Learning must be done with available data: cannot randomize cares given to patients!
 - Must validate models before use.

The Big Read Artificial intelligence (+ Add to myFT

Insurance: Robots learn the business of covering risk

Stanford MEDICINE News Center

🖂 Email 🔶 🕑 Tweet

Researchers say use of artificial intelligence in medicine raises ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Right of Explanation

General Data Protection Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain "meaningful explanations of the logic involved" when "automated (algorithmic) individual decision-making", including profiling, takes place.

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation

Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30

• Machine Learning

Auto-encoder

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. AAAI 2018: 3530-3537

- Machine Learning
- Computer Vision

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS 2017: 5580-5590

Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems

Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems
- NLP

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Explanation as Machine-Human Conversation

[Weld and Bansal 2018]

H: Why? C: See below:

Green regions argue for FISH, while RED pushes towards DOG. There's more green.

H: (Hmm. Seems like it might

H: What happens if the background anemones are removed? E.g.,

C: I still predict FISH, because of these green superpixels:

- Humans may have follow-up questions

- Explanations cannot answer all users' concerns

Role-based Interpretability

"Is the explanation interpretable?" \rightarrow "To whom is the explanation interpretable?" No Universally Interpretable Explanations!

• End users "Am I being treated fairly?"

"Can I contest the decision?"

"What could I do differently to get a positive outcome?"

- Engineers, data scientists: "Is my system working as designed?"
- Regulators " Is it compliant?"

An ideal explainer should model the *user* background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Summarizing: the Need to Explain comes from ...

• User Acceptance & Trust

[Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]

• Legal

- Conformance to ethical standards, fairness
- Right to be informed
- Contestable decisions

• Explanatory Debugging

- Flawed performance metrics
- Inadequate features
- Distributional drift

[Goodman and Flaxman 2016, Wachter 2017]

[Kulesza et al. 2014, Weld and Bansal 2018]

XAI is Interdisciplinary

- For millennia, philosophers have asked the questions about what constitutes an explanation, what is the function of explanations, and what are their structure
- [Tim Miller 2018]

References

- [Tim Miller 2018] Tim Miller Explanaition in Artificial Intelligence: Insight from Social Science
- [Alvarez-Melis and Jaakkola 2018] Alvarez-Melis, David, and Tommi S. Jaakkola. "On the Robustness of Interpretability Methods." arXiv preprint arXiv:1806.08049 (2018).
- [Chen and Rudin 2018]: Chaofan Chen and Cynthia Rudin. An optimization approach to learning falling rule lists. In Artificial Intelligence and Statistics (AISTATS), 2018.
- [Doshi-Velez and Kim 2017] Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable machine learning." arXiv preprint arXiv:1702.08608 (2017).
- [Goodman and Flaxman 2016] Goodman, Bryce, and Seth Flaxman. "European Union regulations on algorithmic decisionmaking and a" right to explanation"." arXiv preprint arXiv:1606.08813 (2016).
- [Freitas 2014] Freitas, Alex A. "Comprehensible classification models: a position paper." ACM SIGKDD explorations newsletter 15.1 (2014): 1-10.
- [Goodman and Flaxman 2016] Goodman, Bryce, and Seth Flaxman. "European Union regulations on algorithmic decisionmaking and a" right to explanation"." arXiv preprint arXiv:1606.08813 (2016).
- [Gunning 2017] Gunning, David. "Explainable artificial intelligence (xai)." Defense Advanced Research Projects Agency (DARPA), nd Web (2017).
- [Hind et al. 2018] Hind, Michael, et al. "Increasing Trust in AI Services through Supplier's Declarations of Conformity." arXiv preprint arXiv:1808.07261 (2018).

References

- [Kulesza et al. 2014] Kulesza, Todd, et al. "Principles of explanatory debugging to personalize interactive machine learning." Proceedings of the 20th international conference on intelligent user interfaces. ACM, 2015.
- [Lipton 2016] Lipton, Zachary C. "The mythos of model interpretability. Int. Conf." Machine Learning: Workshop on Human Interpretability in Machine Learning. 2016.
- [Mittelstatd et al. 2019] Mittelstadt, Brent, Chris Russell, and Sandra Wachter. "Explaining explanations in AI." arXiv preprint arXiv:1811.01439 (2018).
- [Poursabzi-Sangdeh 2018] Poursabzi-Sangdeh, Forough, et al. "Manipulating and measuring model interpretability." arXiv preprint arXiv:1802.07810 (2018).
- [Rudin 2018] Rudin, Cynthia. "Please Stop Explaining Black Box Models for High Stakes Decisions." arXiv preprint arXiv: 1811.10154 (2018).
- [Wachter et al. 2017] Wachter, Sandra, Brent Mittelstadt, and Luciano Floridi. "Why a right to explanation of automated decision-making does not exist in the general data protection regulation." International Data Privacy Law 7.2 (2017): 76-99.
- [Weld and Bansal 2018] Weld, D., and Gagan Bansal. "The challenge of crafting intelligible intelligence." Communications of ACM (2018).
- [Yin 2012] Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible models for classification and regression." Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, (2012).

Explaining Explanation Methods

What is a Black Box Model?

A **black box** is a model, whose internals are either unknown to the observer or they are known but uninterpretable by humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). *A survey of methods for explaining black box models*. *ACM Computing Surveys (CSUR)*, *51*(5), 93.

Needs For Interpretable Models

COMPAS recidivism black bias

DYLAN FUGETT

Prior Offense 1 attempted burglary

Subsequent Offenses 3 drug possessions

BERNARD PARKER

Prior Offense 1 resisting arrest without violence

Subsequent Offenses None

LOW RISK

HIGH RISK

10

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

3

The background bias

H

Η

w 🖹

(a) Husky classified as wolf

(b) Explanation

Is the model fair to every group and/or individual?

ACCOUNTABILITY

What can we attribute the decision to?

TRANSPARENCY

Is the model fair to every group and/or individual?

ACCOUNTABILITY

What can we attribute the decision to?

TRANSPARENCY

Is the model fair to every group and/or individual?

ACCOUNTABILITY

What can we attribute the decision to?

TRANSPARENCY

Is the model fair to every group and/or individual?

ACCOUNTABILITY

What can we attribute the decision to?

TRANSPARENCY

Interpretable, Explainable and Comprehensible Models

Interpretability

- To *interpret* means to give or provide the meaning or to explain and present in understandable terms some concepts.
- In data mining and machine learning, interpretability is the *ability to explain* or to provide the meaning *in understandable terms to a human*.

<u>https://www.merriam-webster.com/</u>

- Finale Doshi-Velez and Been Kim. 2017. *Towards a rigorous science of interpretable machine learning*. arXiv:1702.08608v2.

Dimensions of Interpretability

• Global and Local Interpretability:

- *Global*: understanding the whole logic of a model
- Local: understanding only the reasons for a specific decision
- *Time Limitation*: the time that the user can spend for understanding an explanation.
- Nature of User Expertise: users of a predictive model may have different background knowledge and experience in the task. The nature of the user expertise is a key aspect for interpretability of a model.

Desiderata of an Interpretable Model

- *Interpretability (or* comprehensibility): to which extent the model and/or its predictions are human understandable. Is measured with the *complexity* of the model.
- *Fidelity*: to which extent the model imitate a black-box predictor.
- Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.

Desiderata of an Interpretable Model

- *Fairness*: the model guarantees the protection of groups against discrimination.
- *Privacy*: the model does not reveal sensitive information about people.
- *Respect Monotonicity*: the increase of the values of an attribute either increase or decrease in a monotonic way the probability of a record of being member of a class.
- Usability: an interactive and queryable explanation is more usable than a textual and fixed explanation.

- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on privacy preserving data mining. SpringerPlus.
- Alex A. Freitas. 2014. *Comprehensible classification models: A position paper*. ACM SIGKDD Explor. Newslett.

Recognized Interpretable Models

Rules

Explainations: Saliency Maps

very dark beer, pours a nice finger and a half of creamy foam and stays throughout the beer.
major coffee-like taste with hints of chocolate . if you like black coffee , you will love this
defended and a second constraint of the second decomposition of the second contract for the state of the second seco

Complexity

• Opposed to *interpretability*.

- Linear Model: number of non zero weights in the model.
- Is only related to the model and not to the training data that is unknown.
 Rule: number of attribute-value pairs in condition.
- Generally estimated with a rough approximation related to the *size* of the interpretable model.
 Decision Tree: estimating the complexity of a tree can be hard.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. *Why should i trust you?: Explaining the predictions of any classifier*. KDD.
- Houtao Deng. 2014. *Interpreting tree ensembles with intrees*. arXiv preprint arXiv:1408.5456.
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.

Open the Black Box Problems

Problems Taxonomy

XbD – eXplanation by Design

BBX - Black Box eXplanation

Classification Problem

Model Explanation Problem

Provide an interpretable model able to mimic the *overall logic/behavior* of the black box and to explain its logic.

Outcome Explanation Problem

Provide an interpretable outcome, i.e., an *explanation* for the outcome of the black box for a *single instance*.

Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the black box model works or why the black box returns certain predictions more likely than others.

Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

Categorization

- The type of *problem*
- The type of **black box model** that the explanator is able to open
- The type of *data* used as input by the black box model
- The type of *explanator* adopted to open the black box

Black Boxes

- Neural Network (NN)
- Tree Ensemble (TE)
- Support Vector Machine (SVM)
- Deep Neural Network (DNN)

Types of Data

Table of baby-name data (baby-2010.csv)

name	rank	gender	year -	Field
Jacob	1	boy	2010	One row
Isabella	1	girl	2010	(4 fields)
Ethan	2	boy	2010	
Sophia	2	girl	2010	
Michael	3	boy	2010	
2000 all) rows told			-

Tabular (**TAB**)

Images

Text (**TXT**)

Explanators

- Decision Tree (DT)
- Decision Rules (DR)
- Features Importance (FI)
- Saliency Maps (SM)
- Sensitivity Analysis (SA)
- Partial Dependence Plot (PDP)
- Prototype Selection (PS)
- Activation Maximization (AM)

Reverse Engineering

- The name comes from the fact that we can only *observe* the *input* and *output* of the black box.
- Possible actions are:
 - *choice* of a particular comprehensible predictor
 - querying/auditing the black box with input records created in a controlled way using *random perturbations* w.r.t. a certain prior knowledge (e.g. train or test)
- It can be *generalizable or not*:
 - Model-Agnostic
 - Model-Specific

Model-Agnostic vs Model-Specific

Value	ther	Autors	Lean.	Etoleneto,	Black Bot	Data Jepe	General	the and out	Et annules	Code Code	Dataset
Trepan	[22]	Craven et al.	1996	DT	NN	TAB	\checkmark				\checkmark
_	[57]	Krishnan et al.	1999	DT	NN	TAB	\checkmark		\checkmark		\checkmark
DecText	[12]	Boz	2002	DT	NN	TAB	\checkmark	\checkmark			\checkmark
GPDT	[46]	Johansson et al.	2009	DT	NN	TAB	\checkmark	\checkmark	\checkmark		\checkmark
Tree Metrics	[17]	Chipman et al.	1998	DT	TE	TAB					\checkmark
CCM	[26]	Domingos et al.	1998	DT	TE	TAB	\checkmark	\checkmark			\checkmark
-	[34]	Gibbons et al.	2013	DT	TE	TAB	\checkmark	\checkmark			
STA	[140]	Zhou et al.	2016	DT	TE	TAB		\checkmark			
CDT	[104]	Schetinin et al.	2007	DT	TE	TAB			\checkmark		
_	[38]	Hara et al.	2016	DT	TE	TAB		\checkmark	\checkmark		\checkmark
TSP	[117]	Tan et al.	2016	DT	TE	TAB	1	. •			\checkmark
Conj Rules	[21]	Craver SOI \	/Ing	Ihe	IVIOC	1el EX	xpla	natio	on P	robl	lem
G-REX	[44]	Johansson et al.	2003	DR	NN	TAB		\checkmark	~		
REFNE	[141]	Zhou et al.	2003	DR	NN	TAB	\checkmark	\checkmark	\checkmark		\checkmark
RxREN	[6]	Augasta et al.	2012	DR	NN	TAB		\checkmark	\checkmark		\checkmark

Global Model Explainers

- Explanator: DT
 - Black Box: NN, TE
 - Data Type: TAB
- Explanator: DR
 - Black Box: NN, SVM, TE
 - Data Type: TAB
- Explanator: FI
 - Black Box: AGN
 - Data Type: TAB

 $\begin{array}{l} R_{1}: IF(Outlook = Sunny) \mbox{ AND } \\ (Windy= False) \mbox{ THEN Play=Yes } \\ R_{2}: IF(Outlook = Sunny) \mbox{ AND } \\ (Windy= True) \mbox{ THEN Play=No } \\ R_{3}: IF(Outlook = Overcast) \\ \mbox{ THEN Play=Yes } \\ R_{4}: IF(Outlook = Rainy) \mbox{ AND } \\ (Humidity= High) \mbox{ THEN Play=No } \\ R_{5}: IF(Outlook = Rainy) \mbox{ AND } \\ (Humidity= Normal) \mbox{ THEN Play=Yes } \end{array}$

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

RXREN – DR, NN, TAB

- 01 prune insignificant neurons
- 02 for each significant neuron
 - for each outcome
- 04 compute mandatory data ranges
- 05 for each outcome

03

- 06 build rules using data ranges of each neuron
- 07 prune insignificant rules
- 08 update data ranges in rule conditions analyzing error

class = C_2

if $((data(I_1) \ge L_{13} \land data(I_1) \le U_{13}) \land (data(I_2) \ge L_{23} \land data(I_2) \le U_{23}) \land$ $(data(I_3) \ge L_{33} \land data(I_3) \le U_{33}))$ then class =C₃ else if $((data(I_1) \ge L_{11} \land data(I_1) \le U_{11}) \land (data(I_3) \ge L_{31} \land data(I_3) \le U_{31}))$ then class =C₁ else

 M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.
Reverse engineering the neural networks for rule extraction in classification problems. NPL.

Vane	Ref	Antio	le ar	Etoleneto.	Black Bot	Data Pho	General	the street	Et auples	Code	Dataset
-	[134]	Xu et al.	2015	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
_	[30]	Fong et al.	2017	SM	DNN	IMG			\checkmark		
CAM	[139]	Zhou et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
Grad-CAM	[106]	Selvaraju et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
-	[109]	Simonian et al.	2013	SM	DNN	IMG			\checkmark		\checkmark
PWD	[7]	Bach et al.	2015	SM	DNN	IMG			\checkmark		\checkmark
-	[113]	Sturm et al.	2016	SM	DNN	IMG			\checkmark		\checkmark
DTD	[78]	Montavon et al.	2017	SM	DNN	IMG			\checkmark		\checkmark
DeapLIFT	[107]	Shrikumar et al.	2017	FI	DNN	ANY			\checkmark	\checkmark	
СР	[6 <u>4]</u>	Landecker et al.	2013	SM	NN	IMG			\checkmark		
_	[143]	Zintgraf et al	2017	SM	DNN	IMG		. •	< _	\checkmark	\checkmark
VBP	[11]	BSOlvir	1g01d	he Oi	utco	me E	xpla	nati	on P	rob	lem
-	[65]	Lei et al.	2016	SM	DNN	TXT					\checkmark
ExplainD	[89]	Poulin et al.	2006	FI	SVM	TAB		\checkmark	\checkmark		
_	[29]	Strumbelj et al.	2010	FI	AGN	TAB	\checkmark	\checkmark	\checkmark		\checkmark

Local Model Explainers

- Explanator: SM
 - Black Box: DNN, NN
 - Data Type: IMG
- Explanator: FI
 - Black Box: DNN, SVM
 - Data Type: ANY
- Explanator: DT
 - Black Box: ANY
 - Data Type: TAB

R₁: IF(Outlook = Sunny) AND (Windy= False) THEN Play=Yes

Local Explanation

- The overall decision boundary is complex
- In the neighborhood of a single decision, the boundary is simple
- A single decision can be explained by auditing the black box around the given instance and learning a *local* decision.

LIME – FI, AGN, ANY duration_in_month <= ... 0.11 account_check_status=... 0.09 $Z = \{ \}$ 01 personal_status_sex=... 0.07 02 x instance to explain installment as income... 0.07 03 x' = real2interpretable(x) credit_history=critical.. for i in {1, 2, ..., N} 04 05 z_i = sample around(x') z = interpretabel2real(z')06 $Z = Z \cup \{ \langle z_i, b(z_i), d(x, z) \rangle \}$ 07 w = solve Lasso(Z, k)80 black box 09 return w auditing

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.

LORE – DR, AGN, TAB

x instance to explain 01 $Z_{=} = geneticNeighborhood(x, fitness_, N/2)$ 02 $Z_{\neq} = \text{geneticNeighborhood}(x, \text{fitness}_{\neq}, N/2)$ 03 $Z = Z_{-} \cup Z_{-}$ 04 black box c = buildTree(Z, b(Z))auditing 05 = $(p \rightarrow y) = extractRule(c, x)$ 06 r 07 $\varphi = \text{extractCounterfactual}(c, r, x)$

08 **return** e = <r, ϕ >

 $r = {age \le 25, job = clerk, income \le 900} \rightarrow deny$

 $\Phi = \{(\{income > 900\} -> grant), \\ (\{17 \le age < 25, job = other\} -> grant)\}$

Pedreschi, Franco Turini, **f black box decision**

SHAP (SHapley Additive exPlanations)

- SHAP assigns each feature an importance value for a particular prediction by means of an additive feature attribution method.
- It assigns an importance value to each feature that represents the effect on the model prediction of including that feature
- Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." *Advances in Neural Information Processing Systems*. 2017.

SHAP value (impact on model output)

prediction

explanatio

mode

SHAP

data

Black Box Explanation by Learning Image Exemplars in the Latent Feature Space

Adversarial Black box Explainer generating Latent Exemplars

https://github.com/riccotti/ABELE

Latent Local Rule Extraction

- **r** = if $x_1 > 0.1$ and $x_3 \le 0.5$ then '0'
- $\phi = \{ \text{if } x_1 \le 0.1 \text{ then '4',} \\ \text{if } x_3 > 0.5 \text{ then '8'} \}$

R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti. Local rule-based explanations of black box decision systems. arXiv: 1805.10820, 2018.

Saliency Map from Exemplars

- The saliency map s highlights areas of x that contribute to b(x) and that push it to ≠ b(x).
- It is obtained as follows:
 - pixel-to-pixel-difference between x and each exemplar in H
 - each pixel of *s* is the median value of the differences calculated for that pixel.

Yellow means no difference "no change area"

Exemplars and Counter-Exemplars

• mnist

From Image to Counter-Exemplar

mnist

fashion

T. Spinner et al. Towards an interpretable latent space: an intuitive comparison of autoencoders with variational autoencoders. In IEEE VIS 2018, 2018.

Addition	Ref	Anthors	te ar	Etologianor	Black Bot	Data Ree	Ceneral	though the state	et anologies	Code	Dataset
NID	[83]	Olden et al.	2002	SA	NN	TAB			\checkmark		
GDP	[8]	Baehrens	2010	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
QII	[24]	Datta et al	2016	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
IG	[115]	Sundararajan	2017	SA	DNN	ANY			\checkmark		\checkmark
VEC	[18]	Cortez et al.	2011	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
VIN	[42]	Hooker	2004	PDP	AGN	TAB	\checkmark		\checkmark		\checkmark
ICE	[35]	Goldstein et al.	2015	PDP	AGN	TAB	\checkmark		\checkmark	\checkmark	\checkmark
Prospector	[55]	Krause et al.	2016	PDP	AGN	TAB	\checkmark		\checkmark		\checkmark
Auditing	[2]	Adler et al.	2016	PDP	AGN	TAB	\checkmark		\checkmark	\checkmark	\checkmark
OPIA	[1]	Adebayo et al.	2016	PDP	AGN	TAB	\checkmark		1		
_	[136]	Yosinski et a	2015			IMC					
IP	[108]	Shwartz et 20	iving	, _{AM} ne		aei	inspe			ODI	em
_	[1 <mark>37]</mark>	Zeiler et al.	2014	AM	DNN	IMG		v		V	
-	[112]	Springenberg et al.	2014	AM	DNN	IMG			\checkmark		\checkmark
DGN-AM	[80]	Nguyen et al.	2016	AM	DNN	IMG			\checkmark	\checkmark	\checkmark

Inspection Model Explainers

- Explanator: SA
 - Black Box: NN, DNN, AGN
 - Data Type: TAB
- Explanator: PDP
 - Black Box: AGN
 - Data Type: TAB
- Explanator: AM
 - Black Box: DNN
 - Data Type: IMG, TXT

- Introduce *random perturbations* on input values to understand to which extent every feature impact the prediction using PDPs.
- The input is changed *one variable at a time*.

- Ruth Fong and Andrea Vedaldi. 2017. *Interpretable explanations of black boxes by meaningful perturbation*. arXiv:1704.03296 (2017).

Conclusions

Take-Home Messages

- Explainable AI is motivated by real-world application of AI
- Not a new problem a reformulation of past research challenges in AI
- Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple definitions)
- In Machine Learning:
 - Transparent design or post-hoc explanation?
 - Background knowledge matters!
 - We can scale-up symbolic reasoning by coupling it with representation learning on graphs.
- In AI (in general): many interesting / complementary approaches

Open The Black Box!

- To empower individual against undesired effects of automated decision making
- To reveal and protect new vulnerabilities
- To implement the "right of explanation"
- **To improve** industrial standards for developing Alpowered products, increasing the trust of companies and consumers
- To help people make better decisions
- *To align* algorithms with human values
- To preserve (and expand) human autonomy

Open Research Questions

- There is *no agreement* on *what an explanation is*
- There is **not a formalism** for **explanations**
- There is *no work* that seriously addresses the problem of *quantifying* the grade of *comprehensibility* of an explanation for humans
- Is it possible to join *local* explanations to build a *globally* interpretable model?
- What happens when black box make decision in presence of *latent features*?
- What if there is a *cost* for querying a black box?

Future Challenges

- Creating awareness! Success stories!
- Foster multi-disciplinary collaborations in XAI research.
- Help shaping industry standards, legislation.
- More work on transparent design.
- Investigate symbolic and sub-symbolic reasoning.
- Evaluation:
 - We need benchmark Shall we start a task force?
 - We need an XAI challenge Anyone interested?
 - Rigorous, agreed upon, human-based evaluation protocols

ERC-AdG-2019 "Science & technology for the eXplanation of AI decision making"

So

Thank you!

Anna Monreale University of Pisa

Dino Pedreschi University of Pisa **Riccardo Guidotti** University of Pisa