
DATA MINING 2
Time Series - Classification
Riccardo Guidotti

a.a. 2019/2020

Time Series Classification

• Main difference between classification and forecasting: forecasting is about
predicting a future state/value, classification is about predicting the current
label/class.
• Applications:

• Automated detection of heart diseases
• Discovery of presence in a room from temperature, humidity, light
• Identification of the activity performed from smart devices (walking, sitting, laying)
• Identification of stock market anomalies in pricing, sales volumes, stocks
• Warning of Natural Disasters (flooding, hurricane, snowstorm),

• Techniques:
• Motif Discovery
• Machine Learning Classifiers
• Deep Neural Networks

Problem Fromulation

• Given a set X of n time series, X = {x1, x2, …, xn}, each time series has
m ordered values xi = < xt1, xt2, …, xtm > and a class value ci.
• The objective is to find a function f that maps from the space of

possible time series to the space of possible class values.
• Generally, it is assumed that all the TS have the same length m.

Time Series Classification and Similarities

• To some extent, TS classification rely on a measure of similarity
between data.
• What makes time series classification an interesting area of

investigation is that similarity between series is often embedded
within the autocorrelation structure of the data.
• General approaches to measuring similarity between time series:
• similarity in time (i.e. correlation-based)
• similarity in change (autocorrelation-based)
• similarity in shape (shape-based)
• similarity in structure (features-based)
• similarity in representation (NN-based)

Structural-based Classification

Structural-based Classification

• The basic idea is to:
1. Extract global features from the time series,
2. Create a feature vector, and
3. Use it to as input for machine learning

classifiers

• Example of features:
• mean, variance, skewness, kurtosis,
• 1st derivative mean, 1st derivative variance, …
• parameters of regression, forecasting, Markov

model

A
B
C

Feature\Time Series A B C

Max Value 11 12 19

Mean 5.3 6.4 4.8

Min Value 3 2 5

Autocorrelation 0.2 0.3 0.5

… … … …

Shape-based Classification

Shape-based Classification

• Calculate the distance between TS
using an appropriate distance function:
• Euclidean/Manhattan
• Dynamic Time Warping
• Compression Based Dissimilarity

• Use an instance-based classifier (k-NN)
to make the classification. Euclidean CDM

Shape-based Classification

1. Represent a TS as a vector of
distances with representative
subsequences, namely
shapelets.

2. Use it to as input for machine
learning classifiers.

3.2 8.7

1.4 7.9

6.7 4.2

9.2 3.4

Time Series Classification with DNN

Time Series Classification with DNN

Convolutional Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf

Convolutional Neural Network

Fully Connected Layer

Fully Connected Layer

Convolution Layer

Convolution Layer
Filters always extend the full
depth of the input volume

Convolution Layer

Convolution Layer

Convolution Layer
1 0 1

0 1 0

1 0 1

Convolution
Kernel

Convolution Layer

Convolution Layer

Convolution Layer

Convolutional Neural Network

• CNN is a sequence of Conv Layers, interspersed with activation functions.
• CNN shrinks volumes spatially.
• E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).
• Shrinking too fast is not good, doesn’t work well.

CNN for Image Classification

Stride

Stride

Stride

Stride

Padding

7x7 output!
In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)
• F = 3 => zero pad with 1 pixel
• F = 5 => zero pad with 2 pixel
• F = 7 => zero pad with 3 pixel

Summary

Pooling Layer

• Makes the representations smaller and more manageable
• Operates over each activation map independently

MaxPooling and AvgPoling

Pooling

Example of CNN

CNN for Time Series Classification

CNN for Time Series Classification

• Result of a applying a learned discriminative convolution.

CNN for Time Series Classification

Residual Nerual Network (ResNN/ResNet)

The main characteristic of ResNets is the shortcut residual connection between
consecutive CONV layers. The difference with the usual CNN is that a linear shortcut is
added to link the output of a residual block to its input thus enabling the flow of the
gradient directly through these connections, which makes training a DNN much easier
by reducing the vanishing gradient effect.

CNN Summary

• ConvNets stack Convolutional, Pooling, Fully Connected Layers
• Trend towards smaller filters and deeper architectures
• Trend towards getting rid of POOL/FC layers (just CONV)
• Historically CNN looked like
• [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K, SOFTMAX
• where N is usually up to ~5, M is large, 0 <= K <= 2.

• Recent advances such as ResNet/GoogLeNet have challenged this
paradigm

Recurrent Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf

Types of Recurrent Neural Networks

Vanilla NN Image -->
Sequence of Words
Image Captioning

Sequence of Words -->
Sentiment

Sentiment Classification
TS Classification

Sequence of Words -->
Sequence of Words
Machine Translation

Video Classification

Recurrent Neural Network - RNN

Recurrent Neural Network - RNN

• We can process a sequence of vectors x by applying a recurrence
formula at every time step:

(Simple) Recurrent Neural Network

RNN Idea

• The idea behind RNNs is to make use of sequential information.
• In a traditional NN we assume that all inputs (and outputs) are

independent of each other.
• But for sequence dependent task this is a bad idea: if you want to predict

the next word in a sentence you better know which words came before it.
• RNNs are called recurrent because they perform the same task for every

element of a sequence, with the output being depended on the previous
computations.
• Another way to think about RNNs is that they have a “memory” which

captures information about what has been calculated so far.
• In theory RNNs can make use of information in arbitrarily long sequences,

but in practice they are limited to looking back only a few steps

Unfolded RNN

Unfolded RNN

• xt is the input at time t. For example, x1 could be a one-hot vector
corresponding to the second word of a sentence.
• st is the hidden state at time t. It is the “memory” of the network. st is

calculated based on the previous hidden state and the input at the
current step: st =f(U xt + W st-1).
• The function f is usually tanh or ReLU. s-1, which is required to

calculate the first hidden state, is typically initialized to all zeroes.
• ot is the output at time t. For example, if we wanted to predict the

next word in a sentence it would be a vector of probabilities across
our vocabulary. ot = softmax(Vst).

Unfolded RNN

• The hidden state st is the memory of the network. st captures information
about what happened in all the previous time steps.
• The output at step ot is calculated solely based on the memory at time t.
• st typically can not capture information from too many time steps ago.
• Unlike a DNN, which uses different parameters at each layer, a RNN shares

the same parameters (U, V, W) across all steps. This reflects the fact that
we are performing the same task at each step, just with different inputs.
• The previous diagram has outputs at each time step, but depending on the

task this may not be necessary.

RNN: Computational Graph

Reminder: Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Example Training

RNN: Example Training

RNN: Example Training

RNN: Example Test

RNN: Example Test

RNN: Example Test

RNN: Example Test

Backpropagation Through Time

• Forward through entire sequence to compute loss
• Then backward through entire sequence to compute gradient

Truncated BPTT
• It is an approximation of full BPTT that is preferred for long sequences since full BPTT’s

forward/backward cost per parameter update becomes very high over many time steps.

• The downside is that the gradient can only flow back so far due to that truncation, so the network
can not learn dependencies that are as long as in full BPTT.

Limitations of RNNs

• RNN work fine when we are dealing with short-term dependencies.
• However, RNNs fail to understand the context behind an input.
• For instance, something that was said long before, cannot be recalled when

making predictions in the present.
• The reason behind this is the problem of Vanishing Gradient.
• For a DNN, the weight updating that is applied on a particular layer is a multiple

of the learning rate, the error term from the previous layer and the input to that
layer. The error for a particular layer is a product of all previous layers’ errors.
• When dealing with functions like sigmoid/tanh, the small values of its derivatives

(occurring in the error function) gets multiplied multiple times as we move
towards the starting layers. As a result of this, the gradient almost vanishes as we
move towards the starting layers, and it becomes difficult to train these layers.

Vanishing (and Exploding) Gradients

• The gradient expresses the change
in all weights with regard to the
change in error.
• If we can not know the gradient, we

can not adjust the weights in a
direction that will decrease error,
and our network ceases to learn.
• Effects of applying a sigmoid

function over and over again.

Vanilla RNN Gradient Flow

Backpropagation from ht
to ht-1 multiplies by W

Vanilla RNN Gradient Flow

• Computing gradient of h0 involves many factors of W (and repeated tanh)
• Largest singular value > 1 à Exploding Gradients

• Gradient clipping: Scale Computing gradient gradient if its norm is too big

• Largest singular value < 1 à Vanishing Gradients
• Change RNN architecture

Long Short Term Memory (LSTM)

• LSTM contains in a gated cell
information outside the normal
flow of the recurrent network.
• Information can be stored in,

written to, or read from a cell.

Long Short Term Memory (LSTM)

• The cell makes decisions about
what to store, and when to allow
reads, writes and erasures, via
gates that open and close.
• These gates are implemented

with element-wise multiplication
by sigmoids, which are all in the
range of 0-1, thus are
differentiable and suitable for
backpropagation

Backpropagation from ct to ct-1 only elementwise
multiplication by f, no matrix multiply by W

Long Short Term Memory (LSTM): Gradient Flow

• LSTMs help preserve the error that can be backpropagated through
time and layers. By maintaining a more constant error, they allow
recurrent nets to continue to learn over many time steps (over 1000),
thereby opening a channel to link causes and effects remotely.

RNN Summary

• RNNs allow a lot of flexibility in architecture design
• Vanilla RNNs are simple but don’t work very well
• Common to use LSTM or GRU: their additive interactions improve

gradient flow
• Backward flow of gradients in RNN can explode or vanish. Exploding is

controlled with gradient clipping. Vanishing is controlled with additive
interactions (LSTM)
• Better/simpler architectures are a hot topic of current research, as

well as new paradigms for reasoning over sequences
• Better understanding (both theoretical and empirical) is needed.

References

• Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
Chin-Chia Michael Yeh et al. 1997

• Time Series Shapelets: A New Primitive for Data Mining. Lexiang
Ye and Eamonn Keogh. 2016.

• Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-
Thieme (2014): Learning Time-Series Shapelets, in Proceedings
of the 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2014

• Deep learning for time series classication: a review. Hassan
Ismail Fawaz et al. 2019.

