DATA MINING 2
Course Overview
Riccardo Guidotti
Teachers

• **Riccardo Guidotti**
 • Computer Science Department
 • Email: riccardo.guidotti@unipi.it

• **Andrea Fedele (Assistant)**
 • Computer Science Department
 • Email: andrea.fedele@phd.unipi.it
Classes

• Classes
 • Monday, 09-11, Room Fib C
 • Wednesday, 11-13, Room Fib C

• Office Hours
 • Tuesday 15-17, Riccardo Guidotti’s office
 • Appointment [DM2 Meeting] at riccardo.guidotti@unipi.it

• Teaching Assistant
 • Andrea Fedele [DM2 Meeting] at andrea.fedele@phd.unipi.it
No Classes and Recovery Classes

No Class
• Wed 21/02/2024
• Mon 26/02/2024
• Wed 13/03/2024
 • Mon 01/04/2024 (Easter Monday)
 • Mon 29/04/2024 (still not canceled)
• Wed 01/05/2024 (First of May)

Recovery Classes
• Mon 20/05/2024
• Tue 21/05/2024
• Wed 22/05/2024
 • Thu 23/05/2024 (if 29/04 is canceled)
Topics

• Module 1: Rule-based Classifiers & Transactional Data
 • Rule-based classifiers
 • Sequential Pattern Mining
 • Transactional Clustering

• Module 2: Time Series Analysis
 • Time Series Similarity
 • Approximation
 • Motif, Shapelets
 • Classification, Clustering

• Module 3: Advanced Data-Preprocessing
 • Imbalanced Learning
 • Dimensionality Reduction
 • Anomaly Detection

• Module 4: Advanced ML & XAI
 • Logistic Regression
 • Support Vector Machines
 • Neural Networks
 • Ensemble Methods
 • Gradient Boosting
 • Rule-based Classifiers
Laboratory

- Python
- Jupyter Notebook

\[y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it} \]
Material

- Web Site: http://didawiki.cli.di.unipi.it/doku.php/dm/start

- Laura Igual et al. Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications.

- Slides, Exercises and Notebook
Exam

• Project
 • Topics presented during the classes
 • A single report to be sent periodically and one week before the oral exam
 • Groups composed of up to 3 people (DM1), people (DM2)

• Oral Exam
 • Short discussion of the project (group presentation, where possible), plus
 • Questions on all topics presented during the classes
 • Exercises and questions about all topics

\[
\text{DM1 Mark} = 0.6 \times \text{Oral} + 0.4 \times \text{Project} \\
\text{DM2 Mark} = 0.6 \times \text{Oral} + 0.4 \times \text{Project} \\
\text{DM Mark} = (\text{DM1} + \text{DM2}) / 2
\]
Homework and Suggestions

Homework

• Declare Project Groups by next Tuesday 28th February adding your information at https://docs.google.com/spreadsheets/d/10R5AcqdlXsqTAsys6zyqArvdytq4HH6IkJ8Uy-NHkQ4/

• Suggestions

• Download and start to play with the dataset and perform data understanding.

• Use a Github repository for python and ipython files.

• Use a shared Overleaf project (LaTex) for the report.
Dataset

• **Spotify Tracks Dataset (STD) + .mp3 audio**

 - The STD contains data concerning audio tracks accessible via the Spotify catalogue. These tracks span 114 distinct genres, such as hip-hop, idm, salsa, and heavy-metal. Each track is equipped with fundamental attributes: track name, artist, album name, and its popularity within the catalogue. Additionally, audio-derived features are included, encompassing aspects like danceability, energy, key, and loudness.

• The STD for the project can be found on the web page of the course.

• Detailed guidelines for the project will be presented next lecture and made on the web page of the course.
Questions?

riccardo.guidotti@unipi.it
andrea.fedele@phd.unipi.it
Let’s start!