DATA MINING 2
Anomaly & Outliers Detection

Riccardo Guidotti

a.a. 2022/2023

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining and from Kriegel, Kröger, Zimek Tutorial on Outlier Detection Techniques
What is an Outlier?

Definition of Hawkins [Hawkins 1980]:

• “An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism”

Statistics-based intuition

• Normal data objects follow a “generating mechanism”, e.g. some given statistical process
• Abnormal objects deviate from this generating mechanism
Anomaly/Outlier Detection

• What are anomalies/outliers?
 • The set of data points that are considerably different than the remainder of the data

• Natural implication is that anomalies are relatively rare
 • One in a thousand occurs often if you have lots of data
 • Context is important, e.g., freezing temps in July

• Can be important or a nuisance
 • 10 foot tall 2 year old
 • Unusually high blood pressure
Applications of Outlier Detection

• Fraud detection
 • Purchasing behavior of a credit card owner usually changes when the card is stolen
 • Abnormal buying patterns can characterize credit card abuse

• Medicine
 • Unusual symptoms or test results may indicate potential health problems of a patient
 • Whether a particular test result is abnormal may depend on other characteristics of the patients (e.g. gender, age, …)

• Public health
 • The occurrence of a particular disease, e.g. tetanus, scattered across various hospitals of a city indicate problems with the corresponding vaccination program in that city
 • Whether an occurrence is abnormal depends
Importance of Anomaly Detection

Ozone Depletion History

• In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels.

• Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?

• The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!
Causes of Anomalies

- Data from different classes
 - Measuring the weights of oranges, but a few grapefruit are mixed in

- Natural variation
 - Unusually tall people

- Data errors
 - 200 pound 2 year old
Distinction Between Noise and Anomalies

- Noise is erroneous, perhaps random, values or contaminating objects
 - Weight recorded incorrectly
 - Grapefruit mixed in with the oranges

- Noise doesn’t necessarily produce unusual values or objects
- Noise is not interesting
- Anomalies may be interesting if they are not a result of noise
- Noise and anomalies are related but distinct concepts
Many anomalies are defined in terms of a single attribute
- Height
- Shape
- Color

Can be hard to find an anomaly using all attributes
- Noisy or irrelevant attributes
- Object is only anomalous with respect to some attributes

However, an object may not be anomalous in any one attribute
General Issues: Anomaly Scoring

• Many anomaly detection techniques provide only a binary categorization
 • An object is an anomaly or it isn’t
 • This is especially true of classification-based approaches

• Other approaches assign a score to all points
 • This score measures the degree to which an object is an anomaly
 • This allows objects to be ranked

• In the end, you often need a binary decision
 • Should this credit card transaction be flagged?
 • Still useful to have a score

• How many anomalies are there?
Other Issues for Anomaly Detection

• Find all anomalies at once or one at a time
 • Swamping
 • Masking

• Evaluation
 • How do you measure performance?
 • Supervised vs. unsupervised situations

• Efficiency

• Context
Variants of Anomaly Detection Problems

• Given a data set D, find all data points $x \in D$ with anomaly scores greater than some threshold t

• Given a data set D, find all data points $x \in D$ having the top-n largest anomaly scores

• Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D
Model-Based Anomaly Detection

Build a model for the data and see

• Unsupervised
 • Anomalies are those points that don’t fit well
 • Anomalies are those points that distort the model
 • Examples:
 • Statistical distribution
 • Clusters
 • Regression
 • Geometric
 • Graph

• Supervised
 • Anomalies are regarded as a rare class
 • Need to have training data
Machine Learning for Outlier Detection

• If the ground truth of anomalies is available we can prepare a classification problem to unveil outliers.

• As classifiers we can use all the available machine learning approaches: Ensembles, SVM, DNN.

• The problem is that the dataset would be very unbalanced

• Thus, ad-hoc formulations/implementation should be adopted.
Unsupervised Anomaly Detection Techniques

- **Proximity-based**
 - Anomalies are points far away from other points
 - Can detect this graphically in some cases

- **Density-based**
 - Low density points are outliers

- **Pattern matching**
 - Create profiles or templates of atypical but important events or objects
 - Algorithms to detect these patterns are usually simple and efficient
Outliers Detection Approaches Taxonomy

• **Global vs local** outlier detection
 • Considers the set of reference objects relative to which each point’s “outlierness” is judged

• **Labeling vs scoring** outliers
 • Considers the output of an algorithm

• **Modeling properties**
 • Considers the concepts based on which “outlierness” is modeled
Global versus Local Approaches

• Considers the resolution of the reference set w.r.t. which the “outlierness” of a particular data object is determined

• **Global approaches**
 • The reference set contains all other data objects
 • Basic assumption: there is only one normal mechanism
 • Basic problem: other outliers are also in the reference set and may falsify the results

• **Local approaches**
 • The reference contains a (small) subset of data objects
 • No assumption on the number of normal mechanisms
 • Basic problem: how to choose a proper reference set

• Notes
 • Some approaches are somewhat in between
 • The resolution of the reference set is varied e.g. from only a single object (local) to the entire database (global) automatically or by a user-defined input parameter
Labeling versus Scoring

• Considers the output of an outlier detection algorithm

• **Labeling approaches**
 • Binary output
 • Data objects are labeled either as normal or outlier

• **Scoring approaches**
 • Continuous output
 • For each object an outlier score is computed (e.g. the probability for being an outlier)
 • Data objects can be sorted according to their scores

• Notes
 • Many scoring approaches focus on determining the top-n outliers (parameter n is usually given by the user)
 • Scoring approaches can usually also produce binary output if necessary (e.g. by defining a suitable threshold on the scoring values)
Model-based Approaches

Approaches classified by the properties of the underlying modeling

• Rational
 • Apply a model to represent normal data points
 • Outliers are points that do not fit to that model

• Sample approaches
 • Probabilistic tests based on statistical models
 • Depth-based approaches
 • Deviation-based approaches
 • Some subspace outlier detection approaches
Model-based Approaches

Proximity-based Approaches

• Rational
 • Examine the spatial proximity of each object in the data space
 • If the proximity of an object considerably deviates from the proximity of other objects it is considered an outlier

• Sample approaches
 • Distance-based approaches
 • Density-based approaches
 • Some subspace outlier detection approaches
Model-based Approaches

Angle-based approaches

• Rational
 • Examine the spectrum of pairwise angles between a given point and all other points
 • Outliers are points that have a spectrum featuring high fluctuation
Visual Approaches

• Boxplots
• Scatter plots

• Limitations
 • Not automatic
 • Subjective
From Visual Box-plot to Automatic Approach

- The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q3 and Q1. \(IQR = Q3 - Q1 \)
- \(x \) is an outlier if \(x < Q1 - k \cdot IQR \) or \(x > Q3 + k \cdot IQR \) (generally \(k=1.5 \))
- In a boxplot, the highest and lowest occurring value within this limit are indicated by *whiskers* of the box and any outliers as individual points.
HBOS - Histogram-based Outlier Score

- It assumes feature independence and calculates the outlier scores by building histograms.
- Univariate histogram for each single feature
 - Categorical data: Simple counting
 - Numerical data:
 1. Bin width with \(k \) bins having equal width
 2. Bin width with \(N/k \) instances per bin (equal frequency)
- Frequency (relative amount) of records in a bin is used as density estimation
- Histograms are normalized to \([0,1]\) for each single feature
- HBOS for each record \(p \) is computed as a product of the inverse of the estimated density:

\[
HBOS(p) = \sum_{i=0}^{d} \log\left(\frac{1}{\text{hist}_i(p)}\right)
\]
Statistical Approaches
Statistical Approaches

Probabilistic definition of an outlier: An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameters of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)
- Issues
 - Identifying the distribution of a data set
 - Heavy tailed distribution
 - Number of attributes
 - Is the data a mixture of distributions?
Statistical-based – Grubbs’ Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H_0: There is no outlier in data
 - H_A: There is at least one outlier
- Grubbs’ test statistic:
 - One-sided test with alpha/N
 - Two-sided test with alpha/2N
- Reject null hypothesis H_0 of no outliers if:
 \[
 G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t^2(\alpha/N,N-2)}{N-2+t^2(\alpha/N,N-2)}}
 \]
Statistical-based – Likelihood Approach

• Assume the data set D contains samples from a mixture of two probability distributions:
 • M (majority distribution)
 • A (anomalous distribution)

• General Approach:
 • Initially, assume all the data points belong to M
 • Let $L_t(D)$ be the log likelihood of D at time t
 • For each point x_t that belongs to M, move it to A
 • Let $L_{t+1}(D)$ be the new log likelihood.
 • Compute the difference, $\Delta = L_t(D) - L_{t+1}(D)$
 • If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A
Statistical-based – Likelihood Approach

• Data distribution, $D = (1 - \lambda) \, M + \lambda \, A$

 • M is a probability distribution estimated from data
 • Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)

 • A is initially assumed to be uniform distribution

 • Likelihood at time t:

 $$L_t(D) = \prod_{i=1}^{N} P_D(x_i) = \left((1 - \lambda)^{|M_t|} \prod_{x_i \in M_t} P_{M_t}(x_i)\right) \left(\lambda^{|A_t|} \prod_{x_i \in A_t} P_{A_t}(x_i)\right)$$

 $$LL_t(D) = |M_t| \log(1 - \lambda) + \sum_{x_i \in M_t} \log P_{M_t}(x_i) + |A_t| \log \lambda + \sum_{x_i \in A_t} \log P_{A_t}(x_i)$$
Strengths/Weaknesses of Statistical Approaches

Pros
- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known

Cons
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution
 - Mean and standard deviation are very sensitive to outliers
Depth-based Approaches
Depth-based Approaches

• General idea
 • Search for outliers at the border of the data space but independent of statistical distributions
 • Organize data objects in convex hull layers
 • Outliers are objects on outer layers

• Basic assumption
 • Outliers are located at the border of the data space
 • Normal objects are in the center of the data space
Depth-based Approaches

Model [Tukey 1977]

• Points on the convex hull of the full data space have depth = 1
• Points on the convex hull of the data set after removing all points with depth = 1 have depth = 2
• – ...
• Points having a depth ≤ k are reported as outliers
Depth-based Approaches

• Similar idea like classical statistical approaches (k = 1 distributions) but independent from the chosen kind of distribution
• Convex hull computation is usually only efficient in 2D / 3D spaces
• Originally outputs a label but can be extended for scoring easily (take depth as scoring value)
• Uses a global reference set for outlier detection

• Sample algorithms
 • ISODEPTH [Ruts and Rousseeuw 1996]
 • FDC [Johnson et al. 1998]
Elliptic Envelope

- It creates an imaginary elliptical area around a given dataset.
- Values that fall inside the envelope are considered normal data and anything outside the envelope is returned as outliers.
- The algorithm works best if data has a Gaussian distribution.
Deviation-based Approaches
Deviation-based Approaches

- General idea
 - Given a set of data points (local group or global set)
 - Outliers are points that do not fit to the general characteristics of that set, i.e., the variance of the set is minimized when removing the outliers

- Basic assumption
 - Outliers are the outermost points of the data set
Deviation-based Approaches

Model [Arning et al. 1996]

• Given a smoothing factor SF(I) that computes for each I ⊆ DB how much the variance of DB is decreased when I is removed from DB

• With equal decrease in variance, a smaller exception set E is better

• The outliers are the elements of E ⊆ DB for which the following holds: SF(E) ≥ SF(I) for all I ⊆ DB

Discussion:

• Similar idea like classical statistical approaches (k = 1 distributions) but independent from the chosen kind of distribution

• Naïve solution is in O(2^n) for n data objects

• Heuristics like random sampling or best first search are applied

• Applicable to any data type (depends on the definition of SF)

• Originally designed as a global method

• Outputs a labeling
Distance-based Approaches
Distance-based Approaches

• General Idea
 • Judge a point based on the distance(s) to its neighbors
 • Several variants proposed

• Basic Assumption
 • Normal data objects have a dense neighborhood
 • Outliers are far apart from their neighbors, i.e., have a less dense neighborhood
Distance-based Approaches

• Several different techniques

• Approach 1: An object is an outlier if a specified fraction of the objects is more than a specified distance away (Knorr, Ng 1998)
 • Some statistical definitions are special cases of this

• Approach 2: The outlier score of an object is the distance to its k-th nearest neighbor
Outlier scoring based on kNN distances

General models

• Take the kNN distance of a point as its outlier score [Ramaswamy et al 2000]
• Aggregate the distances of a point to all its 1NN, 2NN, ..., kNN as an outlier score [Angiulli and Pizzuti 2002]

Algorithms - General approaches

• Nested-Loop
 • Naïve approach: For each object: compute kNNs with a sequential scan
 • Enhancement: use index structures for kNN queries

• Partition-based
 • Partition data into micro clusters
 • Aggregate information for each partition (e.g. minimum bounding rectangles)
 • Allows to prune micro clusters that cannot qualify when searching for the kNNs of a particular point
One Nearest Neighbor - One Outlier
One Nearest Neighbor - Two Outliers
Six Nearest Neighbors - Small Cluster
Five Nearest Neighbors - Differing Density
Distance-based Approaches

DB(ε, π)-Outliers

- Basic model [Knorr and Ng 1997]
- Given a radius ε and a percentage π
- A point p is considered an outlier if at most π percent of all other points have a distance to p less than ε, i.e., it is close to few points

$$\text{OutlierSet}(\varepsilon, \pi) = \{p \mid \frac{\text{Card}(\{q \in DB \mid \text{dist}(p,q) < \varepsilon\})}{\text{Card}(DB)} \leq \pi\}$$
Distance-based Approaches - Algorithms

• Index-based [Knorr and Ng 1998]
 • Compute distance range join using spatial index structure
 • Exclude point from further consideration if its ε-neighborhood contains more than $\text{Card(DB)} \cdot \pi$ points

• Nested-loop based [Knorr and Ng 1998]
 • Divide buffer in two parts
 • Use second part to scan/compare all points with the points from the first part

• Grid-based [Knorr and Ng 1998]
 • Build grid such that any two points from the same grid cell have a distance of at most ε to each other
 • Points need only compared with points from neighboring cells
Outlier Detection using In-degree Number

• Idea: Construct the kNN graph for a data set
 • Vertices: data points
 • Edge: if $q \in kNN(p)$ then there is a directed edge from p to q
 • A vertex that has an indegree less than equal to T (user threshold) is an outlier

• Discussion
 • The indegree of a vertex in the kNN graph equals to the number of reverse kNNs (RkNN) of the corresponding point
 • The RkNNs of a point p are those data objects having p among their kNNs
 • Intuition of the model: outliers are
 • points that are among the kNNs of less than T other points
 • have less than T RkNNs
 • Outputs an outlier label
 • Is a local approach (depending on user defined parameter k)
Strengths/Weaknesses of Distance-Based Approaches

Pros
• Simple

Cons
• Expensive – $O(n^2)$
• Sensitive to parameters
• Sensitive to variations in density
• Distance becomes less meaningful in high-dimensional space
Density-based Approaches
Density-based Approaches

• General idea
 • Compare the density around a point with the density around its local neighbors
 • The relative density of a point compared to its neighbors is computed as an outlier score
 • Approaches differ in how to estimate density

• Basic assumption
 • The density around a normal data object is similar to the density around its neighbors
 • The density around an outlier is considerably different to the density around its neighbors
Density-based Approaches

• **Density-based Outlier:** The outlier score of an object is the inverse of the density around the object.
 • Can be defined in terms of the k nearest neighbors
 • One definition: Inverse of distance to kth neighbor
 • Another definition: Inverse of the average distance to k neighbors
 • DBSCAN definition

• If there are regions of different density, this approach can have problems
Relative Density Outlier Scores
Relative Density

- Consider the density of a point relative to that of its k nearest neighbors

\[
\text{average relative density}(x, k) = \frac{\text{density}(x, k)}{\sum_{y \in N(x, k)} \text{density}(y, k) / |N(x, k)|}.
\] (10.7)

Algorithm 10.2 Relative density outlier score algorithm.

1: \(\{k \text{ is the number of nearest neighbors}\}
2: \textbf{for all objects } x \textbf{ do}
3: \quad \text{Determine } N(x, k), \text{ the } k\text{-nearest neighbors of } x.
4: \quad \text{Determine } \text{density}(x, k), \text{ the density of } x, \text{ using its nearest neighbors, i.e., the objects in } N(x, k).
5: \textbf{end for}
6: \textbf{for all objects } x \textbf{ do}
7: \quad \text{Set the outlier score}(x, k) = \text{average relative density}(x, k) \text{ from Equation 10.7.}
8: \textbf{end for}
Local Outlier Factor (LOF) [Breunig et al. 1999], [Breunig et al. 2000]

Motivation:
• Distance-based outlier detection models have problems with different densities
• How to compare the neighborhood of points from areas of different densities?

Example
• DB(ε, π)-outlier model
 • Parameters ε and π cannot be chosen so that o_2 is an outlier but none of the points in cluster C_1 (e.g. q) is an outlier
• Outliers based on kNN-distance
 • kNN-distances of objects in C_1 (e.g. q) are larger than the kNN-distance of o_2

Solution: consider relative density
Local Outlier Factor (LOF)

• For each point, compute the density of its local neighborhood
• Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
• Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers
Local Outlier Factor (LOF)

- Reachability distance
 - Introduces a smoothing factor

 \[reach-dist_k(p, o) = \max \{ k-distance(o), dist(p, o) \} \]

- Local reachability distance (lrd) of point \(p \)
 - Inverse of the average reach-dists of the kNNs of \(p \)

 \[lrd_k(p) = \frac{1}{\frac{\sum_{o \in kNN(p)} reach-dist_k(p, o)}{\text{Card}(kNN(p))}} \]

- Local outlier factor (LOF) of point \(p \)
 - Average ratio of lrds of neighbors of \(p \) and lrd of \(p \)

 \[\text{LOF}_k(p) = \frac{\sum_{o \in kNN(p)} \frac{lrd_k(o)}{lrd_k(p)}}{\text{Card}(kNN(p))} \]
Local Outlier Factor (LOF)

Properties
• LOF ≈ 1: point is in a cluster (region with homogeneous density around the point and its neighbors)
• LOF $>> 1$: point is an outlier

Discussion
• Choice of k (MinPts in the original paper) specifies the reference set
• Originally implements a local approach (resolution depends on the user’s choice for k)
• Outputs a scoring (assigns an LOF value to each point)
Mining Top-n Local Outliers [Jin et al. 2001]

Idea:
• Usually, a user is only interested in the top-n outliers
• Do not compute the LOF for all data objects => save runtime

Method
• Compress data points into micro clusters using the CFs of BIRCH [Zhang et al. 1996]
• Derive upper and lower bounds of the reachability distances, lrd-values, and LOF-values for points within a micro clusters
• Compute upper and lower bounds of LOF values for micro clusters and sort results w.r.t. ascending lower bound
• Prune micro clusters that cannot accommodate points among the top-n outliers (n highest LOF values)
• Iteratively refine remaining micro clusters and prune points accordingly
Connectivity-based outlier factor (COF) [Tang et al. 2002]

• Motivation
 • In regions of low density, it may be hard to detect outliers
 • Choose a low value for k is often not appropriate

• Solution
 • Treat “low density” and “isolation” differently

• Example
COF

• Introduced because although a high-density set can represent a pattern, not all patterns need to be high-density.

• COF differs from LOF as it uses the chaining distance to calculate the kNN.

• The chaining distances are the minimum of the total sum of the distances linking all neighbors.

• The connectivity is then calculated as the ratio between the average chaining distance of the record and the mean average chaining distance of the records in the kNN.

\[
COF_k(p) = \frac{|N_k(p)|ac - dist_{N_k(p)}(p)}{\sum_{o \in N_k(p)} ac - dist_{N_k(o)}(o)}
\]

\[
ac - dist_{N_k(p_1)}(p_1) = \sum_{i=1}^{r} \frac{2(r-1+1)}{r(r+1)}
\]

\[r = |N_k(p_1)| \]
Influenced Outlierness (INFLO) [Jin et al. 2006]

Motivation
- If clusters of different densities are not clearly separated, LOF will have problems

Idea
- Take symmetric neighborhood relationship into account
- Influence space $kIS(p)$ of a point p includes its kNNs ($kNN(p)$) and its reverse kNNs ($RkNN(p)$)
Influenced Outlierness (INFLO) [Jin et al. 2006]

Model

- Density is simply measured by the inverse of the kNN distance, i.e.,
 \[\text{den}(p) = 1/k\text{-distance}(p) \]

- Influenced outlierness of a point \(p \)

\[
INFLO_k(p) = \frac{\sum_{o \in kIS(p)} \text{den}(o)}{\text{Card}(kIS(p))} / \text{den}(p)
\]

- INFLO takes the ratio of the average density of objects in the neighborhood of a point \(p \) (i.e., in \(kNN(p) \cup RkNN(p) \)) to \(p \)'s density

Proposed algorithms for mining top-n outliers

- Index-based
- Two-way approach
- Micro cluster based approach
Influenced Outlierness (INFLO) [Jin et al. 2006]

Properties
• Similar to LOF
• INFLO ≈ 1: point is in a cluster
• INFLO $>> 1$: point is an outlier

Discussion
• Outputs an outlier score
• Originally proposed as a local approach (resolution of the reference set kIS can be adjusted by the user setting parameter k)
Strengths/Weaknesses of Density-Based Approaches

Pros
• Simple

Cons
• Expensive – \(O(n^2) \)
• Sensitive to parameters
• Density becomes less meaningful in high-dimensional space
Clustering-based Approaches
Clustering and Anomaly Detection

• Are outliers just a side product of some clustering algorithms?
 • Many clustering algorithms do not assign all points to clusters but account for noise objects (e.g. DBSCAN, OPTICS)
 • Look for outliers by applying one algorithm and retrieve the noise set

• Problem:
 • Clustering algorithms are optimized to find clusters rather than outliers
 • Accuracy of outlier detection depends on how good the clustering algorithm captures the structure of clusters
 • A set of many abnormal data objects that are similar to each other would be recognized as a cluster rather than as noise/outliers
Clustering-Based Approaches

- **Clustering-based Outlier:** An object is a cluster-based outlier if it does not strongly belong to any cluster
 - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
 - For density-based clusters, an object is an outlier if its density is too low
 - For graph-based clusters, an object is an outlier if it is not well connected

- Other issues include the impact of outliers on the clusters and the number of clusters
Distance of Points from Closest Centroids
Relative Distance of Points from Closest Centroid

Outlier Score
Strengths/Weaknesses of Clustering-Based Approaches

Pros
• Simple
• Many clustering techniques can be used

Cons
• Can be difficult to decide on a clustering technique
• Can be difficult to decide on number of clusters
• Outliers can distort the clusters
High-dimensional Approaches
Challenges

Curse of dimensionality
• Relative contrast between distances decreases with increasing dimensionality
• Data is very sparse, almost all points are outliers
• Concept of neighborhood becomes meaningless

Solutions
• Use more robust distance functions and find full-dimensional outliers
• Find outliers in projections (subspaces) of the original feature space
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

- Angles are more stable than distances in high dimensional spaces (e.g. the popularity of cosine-based similarity measures for text data)
- Object o is an outlier if most other objects are located in similar directions
- Object o is no outlier if many other objects are located in varying directions
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

• Basic assumption
 • Outliers are at the border of the data distribution
 • Normal points are in the center of the data distribution

• Model
 • Consider for a given point p the angle between any two instances x and y
 • Consider the spectrum of all these angles
 • The broadness of this spectrum is a score for the outlierness of a point
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

• Model
 • Measure the variance of the angle spectrum
 • Weighted by the corresponding distances (for lower dimensional data sets where angles are less reliable)

• Properties
 • Small ABOD => outlier
 • High ABOD => no outlier

\[ABOD(p) = \text{VAR}_{x,y \in DB} \left(\frac{\langle \overrightarrow{x_p}, \overrightarrow{y_p} \rangle}{\|x_p\|^2 \cdot \|y_p\|^2} \right) \]

\(\overrightarrow{x_p} \) denotes the difference vector \(x-p \)
\(\langle x_p, y_p \rangle \) denotes the scalar product
scalar product \(\langle a,b \rangle = \sum a_i b_i \)
ABOD – Angle-based Outlier Degree [Kriegel et al. 2008]

Algorithms
• Naïve algorithm is in $O(n^3)$
• Approximate algorithm based on random sampling for mining top-n outliers
 • Do not consider all pairs of other points x, y in the database to compute the angles
 • Compute ABOD based on samples => lower bound of the real ABOD
 • Filter out points that have a high lower bound
 • Refine (compute the exact ABOD value) only for a small number of points

Discussion
• Global approach to outlier detection
• Outputs an outlier score
Grid-based Subspace Outlier Detection [Aggarwal and Yu 2000]

Model

• Partition data space by an equi-depth grid ($\Phi =$ number of cells in each dimension)

• Sparsity coefficient $S(C)$ for a k-dimensional grid cell C

$$S(C) = \frac{\text{count}(C) - n \cdot (\frac{1}{\Phi})^k}{\sqrt{n \cdot (\frac{1}{\Phi})^k \cdot (1 - (\frac{1}{\Phi})^k)}}$$

• where $\text{count}(C)$ is the number of data objects in C

• $S(C) < 0 \Rightarrow \text{count}(C)$ is lower than expected

• Outliers are those objects that are located in lower-dimensional cells with negative sparsity coefficient

$k =$ nbr dimensions (e.g. 3)
$\phi =$ nbr of equi-depth ranges (e.g. 3)
Grid-based Subspace Outlier Detection [Aggarwal and Yu 2000]

• **Algorithm**
 - Find the m grid cells (projections) with the lowest sparsity coefficients
 - Brute-force algorithm is $\mathcal{O}(\Phi d)$
 - Evolutionary algorithm (input: m and the dimensionality of the cells)

• **Discussion**
 - Results need not be the points from the optimal cells
 - Very coarse model (all objects that are in cell with less points than to be expected)
 - Quality depends on grid resolution and grid position
 - Outputs a labeling
 - Implements a global approach (key criterion: globally expected number of points within a cell)
Ensemble-based Approaches
FeaBag - Feature Bagging

• FeaBag exploits a set of OD methods, each of them applied on a random set of features selected from the original feature space.
• Each OD method identifies different outliers and assigns to all instances outlier scores that correspond to their probability of being outliers.
• The combination of such scores is returned as the final output.
LODA - Lightweight On-line Detector of Anomalies

• An extension of HBOS is LODA.
• LODA is an ensemble OD method particularly useful in real-time scenarios domains where many records need to be processed.
• LODA approximates the joint probability using a collection of one-dimensional histograms, where every one-dimensional histogram is efficiently constructed on an input space projected onto a randomly generated vector.
• Even though one-dimensional histograms are weak OD methods, their collection yields a strong OD approach.
Model-based Approaches

Slides revisited from Isolation Forest for Anomaly Detection, Sahand Hariri
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a dimension
 - Randomly pick a value in that dimension
 - Draw a straight line through the data at that value and split data
 - Repeat until tree is complete
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
• Anomalies will be isolated in only few steps
Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a dimension
 • Randomly pick a value in that dimension
 • Draw a straight line through the data at that value and split data
 • Repeat until tree is complete
• Generate multiple trees -> forest
• Anomalies will be isolated in only few steps
• Nominal points in more
Isolation Forest

$h(x) = \text{path length as number of edges from the root to a leaf}$

$E(h(x)) = \text{average path length (E stands for expectation)}$

$c(m) = \text{average } h(x) \text{ given } m \text{ used to normalize } h(x)$

$H = \text{harmonic number estimated as } H(i) = \ln(i) + \gamma \text{ with } \gamma = 0.57$

$m = \text{size of samples}$

if s is close to 1 then x is very likely to be an anomaly
if s is smaller than 0.5 then x is likely to be a normal value

$$s(x, m) = 2 \frac{-E(h(x))}{c(m)}$$

$c(m) = \begin{cases} 2H(m - 1) - \frac{2(m-1)}{m} & \text{for } m > 2 \\ 1 & \text{for } m = 2 \\ 0 & \text{otherwise} \end{cases}$
Anomaly Detection with Isolation Forest

- Isolation Forest
 - Computationally Efficient
 - Parallelizable
 - Handle high dimensional data
 - Inconsistent scoring can be observed
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
Extended Isolation Forest

- Idea: Few and different instances can be isolated quicker
- Given the dataset build a forest of trees.
- For each tree:
 - Get a sample of the data
 - Randomly select a normal vector
 - Randomly select an intercept
 - Draw a straight line through the data at that value and split data
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
 • Repeat until the tree is complete
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
 • Repeat until the tree is complete
Extended Isolation Forest

• Idea: Few and different instances can be isolated quicker
• Given the dataset build a forest of trees.
• For each tree:
 • Get a sample of the data
 • Randomly select a normal vector
 • Randomly select an intercept
 • Draw a straight line through the data at that value and split data
 • Repeat until the tree is complete
• Generate multiple trees → forest
Anomaly Detection with Isolation Forest

• Isolation Forest
 • Computationally Efficient
 • Parallelizable
 • Handle high dimensional data
 • Inconsistent scoring can be observed

• Extended Isolation Forest
 • Computationally Efficient
 • Parallelizable
 • Handle high dimensional data
 • Consistent scoring
Summary

• Different models are based on different assumptions
• Different models provide different types of output (labeling/scoring)
• Different models consider outlier at different resolutions (global/local)
• Thus, different models will produce different results
• A thorough and comprehensive comparison between different models and approaches is still missing
References

• Anomaly Detection. Chapter 10. Introduction to Data Mining.

• Liu, Fei Tony; Ting, Kai Ming; Zhou, Zhi-Hua (December 2008). "Isolation Forest". 2008 Eighth IEEE International Conference on Data Mining: 413–422

Exercises – Outlier Detection
Outlier Detection – Exercise 1

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: $DB(\varepsilon, n)$ (2 points)
 Are A and/or B outliers, if thresholds are forced to $\varepsilon = 2.5$ and $n = 0.15$? The point itself should not be counted.

b) Density-based: LOF (2 points)
 Compute the LOF score for points A and B by taking $k=2$, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points)
 Compute the depth score of all points.
Distance-based

- No outliers because within their radius there are 0.4 and 0.5 points for A and B, respectively
Outlier Detection – Exercise 1 – Solution

Density-based

• \(\text{LRD}(A) = \frac{1}{(1 + 2)/2} = 0.666 \)
• \(\text{LRD}(B) = \frac{1}{(1 + \sqrt{2})/2} = 0.828 \)
• \(\text{LRD}(6) = \frac{1}{(2 + 2)/2} = 0.500 \)
• \(\text{LOF}(A) = \frac{[\text{LRD}(B) + \text{LRD}(6)]/2}{\text{LRD}(A)} = \frac{[0.828 + 0.500]/2}{0.666} = 1.003 \)
• \(\text{LRD}(4) = \frac{1}{(1 + \sqrt{2})/2} = 0.828 \)
• \(\text{LOF}(B) = \frac{[\text{LRD}(A) + \text{LRD}(4)]/2}{\text{LRD}(B)} = \frac{[0.666 + 0.828]/2}{0.828} = 0.902 \)

• Both are smaller or very close to 1, so they are most likely no outliers.
Outlier Detection – Exercise 1 – Solution

Depth-based
• A is an outlier for depth = 2
• For depth <= 1 neither A or B are outliers
Outlier Detection – Exercise 2

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: $DB(\varepsilon, n)$ (2 points)
Are A and/or B outliers, if thresholds are forced to $\varepsilon = 2.1$ and $n = 0.15$? The point itself should not be counted.

b) Density-based: LOF (2 points)
Compute the LOF score for points A and B by taking $k=2$, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points)
Compute the depth score of all points. Are A and/or B outliers of depth 1?
Outlier Detection – Exercise 2 – Solution

LRD(A) = \(1 / \left(\frac{2 + \sqrt{5}}{2} \right)\) = 0.472

LRD(5) = \(1 / \left(\frac{\sqrt{5} + \sqrt{5}}{2} \right)\) = 0.447

LRD(6) = \(1 / \left(\frac{2 + \sqrt{5}}{2} \right)\) = 0.472

LOF(A) = \(\frac{\left(\frac{LRD(5) + LRD(6)}{2} \right)}{LRD(A)}\)
\[= \frac{(0.472 + 0.447)}{2} / 0.472 = 0.973\]

LRD(B) = \(1 / \left(\frac{2 + \sqrt{2}}{2} \right)\) = 0.586

LRD(3) = \(1 / \left(\frac{\sqrt{2} + \sqrt{2} + \sqrt{2}}{3} \right)\) = 0.707

LRD(4) = \(1 / \left(\frac{2 + 2 + \sqrt{2}}{3} \right)\) = 0.554

LOF(B) = \(\frac{\left(\frac{LRD(3) + LRD(4)}{2} \right)}{LRD(B)}\)
\[= \frac{(0.707 + 0.554)}{2} / 0.586 = 0.929\]
Outlier Detection – Exercise 3

Given the dataset of 10 points below (A, B, 1, 2, ..., 8), consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: $DB(\varepsilon, \pi)$ (2 points)
Are A and/or B outliers, if thresholds are forced to $\varepsilon = 2.5$ and $\pi = 0.3$? Show the density of the two points. (Notice: in computing the density of a point P, P itself should not be counted as neighbour).

b) Density-based: LOF (3 points)
Compute the LOF score for points A and B by taking $k=2$, i.e. comparing each point with its 2-NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (1 points)
Compute the depth score of all points.