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Clustering 

u  Clustering : Grouping of objects into different sets, or 
more precisely, the partitioning of a data set into 
subsets (clusters), so that the data in each subset 
(ideally) share some common trait - often proximity 
according to some defined distance measure 

u  Common distance functions:  Euclidean distance,  
 Manhattan distance, … 

u  This kind of distance functions are suitable for 
numerical data 



Not only numerical data 
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Numerical Data 

Categorical data 



Types of Attributes 
• Boolean attribute and Categorical attribute   

•  A boolean attribute corresponding to a single item in a 
transaction, if that item appears, the boolean attribute is set to ‘1’ 
or ‘0’ otherwise. 

•  A categorical attribute may have several values, each value can 
be treated as an item and represented by a boolean attribute. 

 



Market Basket Data 
u  A transaction represents one customer, and each transaction 

contains set of items purchased by the customer 

u  Used to cluster the customers so that customers with similar 
buying pattern are in a cluster. Useful for 

u  Characterizing different customer groups              
u  Targeted Marketing  
u  Predict buying patterns of new customers based on profile 

u  A market basket database: A scenario where attributes of data 
points are non-numeric, transaction viewed as records with 
boolean attributes corresponding to a single item (TRUE if 
transaction contain item, FALSE otherwise). 

 
u  Boolean attributes are special case of categorical Attributes 



Criterion Function 

u  Given n data points in a d-dimensional space, a clustering 
algorithm partitions the data points into k clusters 

u  Partitional Clustering divides the point space into k clusters 
that optimize a certain criterion function 

u  Criterion function F for metric spaces commonly used is 
Euclidean Distance 

u  Criterion function F attempts to minimize distance of every 
point from the mean of the cluster to which the point 
belongs 

u  Another approach is iterative hill climbing technique 



Shortcomings of Traditional Clustering 
Algorithms (1) 

•  For categorical  data we: 
•  Define new criterion for neighbors and/or similarity  
•  Define the ordering criterion 

•  Consider the following 4 market basket transactions 
 

•  using Euclidean distance to measure the closeness 
between all pairs of points, we find that d(P1,P2) is the 
smallest distance: it is equal to 1 

  

T1= {1, 2, 3, 4} 
T2= {1, 2, 4}   
T3= {3}   
T4= {4} 

P1= (1, 1, 1, 1)   
P2= (1, 1, 0, 1)   
P3= (0, 0, 1, 0)   
P4= (0, 0, 0, 1) 



Shortcomings of Traditional Clustering 
Algorithms (2) 
•  If we use the centroid-based hierarchical algorithm then we merge 

P1 and P2 and get a new cluster (P12) with (1, 1, 0.5, 1) as a 
centroid 

•  Then, using Euclidean distance again, we find: 
•     d(p12,p3)= √3.25  
•     d(p12,p4)= √2.25 
•     d(p3,p4)= √2 

•  So, we should merge P3 and P4 since the distance between 
them is the shortest. 

•   However, T3 and T4 don't have even a single common item.  

•  So, using distance metrics as similarity measure for categorical 
data is not appropriate 



Algorithms for categorical data 

• Extensions of  k-means 
•  k-modes 

• ROCK 

• CLOPE 
 
• TX-Means 



k-modes 

X = { X1 ,…, Xn } is the dataset of objects. 

Xi = [ x1 ,…, xm ] is an object i.e., a vector of m categorical attributes  

W is a matrix n × k, with wi,l equal to 1 if Xi belongs to Cluster l, 0 otherwise. 

Q = { Q1 ,…, Qk } is the set of representative objects (mode) for the k clusters. 

d( Xi , Ql ) is a distance function for objects in the data 



k-modes - distance 

•  k-means uses Euclideian 
distance 

•  k-modes as distance uses 
the number of 
mismatches between the 
attributes of two objects. 

d(X,Y ) = (xi − yi )
2
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k-modes - mode 

•  k-modes uses the mode as representative object of a 
cluster 
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Given the set of objects in the cluster Cl the mode is get 
computing the max frequency for each attribute 



k-modes - algorithm 

1.  Select the initial objects as modes 
2.  Scan of the data to assign each object to the closer cluster identified 

by the mode  
3.  Re-compute the mode of ech cluster  
4.  Repeat the steps 2 and 3 until no object changes the assigned 

cluster 

Time Comlexity like K-means 



ROCK: RObust Clustering using linK 

• Hierarchical algorithm for clustering transactional data 
(market basket databases) 

• Uses links to cluster instead of the classical distance 
notion  

• Uses the notion of neighborhood between pair of objects 
to identify the number of links between two objects 



The Neighbours Concept 

•  It captures a notion of similarity 
A and  B are neighbours if sim(A, B) ≥ θ 

•  ROCK uses  the Jaccard coefficient 
sim(A, B)= |A ∩ B| / | A U B | 

A = { 1 , 3 , 4 , 7 } 

B = { 1 , 2 , 4 , 7 , 8 } 
sim(A,B) = 3

6
=
1
2
= 0.5



ROCK - links 
•  A link defines the number of common neighbors between two objects 

 Link(A, B) = |neighbor(A) ∩ neighbor(B) | 

•  Higher values of link(A, B) means higher probability that pi and pj 
belong to the same cluster  

•  Similarity is local while link is capturing global information 
•  Note that a point is considered as a neighbour of itself as well 
•  There is a link from each neighbour of the “root” point  back to itself through 

the root 
•  Therefore, if a point has x neighbours, then x2 links are due to it  



An Example 
•  Data consisting of 6 Attributes  {Book,	Water,	Sun,	Sand,	Swimming,	Reading}	
•  Records  

A.  {Book}				
B.  {Water,	Sun,	Sand,	Swimming}	
C.  {Water,	Sun,	Sand,	Reading}	
D.  {Reading,	Sand}	

•  Resulting Jaccard Coefficient Matrix 

•  Set Threshold = 0.2. Neighbours:  
     N(A)={A}; N(B)={B,C,D} 
     N(C)={B,C,D}, N(D) = {B,C,D}  

•  Number of Links Table 
  Link (B, C) = |{B,C,D}| = 3 

 
•  Resulting Clusters after applying ROCK: {A}, {B,C,D} 
 
 

A B C D
A 1 0 0 0
B 0 3 3 3
C 0 3 3 3
D 0 3 3 3

A B C D
A 1 0 0 0
B 0 1 0.6 0.2
C 0 0.6 1 0.5
D 0 0.2 0.5 1



ROCK – Criterion Function 
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This goodness measure helps to identify the best pair of clusters to be 
merged during each step of ROCK.  

Number of expected cross-links between two clusters 

Where   Ci denotes cluster i  
              ni is the number of points in Ci 
              k is the number of clusters 
              θ is the similarity threshold  

Dividing by the number of expected links 
between pairs of objects in the cluster 
Ci we avoid that objects with a low 
number of links are assigned all to the 
same cluster 



ROCK Clustering algorithm 
•  Input:   A set S of data points 
•               Number of k clusters to be found 
•               The similarity threshold 
•  Output:  Groups of clustered data 

•  The ROCK algorithm is divided into three major parts: 
1.  Draw a random sample from the data set 
2.  Perform a hierarchical agglomerative clustering algorithm 
3.  Label data on disk 

 



ROCK Clustering algorithm 
•  Input:   A set S of data points 
•               Number of k clusters to be found 
•               The similarity threshold 
•  Output:  Groups of clustered data 

•  The ROCK algorithm is divided into three major parts: 
1.  Draw a random sample from the data set 
2.  Perform a hierarchical agglomerative clustering algorithm 
3.  Label data on disk 

 Complexity: 
 O(n2+ n La Lmax+ n2logn) 
 
La= average n. of links for object 
Lmax= max n. of links for object 
 



ROCK Clustering algorithm 
Draw a random sample from the data set: 

•  sampling  is used to ensure scalability to very large 
data sets  

•  The initial sample is used to form clusters, then the 
remaining data on disk is assigned to these clusters  



ROCK Clustering algorithm 
Perform a hierarchical agglomerative clustering 
algorithm: 
•  ROCK performs the following steps which are 

common to all hierarchical agglomerative 
clustering algorithms, but with different definition to 
the similarity measures: 

a.  places each single data point into a separate cluster 
b.  compute the similarity measure for all pairs of clusters 
c.  merge the two clusters with the highest similarity 

(goodness measure) 
d.  Verify a stop condition. If it is not met then go to step b 



ROCK Clustering algorithm 
Label data on disk 
•   

Finally, the remaining data points in the disk are 
assigned to the generated clusters.  

•  This is done by selecting a random sample Li from 
each cluster Ci, then we assign each point p to the 
cluster for which it has the strongest linkage with Li.  



Categorical Attributes Handling 
•  Reduction of Records to Transactions 
•  For every attribute A and value u, an item A.u is 

introduced 
•  A Transaction includes A.u if and only if the attribute value 

of A is u 
•  If the value of an attribute is missing in the record, then 

the corresponding transaction does not contain items for 
the attribute 

•  So, missing values are ruled out “magically”! 
•  That is, we measure the similarity of two records based 

only on the common items 



CLOPE (Clustering with LOPE) 
•  Transactional clustering efficient for high dimensional data  
•  Uses a global criterion function that tries to increase the intra-

cluster overlapping of transaction items  
•  by increasing the height-to-width ratio of the cluster histogram.  

D(C) = set  of items in C

S(C) = ti
ti∈C
∑

W (C) = D(C)

H (C) = S(C) /W (C)

Example: 5 transactions {a,b} {a,b,c} {a,c,d} {d,e} {d,e,f} 

Clustering 1 Clustering 2 

H/W=0.5 H/W=0.55 H/W=0.55 H/W=0.32 

Higher H/W means higher item overlapping 



CLOPE – Criterion Function 
•  For evaluating the goodness of a clustering the gradient 

of a cluster is  

 G(C)=H(C)/W(C)=S(C)/W(C)2 

Repulsion. 
When r is large, 
transactions within 
the same cluster 
must share a large 
portion of common 
items.  



CLOPE Algorithm 



TX-MEANS 
• A parameter-free clustering algorithm able to efficiently 

partitioning transactional data automatically 
• Suitable for the case where clustering must be applied on 

a massive number of different datasets 
•  E.g.: when a large set of users need to be analyzed individually 

and each of them has generated a long history of transactions 

•  TX-Means automatically estimates the number of 
clusters  

•  TX-Means provides the representative transaction of 
each cluster, which summarizes the pattern captured by 
that cluster.  



How It Works 1/3 



How It Works 2/3 



How It Works 3/3 

• Clusters 

• Representative Baskets 



TX-Means Algorithm 
TXMEANS(B: baskets):
•  r <-- GETREPR(B);
•  Q.push(B,r); 
•  While there is a cluster B,r to split in Q:

•  Remove common items from B;
•  B1, B2, r1, r2 <-- BISECTBASKET(B);
•  If BIC(B1,B2,r1,r2) > BIC(B,r) Then: 

•  add B1,B2,r1,r2 to the clusters to split Q;
•  Else 

•  add B,r to the clustering result C;
•  Return C;

stopping 
criterion 

representative 
basket 

bisecting 
schema 



Bisecting Schema 
BISECTBASKET(B: baskets):
•  SSE <-- inf; 
•  r1,r2 <-- select random initial baskets in B as representative; 
•  While True:

•  C1,C2 <-- assign baskets in B with respect to r1,r2;
•  r1_new <-- GETREPR(C1); r2_new <-- GETREPR(C2);
•  SSE_new <-- SSE(C1,C2,r1_new,r2_new);
•  If SSE_new >= SSE Then: 

•  Return C1,C2,r1,r2;
•  r1,r2 <-- r1_new,r2_new;

 
 

overlap-based 
distance function: 

Jaccard 
coefficient 



Get Representative Baskets 
GETREPR(B: baskets):
•  I <-- not common items in B; 
•  r <-- common items in B; 
•  While I is not empty:

•  Add to r the items with maximum frequency in I;
•  Calculate the distance between r and the baskets in B;
•  If the distance no longer decreases Then: 

•  Return r;
•  Else 

•  remove from I the items with maximum frequency;
•  Return r;
 

overlap-based 
distance function 

(Jaccard coefficient) 



Termination & Complexity 
•  TX-Means terminates for any input: 

•  GETREPR terminates because I becomes empty 
•  BISECTBASKET terminates because 2-means terminates: the loop stops 

when the SSE does not strictly increase 
•  TXMEANS terminates because at each iteration replace a cluster with strictly 

smaller ones, at worst all singletons are returned 

•  The complexity of TX-Means is O(It � N � K � D): 
•  It is the number of iterations required to convergence by bisectBaskets,  
•  N is the number of transactions in input,  
•  D is the number of distinct items in the dataset, and 
•  K is the number of clusters detected. 



Dealing with Big Datasets 
•  Clustering of a big individual transactional dataset B. 
•  TX-Means is scalable thanks to the following sampling strategy. 

•  Sampling strategy:  
•  Random selection of a subset S of the baskets in B; 
•  Run of TX-Means on the subset S and obtain clusters C and 

representative baskets R; 
•  Assign the remaining baskets B/S to the clusters C using a nearest 

neighbor approach with respect to the representative baskets R. 


