ATA VINING
Time Series - Classification

Riccardo Guidotti

a.a. 2019/2020

Time Series Classification

* Main difference between classification and forecasting: forecasting is about

redicting a future state/value, classification is about predicting the current
abel/class.

* Applications:
e Automated detection of heart diseases

* Discovery of presence in a room from temperature, humidity, light

* |dentification of the activity performed from smart devices (walking, sitting, laying)
* |dentification of stock market anomalies in pricing, sales volumes, stocks
* Warning of Natural Disasters (flooding, hurricane, snowstorm),

* Techniques:
) MOtIf_DlscoverY . cylinder bell funnel
 Machine Learning Classifiers

* Deep Neural Networks M M M\PMM

Problem Fromulation

* Given a set X of n time series, X = {x;, x,, ..., x,}, each time series has
m ordered values x; = < X;;, X;5, ..., X;, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.

Time Series Classification and Similarities

* To some extent, TS classification rely on a measure of similarity
between data.

* What makes time series classification an interesting area of
investigation is that similarity between series is often embedded
within the autocorrelation structure of the data.

* General approaches to measuring similarity between time series:
 similarity in time (i.e. correlation-based)
similarity in change (autocorrelation-based)

similarity in shape (shape-based)
similarity in structure (features-based)
similarity in representation (NN-based)

Structural-based Classification

Structural-based Classification

* The basic idea is to:
1. Extract global features from the time series,
2. Create a feature vector, and

3. Use it to as input for machine learning
classifiers

* Example of features:
°* mean, variance, skewness, kurtosis,
e 1st derivative mean, 1%t derivative variance, ...

e parameters of regression, forecasting, Markov
model

T T g
W

C

Feature\Time Series A B C

Max Value 11 | 12 |19

Mean 53] 64 |48

Min Value 3 2 5

Autocorrelation 0.2 03 |05

Shape-based Classification

Shape-based Classification

e Calculate the distance between TS
using an appropriate distance function:
* Euclidean/Manhattan
* Dynamic Time Warping
* Compression Based Dissimilarity

* Use an instance-based classifier (k-NN)
to make the classification.

L

[———
QT T W
Tt
kit
i
e
it
\atitmititimotrt et @
T
e it
Yoyt o, i
T LY
oyt hgppvon

A

mﬁwmmmmw

¢
¢
~—

Euclidean

Shape-based Classification

1. Represent a TS as a vector of Urtica divica
distances with representative ‘
subsequences, namely Verbena urticifolia
shapelets.

2. Use it to as input for machine
learning classifiers.

Shapelet Dictionary 3 1 W
5.1 % X
’ 3.2 8.7

0 10 20 30

Does Q have a subsequtﬁle within Leaf Decision T 1.4 7.9
a distance 5.1 of shape ? | €al vecision 1ree

B yes / \no - 6) 7 4) 2

0 1 9.2 34

Verbena urticifolia Urtica dioica Verbena urticifolia Urtica dioica

Time Series Classification with DNN

Time Series Classification with DNN

k o
{} L) .
Time| n B
N AR S S N N N N
| | I | I | I |
Time Series of Convolutional Layer Global Max-Pooling Fully Connected Layer

length n and width k

input
multivariate
time series 2

P

Convolution
\

Z}l f«ff/

MaxPooling

o

Bottleneck A
\ Convolution Vg

Ve /'
&’/ 1'(\/_/J'V
L)
\/‘\."* [/
J

s

4-'_"'—’

output
multivariate
O time series

“Convolution
(bottleneck)

Convolutional Neural Network

Slides edited from Stanford

http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture09.pdf

Convolutional Neural Network

Image Maps
Input
“utput
x N
/ '\ % x
Convolutions Fully Connected

Subsampling

Fully Connected Layer

32x32x3 Image -> stretch to 3072 x 1

input activation

Wx

L - —> 1[0

3072 10 x 3072 10

weights

Fully Connected Layer

32x32x3 iImage -> stretch to 3072 x 1

input activation
b Wax
1 10 x 3072 1 rO
3072 X /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Convolution Layer

— Filters always extend the full

32x32x3‘mage Ad}“‘)fthe nput volume
ox9x3 filter
32 £/
II Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer

— 32x32x3 Image
oxox3 filter w

—-/--

-—

1 number:

= —
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wlz +b

Convolution Layer

—

V
——0

B

32x32x3 image
oxox3 filter

convolve (slide) over all
spatial locations

activation map

Convolution Layer

110]| 1

0 1 0
1><1 1x0 1x1 0 0 1 0 1
0,1/1/1|0 4 Convoluton
()xl OxO 1x1 1 1
0/0|1(1(0
0/|1/11(0(0

Convolved
Image

Feature

Convolution Layer

o|o|o|[o]|o]o oo o] ofo o| o] o
o | 156 | 155 | 156 | 158 | 158 167 | 166 | 167 | 169 | 169 163 | 165 | 165
1] 153 | 154 | 157 | 159 | 159 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 | 149 | 151 | 155 | 158 | 159 160 | 162 | 166 | 169 | 170 o | 156|158 | 162 | 165 | 166
0 | 146 | 146 | 149 | 153 | 158 156 | 156 | 159 | 163 | 168 0 | 155|155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 155 | 153 | 153 | 158 | 168 1] 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
cil || il || El 1 0 0
0 bl =ik 1]1-1]-1
0 ik il 1 0| -1
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
308 —498 + 164 +1=-25

Bias=1

I

Output

-25

Convolution Layer

__— 32x32x3 image activation maps

/ 5x5x3 filter
=

-~

t>® convolve (slide) over all
spatial locations
|4

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

r 4

28

A

We stack these up to get a “new image” of size 28x28x6!

Convolutional Neural Network

* CNN is a sequence of Conv Layers, interspersed with activation functions.

* CNN shrinks volumes spatially.
* E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).

* Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelLU RelU RelU

45
XOX 5x5x6
32 filters 28 P A

Wl
o |
RN
o

CNN for Image Classification

Low-level Mid-level High-level | | L"ea"
features features ” features separgp ©
classifier

EAEs I AR
6 Conv3_2

" 4

VGG-16 Convi_1 VGG-1

Stride

/X7 input (spatially)

assume 3x3 filter

=> 5x5 output

Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 37

14 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Stride

Output size:

(N - F) / stride + 1

eg.N=7F=3:

stride 1=>(7-3)/1 +1=
stride2=>(7-3)/2+1=

stride 3 =>(7/-3)/3+1=2.33:\

Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

o | O | O | O | O

In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)

* F=3=>zeropad with 1 pixel

* F=5=>zero pad with 2 pixel

e F=7=>zero pad with 3 pixel

Summary

e Accepts a volume of size W; x H; x Dy
 Requires four hyperparameters:
o Number of filters K,
o their spatial extent F',
o the stride S,
o the amount of zero padding P.
e Produces a volume of size W5 x Hy x D, where:
o Wo=(W; —F+2P)/S+1
o Hy = (Hy — F + 2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 = I
« With parameter sharing, it introduces F' - F' - D, weights per filter, for a total of (F' - F' - Dy) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size W5 x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

Pooling Layer

* Makes the representations smaller and more manageable
* Operates over each activation map independently

224x224x64
112x112x64

pool

> o 112
224 downsampling .

112
224

MaxPooling and AvgPoling

max pooling

20

112

30
37

average pooling

Pooling

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:
o their spatial extent F',
o the stride S,
e Produces a volume of size W5 x Hy x Dy where:
o Wo=(W; —F)/S+1
o H, =(H1 —F)/S+1
o Dy = Dy
 |Introduces zero parameters since it computes a fixed function of the input
e Note that it is not common to use zero-padding for Pooling layers

Example of CNN

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution r—* /—M
N
(5 X 5) kerr.lel Max-Pooling (5 X 5) kerr.lel Max-Pooling (with
valid padding (2x2) valid padding (2x2) /& dropout)
' ~N /’M - ~ N 0
1
______) 2
INPUT nl channels nl channels n2 channels n2 channels ‘ E ‘ e)
4x4
(28 x 28 x 1) (24 x 24 x nl) (12 x 12 x n1) (8x8xn2) (4x4xn2) | OUTPUT

n3 units

CNN for Time Series Classification

time series

non-linear ‘)
®

length
s XM
44 E babilit
., 3 : ~ probability
/ /\/ /«/‘ﬁ ’ ~ /X3 g z > tre:)r}stfi?;’r?na;:ins —>» ¢ - distribution
A) 2 o |
nput J/fﬂ_/f s X2 f?), fime series ‘ over K classes
. . Ve y Y
multivariate) v/ X
time seriesﬁ d LJ/V//R//:A// .
AV % t
~ S univariate
/./-/‘f‘/ input time
\ series

CNN for Time Series Classification

* Result of a applying a learned discriminative convolution.

discriminative
region

Class-2

Class-1

...

convolution result

CNN for Time Series Classification

global
average

channels . - A
> input time & pooling
f it"“e series \

|
1 . . K
. ., output
' ' . * | classes

|

)
input layer-4 | jayer-5
layer layer-1

convolution

fully-connected

layer-2 layer-3

Residual Nerual Network (ResNN/ResNet)

convolution

input time
series

1
i A KA

64 |64 ’0 64 | ., 1'28 !128 ‘128
|

_:l!‘ I'!

N

channels global fully
time \ average connected
' :ff residual pooling

connections

The main characteristic of ResNets is the shortcut residual connection between
consecutive CONV layers. The difference with the usual CNN is that a linear shortcut is
added to link the output of a residual block to its input thus enabling the flow of the

gradient directly through these connections, which makes training a DNN much easier
by reducing the vanishing gradient effect.

CNN Summary

* ConvNets stack Convolutional, Pooling, Fully Connected Layers
* Trend towards smaller filters and deeper architectures
* Trend towards getting rid of POOL/FC layers (just CONV)

 Historically CNN looked like
* [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K, SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
* Recent advances such as ResNet/GooglLeNet have challenged this
paradigm

Recurrent Neural Network

Types of Recurrent Neural Networks

one to one one to many many to one

Vanilla NN Image --> Sequence of Words -->
Sequence of Words Sentiment
Image Captioning Sentiment Classification
TS Classification

many to many

Sequence of Words -->
Sequence of Words
Machine Translation

many to many

Video Classification

Recurrent Neural Network - RNN

Key idea: RNNs have an
“Internal state” that is

/ updated as a sequence Is
processed

Recurrent Neural Network - RNN

* We can process a sequence of vectors x by applying a recurrence

formula at every time step:

h

new state

(I

y

Lt

)

fw

some function
with parameters W

old state input vector at
some time step

y

-

(Simple) Recurrent Neural Network

hy = fW(ht—la CL’t)
|

hy = tanh(Wj,hi—1 + Wy ay)

Yt — Whyht

RNN Idea

* The idea behind RNNs is to make use of sequential information.

* |n a traditional NN we assume that all inputs (and outputs) are
independent of each other.

* But for sequence dependent task this is a bad idea: if you want to predict
the next word in a sentence you better know which words came before it.

* RNNs are called recurrent because they perform the same task for every
element of a sequence, with the output being depended on the previous

computations.

* Another way to think about RNNs is that they have a “memory” which
captures information about what has been calculated so far.

* In theory RNNs can make use of information in arbitrarily long sequences,
but in practice they are limited to looking back only a few steps

Unfolded RNN

DA -

Unfolded RNN

* X, is the input at time t. For example, x; could be a one-hot vector
corresponding to the second word of a sentence.

* s, is the hidden state at time t. It is the “memory” of the network. s, is
calculated based on the previous hidden state and the input at the
current step: s, =f(U x, + W s, ;).

* The function fis usually tanh or RelLU. s_;, which is required to
calculate the first hidden state, is typically initialized to all zeroes.

* 0, is the output at time t. For example, if we wanted to predict the
next word in a sentence it would be a vector of probabilities across
our vocabulary. o, = softmax(Vs,).

Unfolded RNN

* The hidden state s, is the memory of the network. s, captures information
about what happened in all the previous time steps.

* The output at step o, is calculated solely based on the memory at time t.
* s, typically can not capture information from too many time steps ago.

* Unlike a DNN, which uses different parameters at each layer, a RNN shares
the same parameters (U, V, W) across all steps. This reflects the fact that
we are performing the same task at each step, just with different inputs.

* The previous diagram has outputs at each time step, but depending on the
task this may not be necessary.

RNN: Computational Graph

0 W 1 W 2
/ T T
W X, X,

Reminder: Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Example Training

Vocabulary:
[h,e,l,0]

Example training

seguence:
“hello”

input layer

input chars:

1
0
0
0
“h”

O, | ooc-=0

= |lo=a00O

= o-~0O0

RNN: Example Training

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
seguence:

“hello”

hy = tanh(Whrhi—1 + Wanxt)

0.3 1.0 0.1 |w nn!| -0.3
hidden layer | -0.1 > 0.3 }—= 05— 09
0.9 0.1 -0.3 0.7
T T | Jw_en
1 0 0 0
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars: “h” “e” i 2 |5

RNN: Example Training

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
seqguence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

,
"

L2000
N 7= ¢ B

—_—

v

1
0
0
0
‘lh"

wom=—=

1 1
ool —| 02

=

W_hh

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

.03
A3
.00

1

PON=
“aoNO

obo
© W

—_—] &

1
0
0
0
“h"

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars: *

o lco-0

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars: *

ue:\ “ “on
t t t
.03 .25 11 .1
A3 .20 A7 .02
.00 .05 .68 .08
.84 .50 .03 .79
t t t t
1.0 0.5 0.1 0.2
7 7 4 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 a2 -1.1 2.2
~
T T T W_hy
0.3 1.0 0.1 |w hnl -0.3
-0.1 0.3 05— 09
0.9 0.1 -0.3 0.7
')
I T | [w_sn
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
h" “e" f"l" AN

Backpropagation Through Time

* Forward through entire sequence to compute loss
* Then backward through entire sequence to compute gradient

i

Truncated BPTT

* It is an approximation of full BPTT that is preferred for long sequences since full BPTT’s
forward/backward cost per parameter update becomes very high over many time steps.

 The downside is that the gradient can only flow back so far due to that truncation, so the network
can not learn dependencies that are as long as in full BPTT.

Loss
RVARRANN
t t t 1 t ¢+ttt 114 f
I+I»I+f+ L +f+I+I+I+I+I»f+ L *f
— > —————> >

Limitations of RNNs

* RNN work fine when we are dealing with short-term dependencies.
* However, RNNs fail to understand the context behind an input.

* For instance, something that was said long before, cannot be recalled when
making predictions in the present.

* The reason behind this is the problem of Vanishing Gradient.

* For a DNN, the weight updating that is applied on a particular layer is a multiple
of the learning rate, the error term from the previous layer and the input to that
layer. The error for a particular layer is a product of all previous layers’ errors.

* When dealing with functions like sigmoid/tanh, the small values of its derivatives
(occurring in the error function) gets multiplied multiple times as we move
towards the starting layers. As a result of this, the gradient almost vanishes as we
move towards the starting layers, and it becomes difficult to train these layers.

Vanishing (and Exploding) Gradients

* The gradient expresses the change 10
in all weights with regard to the
change in error. o

* If we can not know the gradient, we -
can not adjust the weights in a B
direction that will decrease error, 04
and our network ceases to learn.

— single sigmoid

— double sigmoids

— triple sigmoids
quadruple sigmoids

0.2

e Effects of applying a sigmoid

function over and over again. 00

-10 -5 0 5

Vanilla RNN Gradient Flow

- ~
W—>'C>—> tanh h’t — tanh(‘d/hhh't—l -+ "vah,l't)
f) — tanh ((W/hh, W h,a:) (hlfr_l)>
ht-1 > aAC 1 ht] a *
) : — tanh (I/V (lt_l>>
Lt
Xt

Backpropagation from h,
to h, ; multiplies by W

Vanilla RNN Gradient Flow

* Computing gradient of h, involves many factors of W (and repeated tanh)

* Largest singular value > 1 = Exploding Gradients
* Gradient clipping: Scale Computing gradient gradient if its norm is too big

* Largest singular value < 1 = Vanishing Gradients
e Change RNN architecture

.
al

h 0 —— stack

tanh

L.

W—’ (—» tanh

o

h 4 —— stack

||\—> h. —T—— stack
2

W-—()= tanh

al

H\—> h., —T—— stack
3

W— (—* tanh

4 TL

Long Short Term Memory (LSTM)

* LSTM contains in a gated cell
information outside the normal
flow of the recurrent network.

* Information can be stored in,
written to, or read from a cell.

sigmoid | —— | |
sigmoid | —— | f
sigmoid | — | ©

tanh — | g

Vanilla RNN

Lt

LSTM
7 o
fl_ | w (ht —1
(0] g It
g tanh

g=fOc_1+10g

hy = o ® tanh(c;)

Long Short Term Memory (LSTM)

* The cell makes decisions about
what to store, and when to allow
reads, writes and erasures, via
gates that open and close.

* These gates are implemented
with element-wise multiplication
by sigmoids, which are all in the
range of 0-1, thus are
differentiable and suitable for
backpropagation

Backpropagation from ¢, to ¢, ; only elementwise
multiplication by f, no matrix multiply by W

f - a I/‘/r (lbt—l>
(0] o It
g tanh
ct=f0Oc_1+10g
hy = o ® tanh(cy)
,'//.-‘
Cor 2 SEICSES
N |
N
W_’<)’_L _L’r, © tanh
P9 |
B —————
ht-1 .\ Staf:k .0 > O —» ht—/—>

): Gradient Flow

Long Short Term Memory (LSTM

Uninterrupted gradient flow!

Similar to ResNet!

RNN Summary

* RNNs allow a lot of flexibility in architecture design
* Vanilla RNNs are simple but don’t work very well

* Common to use LSTM or GRU: their additive interactions improve
gradient flow

* Backward flow of gradients in RNN can explode or vanish. Exploding is
controlled with gradient clipping. Vanishing is controlled with additive
interactions (LSTM)

 Better/simpler architectures are a hot topic of current research, as
well as new paradigms for reasoning over sequences

e Better understanding (both theoretical and empirical) is needed.

References

e Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
Chin-Chia Michael Yeh et al. 1997

* Time Series Shapelets: A New Primitive for Data Mining. Lexiang
Ye and Eamonn Keogh. 2016.

* Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-
Thieme (2014): Learning Time-Series Shapelets, in Proceedings
of the 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2014

* Deep learning for time series classication: a review. Hassan
Ismail Fawaz et al. 2019.

019

”

y

1809.04356v4 [cs.LG| 14 Ma

1V

Matrix Profile I: All Pairs Similarity Joins for Time Series:
A Unifying View that Includes Motifs, Discords and Shapelets

Chin-Chia Michael Yeh, Yan Zl.m Lmdmlla Ulanova. Nugjahan Begum. Yifei Ding.

Hoang Anh Dau, "Diego Fur

University of California, River ..d: e e e S0 Pl “University of New Me:
ding00:

{myeh003, yzhu013, olan001. nbegu001

‘Abdullah Mucen, and Eamonn Keogh

Abstract— The allpairs-similarity-search (or similarity join)
problem has been extensively studied for text and 2 handful of

other datatype. However, ssprisingly il progres bas been
e an s oo o hsennences. The ekt
progrrs probabl

sorichm ean take monr b ui the rypi

[e bounding. (rangular-

3 co sl e bt oo sae o

saznitude speedup. In this work we introduce

ble slgorithm for time series subsequence all-pairs-
ek For exceptonaly arge e, the g

desktop, even if the data arrival frequency was much faster than
Our algorithm uses an ulra-fast similarity scarch algorithm

un malized Euclidean distance 25 a subroutinc.

exploiting the overlap between subsequences wsing the classic

Fast Fouricr Transform (FFT) algorithm.
Our method has the following advantages features:

= Ttis exact, providing no flsc positives or falsc dismissals.

« It is simple and parameter-fiec. In contrast, the more
gencral metric space APSS algorithms require building and

uning spatial access methods andor hash functions.

= Our algorithm requires an inconscquential space overhead,
just O(n) with a small constant factor.

 While ou exact algorithm is extremely scalable, for
extremely large datascts we can compute the results in an
anytime fashion. allowing ultra-fast approvimate solutions.

including motif

Keywords—Time Series; Similarity Joins; Morif Discovery s

1 INTRODUCTION

all-pairs-similarity-search (slso known as smlarity

discovery, mavelty discovery, shapelet discovery, o+ Having computed the mmlamv join for a dataset, we can
semantic segmentation, density. estimation, and contrast. set nere

meatally update ficiently. In many domains
e e an, <fftiely s xach Jom on

g s e

provides full joins, climinating the nced to

pcify a sy hasho, ich s e il show s
near impossible task in this domain.

,m) p‘o\ka\m\)ﬁ~ i several vasiants The base ask i this: + Our algorithan is embarmassingly paralelizable, both on

Grven a collection of data objects, retrieve the nearest neighbor el

Jor_cach object. In the text domain the algorithm has
applications in a host of problems, including community
discovery. duplicate _detection, , ing
clustering, and query refinement [1]. While virtally all text
rocessing algorithms have analogues in time series data
mining, there has been surprisingly litle progress on Time.
Serics subsequences All-Pairs-Similarity-Scarch (TSAPSS).

We believe that this lack of progress stems not from a lack
terest in this uscful primitive. but from the dauning nature

of the problem. Consider the following example that reflects the
nceds of an industrial collaborator. A boiler at a chemical
once a minute. After a year, we have a

‘may wish to do
2 abssqpences

{19080)to disover operying regines fomaras vs. wint
light disllate vs beavy st e) The obvious nesied oop
algoitn_ requies 152850692560 Fucliden disanes

s, If we assume cach one takes 0.0001 seconds
it o will ke 1598 degs- The core conribtion of tis

v that we can reduce sing
o lhe~bel o ot Moscove vt o s
join can be computed ted incrementally. Thus we
could maintain this join essentially forever on a standard

This i the author’s version of an article published in Data Mining and
authenticated version is available online at: https: //doi . org/10.1007/s

i Aicreintod e

Time Series Shapelets: A New Primitive for Data Mining

Lexiang Ye
Dept. of Computer Science & Engineering
University of California, Riverside, CA 92521
lexiangy@cs.ucr.edu

ABSTRACT
time series bas been

the past decade. Recent empirical vidence has strongly suggesicd

yond mere classfication accuracy. we offen wish 10 gai some
e e

new tme series primitive. fme series
Shapetos whichaddeescsthse tasons Tformally. shapelcs
are time seres subsequences which are in some sease. ty

eptesentative of a class. As we shall shot

empirial evaluations in diverse domains, algorithans based on the
E primitives can be interpretable, more accurate

Deep learning for time series classificatiol

Hassan Ismail Fawaz! - Germain Forestier'? - Jonathan W
Lhassane Idoumghar! - Pierre-Alain Muller!

Abstract Time Series Classification (TSC) is an important and challe
With the increase of time series data a hundreds of TSC a
Among these methods, only a few have considered Deep Neural Net
task. This is surprising as deep learning has seen very successful applic
have indeed fevolutionized the field of computer vision especially w:
architectures such as Residual and Convolutional Neural Networks.

data such as text and audio can also be processed with DNNs to reac
for document classification and specch recognition. In this article,

the-art performance of decp learning algorithms for TSC by present
most recent DNN architectures for | e give an overview of the
applications in various time series domains under a unified taxonon
provide an open source deep learning framework to the TSC communi
of the compared approaches and evaluated them on a univariate TS
archive) and 12 multivariate time series datasets. By training 8,73
time series datasets, we propose the most exhaustive study of DN

Keywords Deep learning - Time series - Classification - Review

1 Introduction

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applicaions ~ Data

Mining

General Terms

Algorims, Expesimentaton

1. INTRODUCTION

While the last decade has seen 4 huge terest i time series

clasifcaton. to date the most accurate and robust method is the

nerghbor algortm has the advaniages of simplicity smd mot

requiring extensive parameter funing. it does have several

Chief amone

requremens, i e fct st dos st el i sboms

1 8 particularobject was assgaed t a paricular

T i vork e st e e s s minin s

H
i
gii
£
%
st
§
:

mining. plication of themn i i
eaknete o the aeretneghosalgoeimnoid sbove.

o 1

o e or bt fo ot commerl sdanage and
Copies bear this otce zud the il citation oo the it page. To copy
ot 10 Lt

Copyight 2009 ACM 975-1-60555-195-9/0910._. $5.00.

During the last two decades, Time Series Classification (TSC) has been considered as one of the
06;

most challenging problems in data mining (Yang and Wu, 2006; Esling and
increase of temporal data availability (Silva et al. 2018), hundreds of TS
proposed since 2015 (Bagnall et al., 2017). Due to their natural temporal o
are present in almost ever,

some notion of ordering, can be cast as a TSC problem (Cristian Borges Ca

are encountered in many real-world
et al., 2018) and human activity recognition (Nweke et al., 20

classification (Nwe et al. and cyber-security (Susto et a
the datasets’ types in the UCR/UEA archive (Chen et al., 2015b; Bagnall

Wang et al

task that requires some sort of human cogniti
et al., 2014). In fact, any classification problem, using data that is registered taking
.

d Agon, 2012). With the
C algorithms have been
rdering, time series data
process (Lingkvist

to account
mboa, 2017). Time series

pplications ranging from electronic health records (Rajkomar

2018) to acoustic scene

15). In addition, the diversity of

et al., 2017) (the largest

repository of time series datasets) shows the different applications of the TSC problem.

I H. Lsmail Fawaz
ail: hassan ismail-fawaz

e

IM. versité Haute Alsace, Mulhouse, France
ety S 1T Monash University, Melbourne, Australia

Eamonn Keogh

Dept. of Computer Science & Engineering

University of California, Riverside, CA 92521
eamonn@cs.ucr.edu

Because we are defning and solving a new problem, we will ke
some time to consider 8 derailed motivting example. Figure 1
e examples of leaves fom two classcs, Urtica dioica
(sunging netls) and Verbena uricifolia. These two plants e
commonly confuscd. hence the colloquial name “fals et for

()

£ Leaves rom o speces. Note that seversl
et e the et e

Urtica dioica

in the global shape src very subile. Furthermore, it is very
common for leaves to have distorions or “occhsions” due 1o
. likely to confuse aay global

measutes of shape. lnstead we attempt the following. We fst
convert cach leaf nto 8 one-dimensional representation a5 shown

m -

Virbena il
’,w»wwv\../‘ [AVNEwY

A shape can be comveted inlo 2 one dinensional “tme
representation. The resson for the highlightd section of he
e eres will b e appavent

seprescntations have been successfully used for the
Ciicanon g and ot deceson ofsopes i ecenn

i

to be due to the fict e
e and il st Jenih). a0 T mo 1+ 0gh 1o
swamp the subtle differences in the shapes

