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Time Series Classification

• Main difference between classification and forecasting: forecasting is about 
predicting a future state/value, classification is about predicting the current 
label/class.
• Applications:

• Automated detection of heart diseases
• Discovery of presence in a room from temperature, humidity, light
• Identification of the activity performed from smart devices (walking, sitting, laying)
• Identification of stock market anomalies in pricing, sales volumes, stocks
• Warning of Natural Disasters (flooding, hurricane, snowstorm),

• Techniques:
• Motif Discovery
• Machine Learning Classifiers
• Deep Neural Networks



Problem Fromulation

• Given a set X of n time series, X = {x1, x2, …, xn}, each time series has 
m ordered values xi = < xt1, xt2, …, xtm > and a class value ci. 
• The objective is to find a function f that maps from the space of 

possible time series to the space of possible class values. 
• Generally, it is assumed that all the TS have the same length m.



Time Series Classification and Similarities

• To some extent, TS classification rely on a measure of similarity 
between data. 
• What makes time series classification an interesting area of 

investigation is that similarity between series is often embedded 
within the autocorrelation structure of the data. 
• General approaches to measuring similarity between time series: 
• similarity in time (i.e. correlation-based)
• similarity in change (autocorrelation-based) 
• similarity in shape (shape-based)
• similarity in structure (features-based)
• similarity in representation (NN-based)



Structural-based Classification



Structural-based Classification

• The basic idea is to:
1. Extract global features from the time series, 
2. Create a feature vector, and 
3. Use it to as input for machine learning 

classifiers

• Example of features: 
• mean, variance, skewness, kurtosis, 
• 1st derivative mean, 1st derivative variance, … 
• parameters of regression, forecasting, Markov 

model

A
B
C

Feature\Time Series A B C

Max Value 11 12 19

Mean 5.3 6.4 4.8

Min Value 3 2 5

Autocorrelation 0.2 0.3 0.5

… … … …



Shape-based Classification



Shape-based Classification

• Calculate the distance between TS 
using an appropriate distance function:
• Euclidean/Manhattan
• Dynamic Time Warping
• Compression Based Dissimilarity

• Use an instance-based classifier (k-NN) 
to make the classification. Euclidean CDM



Shape-based Classification

1. Represent a TS as a vector of 
distances with representative 
subsequences, namely 
shapelets.

2. Use it to as input for machine 
learning classifiers.

3.2 8.7

1.4 7.9

6.7 4.2

9.2 3.4



Time Series Classification with DNN



Time Series Classification with DNN



Convolutional Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf



Convolutional Neural Network



Fully Connected Layer



Fully Connected Layer



Convolution Layer



Convolution Layer
Filters always extend the full
depth of the input volume



Convolution Layer



Convolution Layer



Convolution Layer
1 0 1

0 1 0

1 0 1

Convolution
Kernel



Convolution Layer



Convolution Layer



Convolution Layer



Convolutional Neural Network

• CNN is a sequence of Conv Layers, interspersed with activation functions.
• CNN shrinks volumes spatially. 
• E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...). 
• Shrinking too fast is not good, doesn’t work well.



CNN for Image Classification



Stride



Stride



Stride



Stride



Padding

7x7 output!
In general, common to see CONV layers with stride 
1, filters of size FxF, and zero-padding with (F-1)/2. 
(will preserve size spatially)
• F = 3 => zero pad with 1 pixel
• F = 5 => zero pad with 2 pixel
• F = 7 => zero pad with 3 pixel



Summary



Pooling Layer

• Makes the representations smaller and more manageable
• Operates over each activation map independently



MaxPooling and AvgPoling



Pooling



Example of CNN



CNN for Time Series Classification



CNN for Time Series Classification

• Result of a applying a learned discriminative convolution.



CNN for Time Series Classification



Residual Nerual Network (ResNN/ResNet)

The main characteristic of ResNets is the shortcut residual connection between 
consecutive CONV layers. The difference with the usual CNN is that a linear shortcut is 
added to link the output of a residual block to its input thus enabling the flow of the 
gradient directly through these connections, which makes training a DNN much easier 
by reducing the vanishing gradient effect.



CNN Summary

• ConvNets stack Convolutional, Pooling, Fully Connected Layers
• Trend towards smaller filters and deeper architectures
• Trend towards getting rid of POOL/FC layers (just CONV)
• Historically CNN looked like 
• [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K, SOFTMAX 
• where N is usually up to ~5, M is large, 0 <= K <= 2.

• Recent advances such as ResNet/GoogLeNet have challenged this 
paradigm



Recurrent Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf



Types of Recurrent Neural Networks

Vanilla NN Image --> 
Sequence of Words
Image Captioning

Sequence of Words -->
Sentiment

Sentiment Classification
TS Classification

Sequence of Words --> 
Sequence of Words
Machine Translation

Video Classification



Recurrent Neural Network - RNN



Recurrent Neural Network - RNN

• We can process a sequence of vectors x by applying a recurrence 
formula at every time step:



(Simple) Recurrent Neural Network



RNN Idea

• The idea behind RNNs is to make use of sequential information. 
• In a traditional NN we assume that all inputs (and outputs) are 

independent of each other.
• But for sequence dependent task this is a bad idea: if you want to predict 

the next word in a sentence you better know which words came before it.
• RNNs are called recurrent because they perform the same task for every 

element of a sequence, with the output being depended on the previous 
computations. 
• Another way to think about RNNs is that they have a “memory” which 

captures information about what has been calculated so far. 
• In theory RNNs can make use of information in arbitrarily long sequences, 

but in practice they are limited to looking back only a few steps



Unfolded RNN



Unfolded RNN

• xt is the input at time t. For example, x1 could be a one-hot vector 
corresponding to the second word of a sentence.
• st is the hidden state at time t. It is the “memory” of the network. st is 

calculated based on the previous hidden state and the input at the 
current step: st =f(U xt + W st-1). 
• The function f is usually tanh or ReLU.  s-1, which is required to 

calculate the first hidden state, is typically initialized to all zeroes.
• ot is the output at time t. For example, if we wanted to predict the 

next word in a sentence it would be a vector of probabilities across 
our vocabulary. ot = softmax(Vst).



Unfolded RNN

• The hidden state st is the memory of the network. st captures information 
about what happened in all the previous time steps. 
• The output at step ot is calculated solely based on the memory at time t. 
• st typically can not capture information from too many time steps ago.
• Unlike a DNN, which uses different parameters at each layer, a RNN shares 

the same parameters (U, V, W) across all steps. This reflects the fact that 
we are performing the same task at each step, just with different inputs. 
• The previous diagram has outputs at each time step, but depending on the 

task this may not be necessary. 



RNN: Computational Graph

Reminder: Re-use the same weight matrix at every time-step



RNN: Computational Graph: Many to Many



RNN: Computational Graph: Many to One



RNN: Example Training



RNN: Example Training



RNN: Example Training



RNN: Example Test



RNN: Example Test



RNN: Example Test



RNN: Example Test



Backpropagation Through Time

• Forward through entire sequence to compute loss
• Then backward through entire sequence to compute gradient



Truncated BPTT
• It is an approximation of full BPTT that is preferred for long sequences since full BPTT’s 

forward/backward cost per parameter update becomes very high over many time steps. 

• The downside is that the gradient can only flow back so far due to that truncation, so the network 
can not learn dependencies that are as long as in full BPTT.



Limitations of RNNs

• RNN work fine when we are dealing with short-term dependencies.
• However, RNNs fail to understand the context behind an input.
• For instance, something that was said long before, cannot be recalled when 

making predictions in the present.
• The reason behind this is the problem of Vanishing Gradient. 
• For a DNN, the weight updating that is applied on a particular layer is a multiple 

of the learning rate, the error term from the previous layer and the input to that 
layer. The error for a particular layer is a product of all previous layers’ errors. 
• When dealing with functions like sigmoid/tanh, the small values of its derivatives 

(occurring in the error function) gets multiplied multiple times as we move 
towards the starting layers. As a result of this, the gradient almost vanishes as we 
move towards the starting layers, and it becomes difficult to train these layers.



Vanishing (and Exploding) Gradients

• The gradient expresses the change 
in all weights with regard to the 
change in error.
• If we can not know the gradient, we 

can not adjust the weights in a 
direction that will decrease error, 
and our network ceases to learn.
• Effects of applying a sigmoid 

function over and over again.



Vanilla RNN Gradient Flow

Backpropagation from ht
to ht-1 multiplies by W



Vanilla RNN Gradient Flow

• Computing gradient of h0 involves many factors of W (and repeated tanh)
• Largest singular value > 1 à Exploding Gradients

• Gradient clipping: Scale Computing gradient gradient if its norm is too big

• Largest singular value < 1 à Vanishing Gradients
• Change RNN architecture



Long Short Term Memory (LSTM)

• LSTM contains in a gated cell 
information outside the normal 
flow of the recurrent network. 
• Information can be stored in, 

written to, or read from a cell. 



Long Short Term Memory (LSTM)

• The cell makes decisions about 
what to store, and when to allow 
reads, writes and erasures, via 
gates that open and close. 
• These gates are implemented 

with element-wise multiplication 
by sigmoids, which are all in the 
range of 0-1, thus are 
differentiable and suitable for 
backpropagation

Backpropagation from ct to ct-1 only elementwise
multiplication by f, no matrix multiply by W



Long Short Term Memory (LSTM): Gradient Flow

• LSTMs help preserve the error that can be backpropagated through 
time and layers. By maintaining a more constant error, they allow 
recurrent nets to continue to learn over many time steps (over 1000), 
thereby opening a channel to link causes and effects remotely. 



RNN Summary

• RNNs allow a lot of flexibility in architecture design
• Vanilla RNNs are simple but don’t work very well
• Common to use LSTM or GRU: their additive interactions improve 

gradient flow
• Backward flow of gradients in RNN can explode or vanish. Exploding is 

controlled with gradient clipping. Vanishing is controlled with additive 
interactions (LSTM)
• Better/simpler architectures are a hot topic of current research, as 

well as new paradigms for reasoning over sequences
• Better understanding (both theoretical and empirical) is needed.
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