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Our digital traces ….

• We produce an unthinkable amount of data while running our daily activities.
• How can we manage all these data? Can we get an added value from them?



Big Data: New, More Carefully Targeted Financial Services



Mobility Atlas of Many Cities





The main tool for a 
Data Scientist to 
measure,
understand,
and possibly predict

human behavior

Big Data Analytics & Social Mining



Data Scientist needs to take into account ethical and legal 
aspects and social impact of data science



EU Requirements for trustworthy AI

1. Privacy: avoid re-identification of people in data and sensitive inferences
2. Transparency/Explainability: transparency should be applied to every 

stage of the AI lifecycle, indeed it prescribes the possibility to have a 
complete view on the whole system

3. Fairness: avoid AI base their decision on sensitive attributes like gender, 
religion belief, etc. 

4. Robustness: AI system developers should prevent system hacking and 
adversarial attacks.

5. Accountability: allow propriate mechanisms to identify the responsibility 
for AI systems’ outcomes are put in place during their whole lifecycle

6. Sustainability: the design stage of an AI system there should be an 
environmental impact assessment (e.g., climate impact)



EU Requirements for trustworthy AI

1. Privacy: avoid re-identification of people in data and sensitive inferences
2. Transparency/Explainability: transparency should be applied to every 

stage of the AI lifecycle, indeed it prescribes the possibility to have a 
complete view on the whole system

3. Fairness: avoid AI base their decision on sensitive attributes like gender, 
religion belief, etc. 

4. Robustness: AI system developers should prevent system hacking and 
adversarial attacks.

5. Accountability: allow propriate mechanisms to identify the responsibility 
for AI systems’ outcomes are put in place during their whole lifecycle

6. Sustainability: the design stage of an AI system there should be an 
environmental impact assessment (e.g., climate impact)



Anonymization vs Pseudonimization

• Pseudonymization and Anonymization are two distinct terms often
confused

• Anonymized data and pseudonymized data fall under very different
categories in the regulation

• Anonymization guarantees data protection against the (direct and 
indirect) data subject re-identification

• Pseudonymization substitutes the identity of the data subject in such a 
way that additional information is required to re-identify the data  subject



Pseudonymization

PseudonymizationIdentifiers surrogate value

Substitute an identifier with a surrogate value called token

Substitute unique names, fiscal code or any attribute that
identifies uniquely individuals in the data



Example of Pseudonymization
Name Gender DoB ZIP Code Diagnosis

Anna Verdi F 1962 300122 Cancro

Luisa Rossi F 1960 300133 Gastrite

Giorgio
Giallo

M 1950 300111 Infarto

Luca Nero M 1955 300112 Emicrania

Elisa Bianchi F 1965 300200 Lussazione 

Enrico Rosa M 1953 300115 Frattura

ID Gender DoB ZIP CODE DIAGNOSIS

11779 F 1962 300122 Cancro

12121 F 1960 300133 Gastrite

21177 M 1950 300111 Infarto

41898 M 1955 300112 Emicrania

56789 F 1965 300200 Lussazione 

65656 M 1953 300115 Frattura



Properties of a Surrogate Value

• Irreversible without private information

• Distinguishable from the original value



Is Pseudonymization enough for data 
protection?

Pseudonymized data are still Personal 
Data!!



Massachussetts’ Governor

• Sweeney managed to re-identify the medical record of the governor of 
Massachussetts

• MA collects and publishes sanitized medical data for state employees (microdata) left circle
• voter registration list of MA (publicly available data) right circle

• looking for governor’s record
• join the tables:

– 6 people had his birth date
– 3 were men
– 1 in his zipcode

Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)



ID Gender YoB ZIP DIAGNOSIS

1 F 1962 300122 Cancro

2 F 1960 300133 Gastrite

3 M 1950 300111 Infarto

4 M 1955 300112 Emicrania

5 F 1965 300200 Lussazione 

6 M 1953 300115 Frattura

Governor: birth date = 1950, CAP = 300111

Which is the disease of the Governor?

Linking Attack



ID Gender YoB ZIP DIAGNOSIS

1 F [1960-1965] 300*** Cancro

2 F [1960-1965] 300*** Gastrite

3 M [1950-1955] 30011* Infarto

4 M [1950-1955] 30011* Emicrania

5 F [1960-1965] 300*** Lussazione 

6 M [1950-1955] 30011* Frattura

Making Data Anonymous

Which is the disease of the Governor?

Governor: Birth Date = 1950, CAP = 300111

K-Anonymity



Ontology of Privacy in Data Mining

Privacy

Individual

PP Data 
publishing

K-anonymity Random-
ization

PP Knowledge 
publishing

Corporate (or 
secrecy)

Knowledge 
hiding

Distributed  
PPDM

PP 
Outsourcing
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Attribute Classification
SensitiveQuasi-identifiersIdentifiers

ID Gender YoB ZIP DIAGNOSIS

1 F 1962 300122 Cancro

3 F 1960 300133 Gastrite

2 M 1950 300111 Infarto

4 M 1955 300112 Emicrania

5 F 1965 300200 Lussazione 

6 M 1953 300115 Frattura



K-Anonymity



K-Anonymity

• k-anonymity hides each individual among k-1 others
– each QI set should appear at least k times in the released data
– linking cannot be performed with confidence > 1/k

• How to achieve this? 
– Generalization: publish more general values, i.e., given a domain hierarchy, roll-up
– Suppression: remove tuples, i.e., do not publish outliers. Often the number of 

suppressed tuples is bounded

• Privacy vs utility tradeoff
– do not anonymize more than necessary
– Minimize the distortion 
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Vulnerability of K-anonymity

ID Gender DoB ZIP DIAGNOSIS

1 F 1962 300122 Cancro

2 F 1960 300133 Gastrite

3 M 1950 300111 Infarto

4 M 1950 300111 Infarto

5 M 1950 300111 Infarto

6 M 1953 300115 Frattura



l-Diversity
• Principle

• Each equivalence class has 
at least l well-represented 
sensitive values

• Distinct l-diversity
• Each equivalence class has 

at least l distinct sensitive 
values

ID Gender DoB ZIP DIAGNOSIS

1 F 1962 300122 Cancro

3 F 1960 300133 Gastrite

2 M 1950 300111 Infarto

4 M 1950 300111 Emicrania

5 M 1950 300111 Lussazione

6 M 1953 300115 Frattura



K-Anonymity

• Samarati, Pierangela, and Latanya Sweeney. “Generalizing data to provide anonymity 
when disclosing information (abstract).” In PODS ’98.

• Latanya Sweeney: k-Anonymity: A Model for Protecting Privacy. International Journal of 
Uncertainty, Fuzziness and Knowledge-Based Systems 10(5): 557-570 (2002)

• Machanavajjhala, Ashwin, Daniel Kifer, Johannes Gehrke, and Muthuramakrish- nan 
Venkitasubramaniam. “l-diversity: Privacy beyond k-anonymity.” ACM Trans. Knowl. 
Discov. Data 1, no. 1 (March 2007): 24.

• Li, Ninghui, Tiancheng Li, and S. Venkatasubramanian. “t-Closeness: Privacy Beyond k-
Anonymity and l-Diversity.” ICDE 2007. 
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Randomization & Differential Privacy



Randomization

• Original values x1, x2, ..., xn
– from probability distribution X (unknown)

• To hide these values, we use  y1, y2, ..., yn
– from probability distribution Y

• Uniform distribution between [-a, a]
• Gaussian, normal distribution with µ = 0, s

• Given
– x1+y1, x2+y2, ..., xn+yn
– the probability distribution of Y

Estimate the probability distribution of X.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of SIGMOD 2000.



Randomization Approach Overview

50 | 40K | ... 30 | 70K | ... ...

...

Randomizer Randomizer

65 | 20K | ... 25 | 60K | ... ...
30 

becomes 
65 (30+35)

Alice’s 
age

Add random 
number to Age



Differential Privacy

• The risk to my privacy should not increase as a result of participating in a statistical 
database

• Add noise to answers such that:
– Each answer does not leak too much information about the database
– Noisy answers are close to the original answers

Cynthia Dwork: Differential Privacy. ICALP (2) 2006: 1-12



Attack

1) how many persons have Diabetes? 4
2) how many persons, excluding Alice, have Diabetes? 3
• So the attacker can infer that Alice has Diabetes. 

• Solution: make the two answers similar

1) the answer of the first query could be 4+1 = 5
2) the answer of the second query could be 3+2.5=5.5



Differential Privacy



Randomization & Differential Privacy
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• K. Liu, C. Giannella and H. Kargupta. An Attacker's View of Distance Preserving Maps for Privacy Preserving Data Mining. In 
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Ontology of Privacy in Data Mining

Privacy

Individual

PP Data 
publishing

K-anonymity Random-
ization

PP Knowledge 
publishing

Corporate (or 
secrecy)

Distributed  
PPDM

Knowledge 
hiding

PP 
Outsourcing
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Privacy by Design and Risk Assessment



Privacy by Design Methodology

The framework is designed with assumptions about 
• The sensitive data that are the subject of the analysis 
• The attack model, i.e., the knowledge and purpose of a malicious party that 

wants to discover the sensitive data
• The target analytical questions that are to be answered with the data

Design a privacy-preserving framework able to 
• transform the data into an anonymous version with a quantifiable privacy 

guarantee
• guarantee that the analytical questions can be answered correctly, within a 

quantifiable approximation that specifies the data utility



Privacy Risk Assessment



Privacy-by-Design in Big Data Analytics



Privacy Risk Measures

• Probability of re-identification denotes the probability to correctly
associate a record to a unique identity, given a BK

• Risk of re-identification is the maximum probability of re-
identification given a set of BK

k
=
3

k
=
5 k

=
3

k
=
3

k
=
2



Risk and Coverage (RaC) Curve
• A diagram of coverage (% of data preserved) at varying values of risk
• Concept has analogies with ROC curves. 
• Each curve can be summarized by a single measure, e.g. AUC (area under the 

curve) – the closer to 1, the better

RACU →for each risk value, quantifies the 
percentage of users in U having that risk

RACD → for each risk value, quantifies
the data in D covered by only users
having at most that risk



Attack Simulation

Background knowledge:
1. Gender, DoB, Zip
2. Gender, DoB
3. Gender, Zip
4. DoB, Zip
5. Gender
6. DoB
7. Zip

< a1, t1> <a2, t2> <a3, t3> <a4, t4> <a5, t4>

Sequence:

Tabular data

Background knowledge:

All the possible sub-sequences!



The Approach

Suitable for any form of data: tabular, graphs, sequences

Key issue: the language of BK – how to specifies the set of possible
attacks

Several kinds of data in each domain. Ex. in mobility:
- presence (individual frequent locations)
- trajectory (individual movements)
- road segment (collective frequent links)
- profiles (individual systematic movements)
- individual call profiles (from CDR data)



Purchasing Data

Basket
It is an ordered sequence of items.

𝒃𝒑 = ⟨𝒊𝟏,𝒊𝟐, 𝒊𝟑, ⟩… , 𝒊𝑫
Where 𝑖& ∈ 𝐼 the set of items. 

Historical baskets
It is the concatenation of the temporally ordered basket of a customer. 

𝑩𝒂𝒔𝒌𝒆𝒕𝒖 = 𝒃𝟏 1 𝒃𝟐 1 𝒃𝟑 111 𝒃𝒎
Where 𝑚 is the total number of baskets of the customer 𝑢 in the dataset.



Adversary Attack: Item Sequence Attack

• 𝑘 number of items 𝑖& of an individual 𝑢 known by the adversary;
• Item sequence background knowledge: a set of configurations based on 𝑘 items 𝐵) = 𝐼*,)
• The matching function is defined as

𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑑, 𝑏 = >𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑏 ⊆ 𝐵𝑎𝑠𝑘𝑒𝑡*
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The adversary knows a subset of items purchased by the customer and their
temporal order

• On historical baskets (temporally ordered concatenation of the customer’s baskets).



Simulation Attack Model



Empirical Privacy Risk Assessment

● Defining a set of attacks based on 
common data formats

● Simulates these attacks on 
experimental data to calculate
privacy risk

Time complexity is a problem!



Data Mining Approach

Using classification techniques to predict the privacy risks
of individuals.

1. Simulate the risk of each individual R
2. Extract from the dataset a set of individual features F
3. Construct a training dataset (F,R)
4. Learning a classifier/regressor to predict the risk/risk level



Data Mining Approach
- Features extraction from raw data
- Privacy Risks values by attack simulation

Learning a classifier

For each new user extracting Features and using the classifier to predict the risk



Features



Privacy risk prediction: example of training data

UserId Procuct Entropy Unique Items Num. Items Prurchase
Entropy

Risk

u1 0.9 9 280 0.9 1.0

u2 1 13 400 1 1.0

u3 0.12 2 58 0.12 0.15

u4 0.09 2 61 0.09 0.075

u5 0.22 4 120 0.22 0.25



Feature-based Predictor

Logistic regression
• A probability model;

• First, it applies a linear function; 

then a sigmoid function.  

Random forest
• Ensemble model composed of decision trees;

• Random sampling for the creation of a tree;

• Majority vote for the final output.



Mitigation Strategy

• Anonymization of movement data while preserving clustering

• Trajectory Linking Attack: the attacker 
• knows some points of a given trajectory
• and wants to infer the whole trajectory

• Countermeasure: method based on
• spatial generalization of trajectories 
• k-anonymization of trajectories 



Trajectory Generalization

• Given a trajectory dataset
1. Partition of the territory into Voronoi cells
2. Transform trajectories into sequence of cells



Partition of territory: Characteristic points 
Characteristic points extraction:

§ Starts (1)
§ Ends (2)
§ Points of significant turns (3)
§ Points of significant stops, and representative points from long straight segments (4)

1

2
3

3
4

4
4

4
4

4

4

4



Partition of territory: spatial clusters

§ Group the extracted points in Spatial Clusters
with desired spatial extent

§ MaxRadius: parameter to determine the 
spatial extent and so the degree of  the 
generalization



Partition of territory: Voronoi Tessellation

§ Partition the territory into Voronoi 
cells

§ The centroids of the spatial clusters 
used as generating points



Generation of Trajectories

Divide the trajectories into segments that link 
Voronoi cells

For each trajectory:
§ the area a1 containing its first point p1 is 

found
§ The following points are checked 
§ If a point pi is not contained in a1 for it the 

containing area a2 is found
§ and so on …

Generalized trajectory: From sequence of 
areas to sequence of centroids of areas



Generalization vs k-Anonymity

• Generalization could not be sufficient to ensure k-anonymity:
• For each generalized trajectory there exist at least others k-1 different  people 

with the same trajectory?

• Data transformation strategy
• recovering portions of trajectories which are frequent at least k times
• without introducing noise



Privacy Transformation: Example
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Clustering on Anonymized Trajectories


