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. ey Oxford Dictionary of English
Definitions

explanation | skspla'nerf(a)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | mn'‘tarprrt |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.



What is “Explainable Al” ?

* Explainable-Al explores and investigates methods to produce or
complement Al models to make accessible and interpretable the
internal logic and the outcome of the algorithms, making such
process understandable by humans.

 Explicability, understood as incorporating both intelligibility (“how
does it work?”) for non-experts, e.g., patients or business customers,
and for experts, e.g., product designers or engineers) and

accountability (“who is responsible for”).

* 5 core principles for ethical Al:
* beneficence, non-maleficence, autonomy, and justice
* a new principle is needed in addition: explicability



Motivating Examples

* Criminal Justice

* People wrongly denied The Big Read Artificial intelligence <+ Add to myFT )

e Recidivism prediction
* Unfair Police dispatch

€he New YJork Times

OP-ED CONTRIBUTOR

When a Computer
Program Keeps You in Jail

J

Insurance: Robots learn the
business of covering risk

* Finance:
* Credit scoring, loan approval ford
. D Stanfor —
Insurance quotes MEDICINE | NewsCenter —_—

* Healthcare
* Al as 3% party actor in physician -
patient relationship

* Learning must be done with
available data: cannot randomize
cares given to patients!

e Must validate models before use.

CED-» B2

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.



Explanation in different Al fields
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Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains
Its Predictions. AAAI 2018: 3530-3537
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Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Representations of Trained Networks. NIPS 1995: 24-30



Explanation in different Al fields

* Machine Learning
* Computer Vision

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (¢) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590
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Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536



Explanation in different Al fields

* Machine Learning
* Computer Vision
* Knowledge Representation and Reasoning
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Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)

fo
h§
N\
PCLL PO OK ) 1
T ¥ detected
" I'J'Vr‘l
. {I. ! I"_f(:'ll ']
1 A 4
=NCL INO; REC= OF
. P close
f t ected
at L}
TC I 0l

Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012



Explanation in different Al fields

Domain
.‘

@Agem(s)
* Machine Learning
+ Computer Vision F—-E=4& -
—J
* Knowledge Representation and Reaw.....E,

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization.

* Mu Iti_agent SyStemS AAMAS 2018: 1203-1207
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Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different Al fields

* Machine Learning

* Computer Vision
* Knowledge Representation and Reasoning

* Multi-agent Systems
* NLP

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different Al fields

* Machine Learning

* Computer Vision

* Knowledge Representation and Reasoning
* Multi-agent Systems

 NLP

* Planning and Scheduling

gA gA 9B gA
(b) (c) (d)

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different Al fields

Robot: [ have decided to turn left.

° M ac h i ne Lea rn i N g Human: Why did you do that?

Robot: [ believe that the correct action is to turn left
BECAUSE:

o CO m p ute r Vi S i O N I'm being asked to go forward

AND This area in front of me was 20 cm higher than me
*highlights area*

° Kn ow I ed ge Re p rese ntat i on an d Rea son i N g AND the area to the left has maximum protrusions of less

than 5 cm *highlights area*
AND I'm tilted to the right by more than 5 degrees.

® M It' t S t Here is a display of the path through the tree that lead to
u I_age N yS ems this decision. *displays tree*
Human: How confident are you in this decision?

o N LP Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram*
This action is predicted to be correct 67% of the time.

L L

¢ P I annin g an d SC h ed u I | ng Human: Where did the threshold for the area in front come
from?

° . Robot: Here is the histogram of all training examples that

RO bOtICS reached this leaf. 80% of examples where this area was

above 20 cm predicted the appropriate action to be “drive
forward™.

From Decision Tree to human-friendly information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

[Weld and Bansal 2018]
{
r

1
ML Classifier

{

C: I predict FISH

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns



Role-based Interpretability

“Is-the-explanation-terpretable?” - “To whom is the explanation interpretable?”

No Universally Interpretable Explanations!

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system
working as designed?”

* Regulators “ Is it compliant?”

An ideal explainer should model the user
background.

Creators

A

Machine
learning
system

|
|
v

Data-subjects

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Examiners

E—E—&

Operators Executors Decision-
subjects

[Tomsett et al. 18]



Summarizing: the Need to Explain comes from ...

* User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]
* Legal

* Conformance to ethical standards, fairness

* Right to be informed [Goodman and Flaxman 2016, Wachter 2017]

* Contestable decisions

* Explanatory Debugging [Kulesza et al. 2014, Weld and Bansal 2018]

* Flawed performance metrics
* Inadequate features
* Distributional drift



XAl is Interdisciplinary

* For millennia, philosophers have |
asked the questions about what Setomee
constitutes an explanation, what

is the function of explanations,
and what are their structure

: : N\ Human-Agent
* [Tim Miller 2018] [ e
Artificial - Human-Computer
Intelligence | Interaction
\
\\
\



What is a Black Box Model?

A black box is a model,
whose internals are either
unknown to the observer or
they are known but
uninterpretable by humans.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.






COMPAS recidivism black bias

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest b'
without violence ’

Subsequent Offenses

:  3drug possessions Subsequent Offenses

i None

LOW RISK 3 HiGHRrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.







Interpretable, Explainable and
Comprehensible Models




Interpretability

* To interpret means to give or provide the meaning or to explain and
present in understandable terms some concepts.

* In data mining and machine learning, interpretability is the ability to
explain or to provide the meaning in understandable terms to a
human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.


https://www.merriam-webster.com/

Dimensions of Interpretability

* Global and Local Interpretability:.
* Global: understanding the whole logic of a model
 Local: understanding only the reasons for a specific decision

e Time Limitation: the time that the user can spend for
understanding an explanation.

* Nature of User Expertise: users of a predictive model may have

different background knowledge and experience in the task.
The nature of the user expertise is a key aspect Ii i|

for interpretability of a model. IEeil



Desiderata of an Interpretable Model

* Interpretability (or comprehensibility): to which extent the model
and/or its predictions are human understandable. Is measured with

the complexity of the model.
* Fidelity: to which extent the model imitate a black-box predictor.

e Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.

Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on
privacy preserving data mining. SpringerPlus .

Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Reliability and Robustness: the interpretable model should maintain
high levels of performance independently from small variations of the
parameters or of the input data.

Causality: controlled changes in the input due to a perturbation should
affect the model behavior.

Scalability: the interpretable model should be able to scale to large
input data with large input spaces.

Generality: the model should not require special training or restrictions.



Recognized Interpretable Models

1st, 2@, survived PREDICTION: p(survived = yes | X) = 0.671
female Pclass? ‘ OUTCOME: YES
3rd class not survived Feature contribution
sex”?
y survived Ras 0.344
male age’? Age 20,034
}‘ not survived Sex | 1194
Decision Tree Linear Model

if condition1 A conditiony A conditions then outcome

Rules

Value

3rd
52

female



Complexity F J

* Opposed to interpretability. * Linear Model: number of non
zero weights in the model.

* Is only related to the model and not
to the training data that is unknown. ¢ Rule: number of attribute-value
pairs in condition.

* Generally estimated with a rough
approximation related to the size of ¢ Decision Tree: estimating the
the interpretable model. complexity of a tree can be hard.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Open the Black Box Prob\ems
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Problems Taxonomy

OPEN THE BLACK
BOX PROBLEMS

BLACK BOX
EXPLANATION

|| ]

|

MODEL
EXPLANATION

OUTCOME
EXPLANATION

[ ]

TRANSPARENT
BOX DESIGN

MODEL
INSPECTION




XbD — eXplanation by Design @

Black-box System
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e _ . TRANSPARENT
Interpretability ransparent System BOX DESIGN




BBX - Black Box eXplanation

Black-box
Al System

Eji'ﬂ

Explanation

Input Data

- ) BLACK BOX
EXPLANATION
Explanation Sub-system
MODEL OUTCOME MODEL
EXPLANATION EXPLANATION INSPECTION




Classification Problem

TRAINING BLACK BOX
o | JETYT »| BLACKBOX | »| PREDICTION
X =1{Xy, «ue, X}
TEST

SET




Model Explanation Problem

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes
R, : IFOutlook = Sunny) AND
INTERPRETABLE (Windy= True) THEN Play=No

— BLACKBOX | +—» GLOBAL 5 | Ry IHQutlook = Overcast)
THEN Play=Yes

PREDICTOR R, : IFOutiook = Rainy) AND

TEST
INSTANCES

(Humidity= High) THEN Play=No
X =1{Xy, «uey X} R, : IF(Outiook = Rainy) AND

(Humidity= Normal) THEN Play=Yes




Outcome Explanation Problem

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX PRIEODféI[_OR . (Windy= False) THEN Play=Yes

X




Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

TEST VISUAL ' ' :
INSTANCES >| BLACKBOX | | pepRENTATION |T T ¢ |

X =1{Xy, «uey X}




Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

TRAINING INTERPRETABLE INTERPRETABLE R, : IFQutlook = Sunny) AND
r b ' P b | (Windy= False) THEN Play=Yes
SET LEARNER PREDICTOR R, : IFOutiook — Sunny) AND
- (Windy= True) THEN Play=No
— R. : IFOutlook = Overcast)
X =Xy, oy Xp} THEN Play=Yes
R, : IF{Outlook = Rainy) AND
TEST (Humidity= High) THEN Play=No
. ; R; : IFOutlook = Rainy) AND
INSTANCE (Humidity= Normal) THEN Play=Yes

X




Categorization p Yl
* The type of problem |
* The type of black box model that the explanator is able to open
* The type of data used as input by the black box model

* The type of explanator adopted to open the black box



Black Boxes QL ,
¢ 7. 000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)

* Deep Neural Network (DNN)




Types of Data

Table of baby-name data
(baby-2010.csv)

Field

name rank gender year " names

Jacob 1 bo 2010

ol ™~ One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010 I m a eS
Sophia 2 girl 2010 g
Michael 3 boy 2010

: : : IMG)

: : : (

: 2000 rows : :

. all told . '

Tabular
(TAB)



Explanators

* Decision Tree (DT)

* Decision Rules (DR)

e Features Importance (F/)
 Saliency Maps (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)

 Activation Maximization (AM)



Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.

* Possible actions are:
* choice of a particular comprehensible predictor

» querying/auditing the black box with input records
created in a controlled way using random perturbations

w.r.t. a certain prior knowledge (e.g. train or test)

Input Output

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific




Model-Agnostic vs Model-Specific

TEST RANDOM DATA
INSTANCES > | pertuRgaTioN | % BLACKBOX == PREDICTION
independentI |
A 4
INTERPRETABLE INTERPRETABLE ORACLE
PREDICTOR | LEARNER | *
| — T —— T —
TEST ' | RANDOM DATA | !
NsTANCESE— | PERTURBATION . »| BLACKBOX |- »| PREDICTION :
| = |
| | |
: dependent I - :
| I
INTERPRETABLE | INTERPRETABLE LEARNER ORACLE |
PREDICTOR ! I
' |

b e e e e e e e e e e e o e e o e e o e e e e e o e - - o - - o - - - - — — — — —
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Trepan [22] Craven et al. 1996 DT NN TAB v v
- [57] Krishnan et al. 1999 DT NN TAB v v v
DecText [12] Boz 2002 DT NN TAB v v v
GPDT [46] Johansson et al. 2009 DT NN TAB v v v v
Tree Metrics [17] Chipman et al. 1998 DT TE TAB v
CCM [26] Domingos et al. 1998 DT TE TAB v v v
- [34] Gibbons et al. 2013 DT TE TAB v v
STA [140] Zhou et al. 2016 DT TE TAB v
CDT [104]  Schetininetal. 2007 DT TE TAB v
— 38 Hara et al. 2016 DT TE TAB
TSP . .
Coni Rules Solving The Model Explanation Problem
G-REX
REFNE [141] Zhou et al. 2003 DR NN TAB v v v v
RxREN [6] Augasta et al. 2012 DR NN TAB v v v



Global Model Explainers

* Explanator: DT R, : IF(Outiook = Sunny) AND
* Black Box: NN, TE (Windy= False) THEN Play=VYes
* Data Type: TAB R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No
* Explanator: DR %E’I\T (F(’)I:;'i?(t: ]
* Black Box: NN, SVM, TE R, : IF{Dutlook = Rainy) AND
* Data Type: TAB (Humidity= High) THEN Play=No
R; : IHOutlook = Rainy) AND
+ Explanator: Fl (Humidity= Normal) THEN Play=Yes

e Black Box: AGN
* Data Type: TAB



Tre PaN —DT, NN, TAB ) Uiy <25 5
o7 03 "6 o
60% 40%
01 T = root of the tree() @
02 Q = <T p X p {}> niformityCe:ISize<4.5
03 while Q not empty & size(T) < limit
04 N, Xy, Cy = pPop(Q) SareNulel <25
05 Zy = random(Xy, Cg)
06 blackbox 'y, = b(z), y = b(Xy) ‘ o
07 ouditing  jf same class(y U y,) w ) G G U
08 continue
09 S = best split(Xy U Zy, v U v;,)
10 S’'= best m-of-n split(S)
11 N = update with split(N, S')
12 for each condition c¢ in S’
13 C = new child of(N)
14 Cc = CNU {c}
15 X. = select with constraints(Xy, Cy)
16 put(Q, <C, X., C.>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.



RXREN -br, NN, TAB

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome

lack box

ammmi—*compute mandatory data ranges NP

05 for each outcome

06 build rules using data ranges of each neuron

07 prune insignificant rules

08 update data ranges in rule conditions analyzing error

if ((data(l}) > L1z Adata(l}) < Ujz) A (data(lp) > Loz Adata(lp) < Uxz) A
(data(I3) > L33z Adata(I3) < U3zz)) then class =C3

else

if ((data(l1) > L11 Adata(l1) < Ui1) A (data(l3) = L3 Adata(13) < Uzy))

then class =C}
- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.

Reverse engineering the neural networks for rule
extraction in classification problems. NPL. class = C,

else



& & § & 5‘5 < @Q@ g s ¥ W s
s & § ¥ s & S o § § C §
¢ & § 3 ¢ F S
- [134] Xu et al. 2015 SM DNN IMG v v v
- (30] Fong et al. 2017 SM DNN IMG v
CAM [139] Zhou et al. 2016 SM DNN IMG v v v
Grad-CAM [106] Selvaraju et al. 2016 SM DNN IMG v v v
_ [109]  Simonianetal. 2013 SM DNN IMG v v
PWD [7] Bach et al. 2015 SM DNN IMG v v
. [113] Sturm et al. 2016 SM DNN IMG v v
DTD [78] Montavon et al. 2017 SM DNN IMG v v
DeapLIFT [107]  Shrikumaretal. 2017 FI DNN ANY v v
CP [64 Landecker et alL 2013 SM NN IMG
— [14 . :
s Solving The Outcome Explanation Problem
_ [ i al 016 G 3
ExplainD [89] Poulin et al. 2006 FI SVM TAB v v
_ [20]  Strumbeljetal. 2010 FI AGN TAB v v v e



Local Model Explainers

* Explanator: SM
e Black Box: DNN, NN
* Data Type: IMG

* Explanator: FI R, IF(Outlook = Sunny) AND
* Black Box: DNN, SVM (Windy= False) THEN Play=Yes

* Data Type: ANY

e Explanator: DT
* Black Box: ANY
* Data Type: TAB



Local Explanation

* The overall decision
boundary is complex

* |In the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




LIME —F1 AGN, ANY 0 1

duration_in_month <= ...
0.11

ﬁ:count_check_stamsz...
Q.09
01 z = {} personal_status_sex=..-.
. . 0.07

02 X 1lnstance to explain gmmmmLqummm

| A— . 007
03 X real2interpretable(Xx) credit_history=critical...
04 for 1 in {1, 2, .., N} ool
05 Z;= sample around(x')
06 z = 1nterpretabel2real(z’)
07 Z =272 U {<z;, b(z;), d(x, 2)>}
08 w = solve Lasso(Z, k) ™~

black box

09 return w auditing

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?:
Explaining the predictions of any classifier. KDD.




age < 25
try, \%
job mcome < 1500
LORE - DR, AGN, TAB op )N <
mcome < 900 age < 17 job grant
z \ / \ clery \olther
O 1 X inS tance to eXpl ain deny g’l‘"a’/;,.t‘ wdeny gmn?}. deny grant

02 Z. = geneticNeighborhood(x, fitness_., N/2)

03 Z. = geneticNeighborhood(x, fitness,., N/2)
04 2 = 2- U 2, black box

05 c = buildTree(Z, b(Z)4  auditing

06 r = (p -> y) = extractRule(c, X)

07 ¢ = extractCounterfactual(c, r, X)

08 return e = <r, ©¢>

| r = {age < 25, job = clerk, income £ 900} -> deny |

® = {{{income > 500} -> grant), pedresch, Franco T
({17 < age < 25, job = other} -> grant)}




Meaningful Perturbations -swm, bnn, IMG

01
02
03

04

X 1lnstance to explain black box
varying X into X’ maximizing b(x)~b(x’)’//‘wwmm
the variation runs replacing a region R of x with:
constant value, noise, blurred image
reformulation: find smallest R such that b(xyz)<b(x)

flute: 0.9973 flute: 0.0007 Learned Mask

Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).



prediction

SHAP (SHapley Additive exPlanations) [=

M

* SHAP assigns each feature an 9(z') = ¢o + ;qsiz,;,

importance value for a S|\(|F| - |S] — 1)!
particular prediction by means %~ S;\:{i} 7! o (@sug) — fs(es)]
of an additive feature . L, e 2 o
attribution method. T e
* It assigns an importance value o

to each feature that represents ItV i b
the effect on the model o —{—
prediction of including that 3
feature _ f

Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model :%E i

predictions." Advances in Neural Information Processing Systems. 2017. —
output



- 3 ~ < ~ &
§ & s & @3,9 ;30 5‘3 ;"'3 S & 8 {f
- v e & S ¢ & & 9
NID [83] Olden et al. 2002 SA NN TAB v
GDP (8] Baehrens 2010 SA AGN TAB v v v
QII [24] Datta et al 2016 SA AGN TAB v v v
IG [115] Sundararajan 2017 SA DNN ANY v v
VEC [18] Cortez et al. 2011 SA AGN TAB v v v
VIN [42] Hooker 2004 PDP AGN TAB v v v
ICE [35] Goldstein et al. 2015 PDP AGN TAB v v v v
Prospector  [55] Krause et al. 2016 PDP AGN TAB v v v
Auditing [2] Adler et al. 2016 PDP AGN TAB v v v v
OPIA

IP

— [112]  Springenbergetal. 2014 AM DNN IMG v v
DGN-AM [80] Nguyen et al. 2016 AM DNN IMG v v v




Inspection Model Explainers

* Explanator: SA
e Black Box: NN, DNN, AGN

* Data Type: TAB

e Explanator: PDP
* Black Box: AGN
* Data Type: TAB

* Explanator: AM
* Black Box: DNN
* Data Type: IMG, TXT



Prospector - rop, AGN, TAB

* Introduce random perturbations on input values to understand to
which extent every feature impact the prediction using PDPs.

* The input is changed one variable at a time.
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Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
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CPAR [135] Yin et al. 2003 DR — TAB v
FRL [127] Wang et al. 2015 DR - TAB v v v
BRL [66] Lethametal. 2015 DR _ TAB v
TLBR [114] Su et al. 2015 DR - TAB v v
IDS [61] Lakkaraju et al. 2016 DR — TAB v
Rule Set [130] Wang et al. 2016 DR — TAB v v v
1Rule [75] Malioutov et al. 2017 DR - TAB v v
PS 9] Bien et al. 2011 PS - ANY v v
BCM [51] Kim et al. 2014 PS _ ANY v v
OT-SpAMs [128] Wang et al. 2015 DT — TAB v v v

Solving The Transparent Design Problem




Transparent Model Explainers

* Explanators:
DR
e DT
* PS

* Data Type:
* TAB



CPAR -DR, 1AB

* Combines the advantages of associative (A1 =2, Ay =1, Ay = 1).
classification and rule-based classification. (41 =2, A3 =1, Ay =2, Ay =3).

* It adopts a greedy algorithm to generate

rules directly from training data.
Al=2—T— A= —*A4=1

* It generates more rules than traditional
rule-based classifiers to avoid missing A3 T A A3
important rules.

—>A2=1
* To avoid overfitting it uses expected
accuracy to evaluate each rule and uses the

best k rules in prediction.

Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331-335



CORELS -pr, 1AB

* It is a branch-and bound algorithm that provides the optimal solution
according to the training objective with a certificate of optimality.

* It maintains a lower bound on the minimum value of error that each
incomplete rule list can achieve. This allows to prune an incomplete
rule list and every possible extension.

* It terminates with the optimal rule list and a certificate of optimality.

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.
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Take-Home Messages

* Explainable Al is motivated by real-world application of Al
* Not a new problem — a reformulation of past research challenges in Al

* Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple
definitions)
* In Machine Learning:

* Transparent design or post-hoc explanation?
e Background knowledge matters!

* We can scale-up symbolic reasoning by coupling it with representation
learning on graphs.

* In Al (in general): many interesting / complementary approaches



Open The Black Box!

* To empower individual against undesired effects of
automated decision making

* To reveal and protect new vulnerabilities
e To implement the “right of explanation”

e To improve industrial standards for developing Al-
powered products, increasing the trust of companies
and consumers

* To help people make better decisions
* To align algorithms with human values
 To preserve (and expand) human autonomy




Open Research Questions

T
T
T

nere is no agreement on what an explanation is
nere is not a formalism for explanations

nere is ho work that seriously addresses the

problem of quantifying the grade of
comprehensibility of an explanation for humans

* Is it possible to join local explanations to build a
globally interpretable model?

* What happens when black box make decision in
presence of latent features?

* What if there is a cost for querying a black box?
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