DATA MINING 2 Ethics Principles: Explainability

Riccardo Guidotti

a.a. 2019/2020

Oxford Dictionary of English

Definitions

explanation | ɛksplə'neı∫(ə)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of population trends.

interpret | In'təIprIt |

verb (interprets, interpreting, interpreted) [with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.

- Explainable-AI explores and investigates methods to produce or complement AI models to make accessible and interpretable the internal logic and the outcome of the algorithms, making such process understandable by humans.
- Explicability, understood as incorporating both intelligibility ("how does it work?") for non-experts, e.g., patients or business customers, and for experts, e.g., product designers or engineers) and accountability ("who is responsible for").
- 5 core principles for ethical AI:
 - beneficence, non-maleficence, autonomy, and justice
 - a new principle is needed in addition: **explicability**

Motivating Examples

Opinion

OP-ED CONTRIBUTOR

When a Computer Program Keeps You in Jail

The New Hork Times

- Criminal Justice
 - People wrongly denied
 - Recidivism prediction
 - Unfair Police dispatch
- Finance:
 - Credit scoring, loan approval
 - Insurance quotes
- Healthcare
 - AI as 3^{rd-}party actor in physician patient relationship
 - Learning must be done with available data: cannot randomize cares given to patients!
 - Must validate models before use.

The Big Read Artificial intelligence (+ Add to myFT

Insurance: Robots learn the business of covering risk

🖂 Email 🔶 🕑 Tweet

Researchers say use of artificial intelligence in medicine raises ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

• Machine Learning

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation

Surogate Model

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. AAAI 2018: 3530-3537

Auto-encoder

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30

- Machine Learning
- Computer Vision

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS 2017: 5580-5590

Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning

Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian Networks. Artif. Intell. 64(1): 81-129 (1993)

Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-Based Diagnosis of Discrete Event Systems: Theory and Practice. KR 2012

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems

Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems
- NLP

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems
- NLP
- Planning and Scheduling

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR abs/1709.10256 (2017)

- Machine Learning
- Computer Vision
- Knowledge Representation and Reasoning
- Multi-agent Systems
- NLP
- Planning and Scheduling
- Robotics

Robot: I have decided to turn left. Human: Why did you do that? Robot: I believe that the correct action is to turn left BECAUSE: I'm being asked to go forward AND This area in front of me was 20 cm higher than me *highlights area* AND the area to the left has maximum protrusions of less than 5 cm *highlights area* AND I'm tilted to the right by more than 5 degrees. Here is a display of the path through the tree that lead to this decision. *displays tree* Human: How confident are you in this decision? Robot: The distribution of actions that reached this leaf node is shown in this histogram. *displays histogram* This action is predicted to be correct 67% of the time. Human: Where did the threshold for the area in front come from? Robot: Here is the histogram of all training examples that reached this leaf. 80% of examples where this area was above 20 cm predicted the appropriate action to be "drive forward".

From Decision Tree to human-friendly information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent Robots. AAAI Workshops 2017

Explanation as Machine-Human Conversation

[Weld and Bansal 2018]

C: I predict FISH

- Humans may have follow-up questions
- Explanations cannot answer all users' concerns

Role-based Interpretability

"Is the explanation interpretable?" \rightarrow "To whom is the explanation interpretable?" No Universally Interpretable Explanations!

• End users "Am I being treated fairly?"

"Can I contest the decision?"

"What could I do differently to get a positive outcome?"

- Engineers, data scientists: "Is my system working as designed?"
- Regulators " Is it compliant?"

An ideal explainer should model the *user* background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Summarizing: the Need to Explain comes from ...

• User Acceptance & Trust

[Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]

- Legal
 - Conformance to ethical standards, fairness
 - Right to be informed
 - Contestable decisions
- Explanatory Debugging
 - Flawed performance metrics
 - Inadequate features
 - Distributional drift

[Goodman and Flaxman 2016, Wachter 2017]

[Kulesza et al. 2014, Weld and Bansal 2018]

XAI is Interdisciplinary

- For millennia, philosophers have asked the questions about what constitutes an explanation, what is the function of explanations, and what are their structure
- [Tim Miller 2018]

What is a Black Box Model?

A **black box** is a model, whose internals are either unknown to the observer or they are known but uninterpretable by humans.

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). *A survey of methods for explaining black box models*. *ACM Computing Surveys (CSUR)*, *51*(5), 93.

Needs For Interpretable Models

COMPAS recidivism black bias

DYLAN FUGETT

Prior Offense 1 attempted burglary

Subsequent Offenses 3 drug possessions

BERNARD PARKER

Prior Offense 1 resisting arrest without violence

Subsequent Offenses None

LOW RISK

HIGH RISK

10

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

3

The background bias

H

H

w 🚪

(a) Husky classified as wolf

(b) Explanation

Interpretable, Explainable and Comprehensible Models

Interpretability

- To *interpret* means to give or provide the meaning or to explain and present in understandable terms some concepts.
- In data mining and machine learning, interpretability is the *ability to explain* or to provide the meaning *in understandable terms to a human*.

- <u>https://www.merriam-webster.com/</u>

- Finale Doshi-Velez and Been Kim. 2017. *Towards a rigorous science of interpretable machine learning*. arXiv:1702.08608v2.

Dimensions of Interpretability

• Global and Local Interpretability:

- *Global*: understanding the whole logic of a model
- Local: understanding only the reasons for a specific decision
- *Time Limitation*: the time that the user can spend for understanding an explanation.
- Nature of User Expertise: users of a predictive model may have different background knowledge and experience in the task. The nature of the user expertise is a key aspect for interpretability of a model.

Desiderata of an Interpretable Model

- *Interpretability (or* comprehensibility): to which extent the model and/or its predictions are human understandable. Is measured with the *complexity* of the model.
- *Fidelity*: to which extent the model imitate a black-box predictor.
- Accuracy: to which extent the model predicts unseen instances.

Desiderata of an Interpretable Model

- *Fairness*: the model guarantees the protection of groups against discrimination.
- *Privacy*: the model does not reveal sensitive information about people.
- *Respect Monotonicity*: the increase of the values of an attribute either increase or decrease in a monotonic way the probability of a record of being member of a class.
- Usability: an interactive and queryable explanation is more usable than a textual and fixed explanation.

- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. *A comprehensive review on privacy preserving data mining*. SpringerPlus .
- Alex A. Freitas. 2014. *Comprehensible classification models: A position paper*. ACM SIGKDD Explor. Newslett.

Desiderata of an Interpretable Model

- **Reliability and Robustness**: the interpretable model should maintain high levels of performance independently from small variations of the parameters or of the input data.
- **Causality:** controlled changes in the input due to a perturbation should affect the model behavior.
- *Scalability:* the interpretable model should be able to scale to large input data with large input spaces.
- Generality: the model should not require special training or restrictions.

Recognized Interpretable Models

Complexity

• Opposed to *interpretability*.

- Linear Model: number of non zero weights in the model.
- Is only related to the model and not to the training data that is unknown.
 - Rule: number of attribute-value pairs in condition.
- Generally estimated with a rough approximation related to the *size* of the interpretable model.
 Decision Tree: estimating the complexity of a tree can be hard.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. *Why should i trust you?: Explaining the predictions of any classifier*. KDD.
- Houtao Deng. 2014. *Interpreting tree ensembles with intrees*. arXiv preprint arXiv:1408.5456.
- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.

Open the Black Box Problems

Problems Taxonomy

XbD – eXplanation by Design

BBX - Black Box eXplanation

Classification Problem

Model Explanation Problem

Provide an interpretable model able to mimic the *overall logic/behavior* of the black box and to explain its logic.

Outcome Explanation Problem

Provide an interpretable outcome, i.e., an *explanation* for the outcome of the black box for a *single instance*.

Model Inspection Problem

Provide a representation (visual or textual) for understanding either how the black box model works or why the black box returns certain predictions more likely than others.

Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

Categorization

- The type of *problem*
- The type of **black box model** that the explanator is able to open
- The type of *data* used as input by the black box model
- The type of *explanator* adopted to open the black box

Black Boxes

- Neural Network (NN)
- Tree Ensemble (TE)
- Support Vector Machine (SVM)
- Deep Neural Network (**DNN**)

Types of Data

Table of baby-name data (baby-2010.csv)

name	rank	gender	year -	Field names
Jacob	1	boy	2010	One row
Isabella	1	girl	2010	(4 fields)
Ethan	2	boy	2010	
Sophia	2	girl	2010	
Michael	3	boy	2010]
200 all	0 rows told			-

Tabular (**TAB**)

Images

(IMG)

Text (**TXT**)

Explanators

- Decision Tree (DT)
- Decision Rules (DR)
- Features Importance (FI)
- Saliency Maps (SM)
- Sensitivity Analysis (SA)
- Partial Dependence Plot (PDP)
- Prototype Selection (PS)
- Activation Maximization (AM)

Reverse Engineering

- The name comes from the fact that we can only *observe* the *input* and *output* of the black box.
- Possible actions are:
 - choice of a particular comprehensible predictor
 - querying/auditing the black box with input records created in a controlled way using *random perturbations* w.r.t. a certain prior knowledge (e.g. train or test)
- It can be *generalizable or not*:
 - Model-Agnostic
 - Model-Specific

Model-Agnostic vs Model-Specific

Vatto	Ref	Authors	Lear.	Etoleneto,	Black Bot	Data Jepe	General	the support	Et antiples	Code	Dataset
Trepan	[22]	Craven et al.	1996	DT	NN	TAB	\checkmark				\checkmark
_	[57]	Krishnan et al.	1999	DT	NN	TAB	\checkmark		\checkmark		\checkmark
DecText	[12]	Boz	2002	DT	NN	TAB	\checkmark	\checkmark			\checkmark
GPDT	[46]	Johansson et al.	2009	DT	NN	TAB	\checkmark	\checkmark	\checkmark		\checkmark
Tree Metrics	[17]	Chipman et al.	1998	DT	TE	TAB					\checkmark
CCM	[26]	Domingos et al.	1998	DT	TE	TAB	\checkmark	\checkmark			\checkmark
-	[34]	Gibbons et al.	2013	DT	TE	TAB	\checkmark	\checkmark			
STA	[140]	Zhou et al.	2016	DT	TE	TAB		\checkmark			
CDT	[104]	Schetinin et al.	2007	DT	TE	TAB			\checkmark		
_	[38]	Hara et al.	2016	DT	TE	TAB		\checkmark	\checkmark		\checkmark
TSP	[117]	Tan et al.	2016								
Conj Rules	[21]	Craven SOI	/ing	Ine	IVIOC	Ie _{lab} ez	xpia	natio	on P	ropi	em
G-REX	[44]	Johansson et al.	2003	DR	NN	TAB	~	\checkmark	~		
REFNE	[141]	Zhou et al.	2003	DR	NN	TAB	\checkmark	\checkmark	\checkmark		\checkmark
RxREN	[6]	Augasta et al.	2012	DR	NN	TAB		\checkmark	\checkmark		\checkmark

Global Model Explainers

- Explanator: DT
 - Black Box: NN, TE
 - Data Type: TAB
- Explanator: DR
 - Black Box: NN, SVM, TE
 - Data Type: TAB
- Explanator: FI
 - Black Box: AGN
 - Data Type: TAB

 $\begin{array}{l} R_1: IF(Outlook = Sunny) \ AND \\ (Windy= False) \ THEN \ Play=Yes \\ R_2: IF(Outlook = Sunny) \ AND \\ (Windy= True) \ THEN \ Play=No \\ R_3: IF(Outlook = Overcast) \\ THEN \ Play=Yes \\ R_4: IF(Outlook = Rainy) \ AND \\ (Humidity= High) \ THEN \ Play=No \\ R_5: IF(Outlook = Rainy) \ AND \\ (Humidity= Normal) \ THEN \ Play=Yes \end{array}$

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

RXREN – DR, NN, TAB

- 01 prune insignificant neurons
- 02 for each significant neuron
- 03 for each outcome
- 04 auditing compute mandatory data ranges
- 05 for each outcome

- 06 build rules using data ranges of each neuron
- 07 prune insignificant rules
- 08 update data ranges in rule conditions analyzing error

if $((data(I_1) \ge L_{13} \land data(I_1) \le U_{13}) \land (data(I_2) \ge L_{23} \land data(I_2) \le U_{23}) \land$ $(data(I_3) \ge L_{33} \land data(I_3) \le U_{33}))$ then class = C_3 else if $((data(I_1) \ge L_{11} \land data(I_1) \le U_{11}) \land (data(I_3) \ge L_{31} \land data(I_3) \le U_{31}))$ then class = C_1 else class = C_2

 M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.
Reverse engineering the neural networks for rule extraction in classification problems. NPL.

Vane	Ref	Anthors	le ar	Etologiator	Black Bot	Data J.p.e	General	the sudout	Et autoles	Code	Dataset
-	[134]	Xu et al.	2015	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
_	[30]	Fong et al.	2017	SM	DNN	IMG			\checkmark		
CAM	[139]	Zhou et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
Grad-CAM	[106]	Selvaraju et al.	2016	SM	DNN	IMG			\checkmark	\checkmark	\checkmark
-	[109]	Simonian et al.	2013	SM	DNN	IMG			\checkmark		\checkmark
PWD	[7]	Bach et al.	2015	SM	DNN	IMG			\checkmark		\checkmark
-	[113]	Sturm et al.	2016	SM	DNN	IMG			\checkmark		\checkmark
DTD	[78]	Montavon et al.	2017	SM	DNN	IMG			\checkmark		\checkmark
DeapLIFT	[107]	Shrikumar et al.	2017	FI	DNN	ANY			\checkmark	\checkmark	
СР	[64]	Landecker et al.	2013	SM	NN	IMG			\checkmark		
-	[143]	Zintgraf (t al.	2017	SMO.	DNN	IMG					
VBP	[11]	BOIVIN	$ g_{016} $	ne _M Ol	JTCO	me E	xpia	nati	ON P	rop	iem
_	[65]	Lei et al.	2016	SM	DNN	TXT					-
ExplainD	[89]	Poulin et al.	2006	FI	SVM	TAB		\checkmark	\checkmark		
_	[29]	Strumbelj et al.	2010	FI	AGN	TAB	\checkmark	\checkmark	\checkmark		\checkmark

Local Model Explainers

- Explanator: SM
 - Black Box: DNN, NN
 - Data Type: IMG
- Explanator: FI
 - Black Box: DNN, SVM
 - Data Type: ANY
- Explanator: DT
 - Black Box: ANY
 - Data Type: TAB

R₁: IF(Outlook = Sunny) AND (Windy= False) THEN Play=Yes

Local Explanation

- The overall decision boundary is complex
- In the neighborhood of a single decision, the boundary is simple
- A single decision can be explained by auditing the black box around the given instance and learning a *local* decision.

LIME – FI, AGN, ANY

 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.

LORE – DR, AGN, TAB

- 01 x instance to explain
- 02 $Z_{=} = geneticNeighborhood(x, fitness_, N/2)$
- 03 $Z_{\neq} = geneticNeighborhood(x, fitness_{\neq}, N/2)$

05
$$c = buildTree(Z, b(Z))$$
 auditing

06
$$r = (p \rightarrow y) = extractRule(c, x)$$

- 07 $\phi = \text{extractCounterfactual}(c, r, x)$
- 08 return $e = \langle r, \phi \rangle$

 $r = {age \le 25, job = clerk, income \le 900} \rightarrow deny$

 $\Phi = \{(\{income > 900\} -> grant), \\ (\{17 \le age < 25, job = other\} -> grant)\}$

Pedreschi, Franco Turini, **f black box decision**

Meaningful Perturbations – SM, DNN, IMG

flute: 0.9973

flute: 0.0007

Learned Mask

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

SHAP (SHapley Additive exPlanations)

- SHAP assigns each feature an importance value for a particular prediction by means of an additive feature attribution method.
- It assigns an importance value to each feature that represents the effect on the model prediction of including that feature
- Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." *Advances in Neural Information Processing Systems*. 2017.

SHAP value (impact on model output)

prediction

mode

data

Valle	Ref	Archors	lear.	to planator	elect do	Data Ppe	General	though the state	Et anoles	Code	Dataset
NID	[83]	Olden et al.	2002	SA	NN	TAB			\checkmark		
GDP	[8]	Baehrens	2010	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
QII	[24]	Datta et al	2016	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
IG	[115]	Sundararajan	2017	SA	DNN	ANY			\checkmark		\checkmark
VEC	[18]	Cortez et al.	2011	SA	AGN	TAB	\checkmark		\checkmark		\checkmark
VIN	[42]	Hooker	2004	PDP	AGN	TAB	\checkmark		\checkmark		\checkmark
ICE	[35]	Goldstein et al.	2015	PDP	AGN	TAB	\checkmark		\checkmark	\checkmark	\checkmark
Prospector	[55]	Krause et al.	2016	PDP	AGN	TAB	\checkmark		\checkmark		\checkmark
Auditing	[2]	Adler et al.	2016	PDP	AGN	TAB	\checkmark		\checkmark	\checkmark	\checkmark
OPIA	[1]	Adebayo et al.	2016	PDP	AGN	TAB	\checkmark		\checkmark		
_	[136]	Yosinski et &		Tha			Incne			rahl	$\sim \sim$
IP	[108]	Shwartz et a. O	IVIII8		IVIC	uei	inspe				еш
_	[1 <mark>37]</mark>	Zeiler et al.	2014	AM	DNN	IMG		v		V	
-	[112]	Springenberg et al.	2014	AM	DNN	IMG			\checkmark		\checkmark
DGN-AM	[80]	Nguyen et al.	2016	AM	DNN	IMG			\checkmark	\checkmark	\checkmark

Inspection Model Explainers

- Explanator: SA
 - Black Box: NN, DNN, AGN
 - Data Type: TAB
- Explanator: PDP
 - Black Box: AGN
 - Data Type: TAB
- Explanator: AM
 - Black Box: DNN
 - Data Type: IMG, TXT

- Introduce *random perturbations* on input values to understand to which extent every feature impact the prediction using PDPs.
- The input is changed *one variable at a time*.

- Ruth Fong and Andrea Vedaldi. 2017. *Interpretable explanations of black boxes by meaningful perturbation*. arXiv:1704.03296 (2017).

Valle	de v	Auchors	lear.	4 bland	Black Bot	Data Jepe	Cenetal	the support	E terroles	Code	Dataset
CPAR	[135]	Yin et al.	2003	DR	—	TAB					\checkmark
FRL	[127]	Wang et al.	2015	DR	—	TAB			\checkmark	\checkmark	\checkmark
BRL	[66]	Letham et al.	2015	DR	—	TAB			\checkmark		
TLBR	[114]	Su et al.	2015	DR	_	TAB			\checkmark		\checkmark
IDS	[61]	Lakkaraju et al.	2016	DR	-	TAB			\checkmark		
Rule Set	[130]	Wang et al.	2016	DR	—	TAB			\checkmark	\checkmark	\checkmark
1Rule	[75]	Malioutov et al.	2017	DR	—	TAB			\checkmark		\checkmark
PS	[9]	Bien et al.	2011	PS	_	ANY			\checkmark		\checkmark
BCM	[51]	Kim et al.	2014	PS	-	ANY			\checkmark		\checkmark
OT-SpAMs	[128]	Wang et al.	2015	DT	_	TAB			\checkmark	\checkmark	\checkmark

Solving The Transparent Design Problem

Transparent Model Explainers

- Explanators:
 - DR
 - DT
 - PS
- Data Type:
 - TAB

- Combines the advantages of associative classification and rule-based classification.
- It adopts a greedy algorithm to generate *rules directly from training data*.
- It generates more rules than traditional rule-based classifiers to *avoid missing important rules*.
- To *avoid overfitting* it uses expected accuracy to evaluate each rule and uses the best *k* rules in prediction.

$$(A_1 = 2, A_2 = 1, A_4 = 1). \ (A_1 = 2, A_3 = 1, A_4 = 2, A_2 = 3). \ (A_1 = 2, A_3 = 1, A_2 = 1).$$

- Xiaoxin Yin and Jiawei Han. 2003. *CPAR: Classification based on predictive association rules*. SIAM, 331–335

- It is a *branch-and bound algorithm* that provides the optimal solution according to the training objective with a certificate of optimality.
- It *maintains a lower bound* on the minimum value of error that each incomplete rule list can achieve. This allows to *prune an incomplete rule list* and every possible extension.
- It terminates with the optimal rule list and a certificate of optimality.

if (age = 18 - 20) and (sex = male) then predict yes else if (age = 21 - 23) and (priors = 2 - 3) then predict yes else if (priors > 3) then predict yes else predict no

⁻ Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. *Learning certifiably optimal rule lists*. KDD.

Take-Home Messages

- Explainable AI is motivated by real-world application of AI
- Not a new problem a reformulation of past research challenges in AI
- Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple definitions)
- In Machine Learning:
 - Transparent design or post-hoc explanation?
 - Background knowledge matters!
 - We can scale-up symbolic reasoning by coupling it with representation learning on graphs.
- In AI (in general): many interesting / complementary approaches

Open The Black Box!

- **To empower** individual against undesired effects of automated decision making
- To reveal and protect new vulnerabilities
- To implement the "right of explanation"
- To improve industrial standards for developing Alpowered products, increasing the trust of companies and consumers
- To help people make better decisions
- *To align* algorithms with human values
- To preserve (and expand) human autonomy

Open Research Questions

- There is *no agreement* on *what an explanation is*
- There is **not a formalism** for **explanations**
- There is *no work* that seriously addresses the problem of *quantifying* the grade of *comprehensibility* of an explanation for humans
- Is it possible to join *local* explanations to build a *globally* interpretable model?
- What happens when black box make decision in presence of *latent features*?
- What if there is a *cost* for querying a black box?

References

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 93
- Finale Doshi-Velez and Been Kim. 2017. *Towards a rigorous science of interpretable machine learning*. arXiv:1702.08608v2
- Alex A. Freitas. 2014. *Comprehensible classification models: A position paper*. ACM SIGKDD Explor. Newslett.
- Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
- Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on privacy preserving data mining. SpringerPlus
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
- Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
- Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

References

- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012. Reverse engineering the neural networks for rule extraction in classification problems. NPL
- Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box decision systems. arXiv preprint arXiv:1805.10820
- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
- Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.
- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).
- Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331–335
- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.