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Time Series Forecasting (Prediction)

• Main difference between forecasting and classification: forecasting is about  
predicting a future state/value, rather than a current one.
• Applications:

• Temperature, Humidity, CO2 Emissions
• Epidemics
• Pricing, Sales Volumes, Stocks
• Forewarning of Natural Disasters (flooding, hurricane, snowstorm),
• Electricity Consumption/Demands

• Techniques:
• Statistical Methods,
• Machine Learning Classifiers
• Deep Neural Networks



Forecasting vs Regression

• Forecasting is time dependent: the basic 
assumption of a linear regression model that the 
observations are independent does not hold.
• Along with an increasing or decreasing trend, 

most TS have some form of seasonality trends, i.e. 
variations specific to a particular time frame. 



Time Series Characteristics



Time Series Components

• A given TS consists of three systematic components including level, 
trend, seasonality, and one non-systematic component called noise.
• Level: The average value in the series.
• Trend: The increasing or decreasing value in the series.
• Seasonality: The repeating short-term cycle in the series.
• Noise: The random variation in the series.

• A systematic component have consistency or recurrence and can be 
described and modeled.
• A Non-Systematic component cannot be directly modeled.



Combining Time Series Components

• A TS is an aggregate or combination of these four components.
• All series have a level and noise. The trend and seasonality components are optional.

• Additive Model: y(t) = Level + Trend + Seasonality + Noise
• Changes over time are consistently made by the same amount
• A linear trend is a straight line.
• A linear seasonality has the same frequency (width of cycles) and amplitude (height of cycles).

• Multiplicative Model: y(t) = Level * Trend * Seasonality * Noise
• A multiplicative model is nonlinear, such as quadratic or exponential. Changes increase or 

decrease over time.
• A nonlinear trend is a curved line.
• A non-linear seasonality has an increasing/decreasing frequency and/or amplitude over time.



Time Series Models

• A TS model specifies the joint distribution function of the sequence 
x1, x2, ..., xn of n random variables as the probability that the values of 
the series are jointly less than n constants c1, c2, ..., cn.
• 𝐹 𝑐!, 𝑐", … , 𝑐# = 𝑃(𝑥! ≤ 𝑐!, 𝑥" ≤ 𝑐", … , 𝑥# ≤ 𝑐#)

• Although the joint distribution function describes the data 
completely, it is an unwieldy tool for analyzing TS data



Time Series Descriptive Measures

• Another informative marginal descriptive measure is the mean 
function 𝜇! = 𝐸 𝑥 where E denotes the expected value operator.

• The lack of independence between two subsequent values xs at time i
and xt at time i+k can be assessed numerically, as in classical statistics, 
using the notions of covariance and correlation.
• Assuming the variance of a TS x is finite, we have the following 

definitions.



Time Series Descriptive Measures

• The autocovariance function (AF) is defined as
• 𝛾! 𝑠, 𝑡 = 𝑐𝑜𝑣 𝑥", 𝑥# = 𝐸[(𝑥" − 𝜇")(𝑥# − 𝜇#)]

• It measures the linear dependence between lagged TS starting at two 
different time points on the same TS. 
• Very smooth TS exhibit AF that stay large even when the t and s are far 

apart, whereas choppy TS tend to have AF that are nearly zero for large 
separations. 
• If 𝛾! 𝑠, 𝑡 = 0 are not linearly related, 
• For s = t, the AF reduces to the (assumed finite) variance, because

• 𝛾! 𝑡, 𝑡 = 𝑣𝑎𝑟 𝑥# = 𝐸[(𝑥# − 𝜇#)$]



Time Series Descriptive Measures

• The autocorrelation function (ACF) is defined as
• 𝜌 𝑠, 𝑡 = $ %,'

$ %,% $ ','
∈ [−1,1]

• It measures the linear predictability of the series at time t, say xt, 
using only the values from time s, xs

• Hence, we have a rough measure of the ability to forecast the series 
at time t from the value at time s.
• ACF measures the linear relationship between lagged values of a TS.
• There are several autocorrelation coefficients, corresponding to each 

lag k = 1, 2, 3, …



ACF plot

• The ACF plot shows the total correlation between different lag 
functions by calculating the correlation for TS with observations with 
previous time steps, called lags. 
• Thus we calculate the ACF for xt with xt+1 xt+2, etc.

Lags



PACF plot

• A partial autocorrelation is a summary of the relationship between an 
observation in a TS with observations at prior time steps with the relationships of 
intervening observations removed.
• The partial autocorrelation at lag k is the correlation that results after removing 

the effect of any correlations due to the terms at shorter lags.

Lags



ACF and PACF Summary

• Autocorrelation Function (ACF): It is a measure of the correlation 
between the TS with a lagged version of itself. 
• For instance at lag k=5, ACF would compare TS at time instant t1…tn with TS at 

instant t1-5, …, t2-5 (t1-5 and tn being end points).

• Partial Autocorrelation Function (PACF): This measures the 
correlation between the TS with a lagged version of itself but after 
eliminating the variations already explained by the intervening 
comparisons. 
• Eg at lag k=5, would compare the correlation but remove the effects already 

explained by lags 1 to 4.



White Noise

• The differenced series is the change between consecutive 
observations in the original series, and can be written as x’t =xt – xt-1

• Time series that show no autocorrelation are called white noise. 
• In other words it is made of random values with a given mean and 

standard deviation but not autocorrelation.
• When the differenced series is white noise, i.e. 𝜀t =xt – xt-1, where 𝜀t

denotes white noise, than xt = xt-1+ 𝜀t is a random walk model



Random Walk

• Random walk models are widely used for non-stationary data, e.g. 
financial and economic data. 

• Random walks typically have:
• long periods of apparent trends up or down
• sudden and unpredictable changes in direction.

• The forecasts from a random walk model are equal to the last 
observation, as future movements are unpredictable, and are equally 
likely to be up or down. 



Stationarity



Stationary Time Series

• A strictly stationary TS is one for which the probabilistic behavior of 
every collection of values {x1, x2, ..., xn} is identical to that of the time 
shifted set {x1+h, x2+h, ..., xn+h} 
• 𝑃 𝑥! ≤ 𝑐!, 𝑥" ≤ 𝑐", … , 𝑥# ≤ 𝑐# = 𝑃(𝑥!() ≤ 𝑐!, 𝑥"() ≤ 𝑐", … , 𝑥#() ≤ 𝑐#)
• for all n =1,2,…, all time points 1, 2, …, n, all numbers c1, c2, ..., cn, all time shifts h.

• If a TS is strictly stationary, then all of the distribution functions for 
subsets of variables must agree with their counterparts in the shifted 
set for all values of the shift parameter h.
• In other words, shifting the time axis does not affect the distribution.



Stationary Time Series

• A weakly stationary TS, xt, is a finite variance process such that
• the mean value function, 𝜇' is constant and does not depend on time 𝜇' = 𝜇
• the autocovariance function, 𝛾 𝑠, 𝑡 depends on s and t only through their 

difference |s-t|.

• We will use the term stationary to mean weakly stationary.

• A TS with a certain trend or with a certain seasonlity is not stationary.
• In practice, there are three basic criterion for a TS to be stationary



Stationary Time Series

• The mean of the series should not be a function of time, rather 
should be a constant.



Stationary Time Series

• The variance of the series should not a be a function of time, rather 
should be a constant.



Stationary Time Series

• The covariance of the i-th point and the (i+k)-th point should not be a 
function of time.



Dickey Fuller Test of Stationarity

• The test results comprise of a Test Statistic and 
some Critical Values for different confidence levels. 
• If the Test Statistic is less than the Critical Value, we 

can reject the null hypothesis and say that the 
series is stationary.
• The Dickey–Fuller test tests the null hypothesis that 

a unit root is present in an autoregressive model.
• A unit root is a feature of some stochastic processes 

(such as random walks) that can cause problems in 
statistical inference involving TS models.



Dickey Fuller Test of Stationarity

• First we build an autoregressive model 
• 𝑦! = 𝛼𝑦!"# + 𝑢!
• where 𝑦! is the TS, t the time index, 𝛼 a coefficient, and 𝑢! the error term.
• a unit root is present if 𝛼 = 1.

• We rewrite it as
• Δ𝑦! = (𝛼 − 1)𝑦!"#+𝑢! = 𝛿𝑦!"# + 𝑢!
• where Δ𝑦! = 𝑦! - 𝑦!"# is the difference operator
• a unit root is present if 𝛿 = 0

• Then a test on 𝛼 is run to understand if it is lower or equal than 1 (i.e., 𝛿 = 0).
• If the null hypothesis is accepted then a trend exists.
• Since the test is done over the residual term Δ𝑦' rather than raw data, it is not 

possible to use standard t-distribution to provide critical values. 
• Therefore, this test has a specific distribution known as the Dickey–Fuller table.



Why Do I Care About Stationarity?

• If your TS is not stationary, you cannot build a TS predictive model. 
• In cases where the stationary criterion are violated, the first requisite 

becomes to stationaries the TS. 
• There are multiple ways of bringing stationarity by removing trend 

and/or seasonality.
• Some of them are Detrending, Differencing, Decomposition, etc.



Eliminating Trend and Seasonality

• Differencing: we take the difference of the observation at a particular 
instant with that at the previous instant.
• Detrending: we simply remove the trend component from the TS.
• Decomposing: trend and seasonality are modeled separately and the 

remaining part of the TS, i.e., the residual, is returned.

TS

trend

seasonality

residuals



Time Series Forecasting



It’s Difficult to Make Predictions, Especially About the Future

Causal
Models

Forecasting

Time Series
Models

Exponential
Smoothing

Trend
ModelsAverage Regression

ES and ARIMA models are the two most widely used
approaches to time series forecasting, and provide
complementary approaches to the problem. 



Evaluating Forecast Accuracy

• A forecast “error” is the difference between an observed value and its 
forecast. An “error” is not a mistake, is the unpredictable part.

• Forecast errors are different from residuals:
• Residuals are calculated on the training set while forecast errors are 

calculated on the test set. 
• Residuals are based on one-step forecasts while forecast errors can involve 

multi-step forecasts.

• We can measure forecast accuracy by summarizing the forecast errors 
in different ways.



Scale-Dependent Errors

• Cannot be used to make comparisons between TS that involve 
different units.
• The two most commonly used scale-dependent measures are based 

on the absolute errors or squared errors:



Percentage Errors

• Percentage errors are unit-free, and so are frequently used to compare 
forecast performances between data sets.
• The percentage error is given by

• The most commonly used measure is:

• Total and Median Absolute Percentage Error (TAPE, MedianApe) are also used.



Evaluation Measures from Regression

• Coefficient of determination R2

• is the proportion of the variance in the dependent variable that is predictable 
from the independent variable(s)

• Mean Squared/Absolute Error MSE/MAE
• a risk metric corresponding to the expected value of the squared 

(quadratic)/absolute error or loss

hat means predicted



Simple Forecasting Methods



Simple Forecasting Methods

• Average Method: the forecasts of all future values are equal to the 
average (or “mean”) of the historical data.

• Naïve Method: the forecasts of all future values are equal to the last 
value of the historical data.

• Drift Method: increase/decrease last value w.r.t. the amount of 
change over time (drift) as the average change in the historical data.



Exponential Smoothing



Simple Exponential Smoothing (SES)

• Is suitable for data with no clear trend or seasonal pattern.
• SES is in between the average and naive method.
• SES attaches larger weights to more recent observations than to 

observations from the distant past, while smallest weights are 
associated with the oldest observations
• Forecasts are calculated using weighted averages, where the weights 

decrease exponentially as observations come from further in the past.

• 0 ≤ 𝛼 ≤ 1 is the smoothing parameter



SES – Formalization in Components

• For SES the only component used is the level.
• Component form representations of SES comprise a forecast equation 

and a smoothing equation for each of the components in the method.

• where lt is the level of the TS at time t



Holt’s Linear Trend Method

• Holt extended simple exponential smoothing to allow the 
forecasting of data with a trend.

• where lt is the level of the TS at time t, bt estimates the trend of 
TS, 0 ≤ 𝛼 ≤ 1 is the smoothing parameter for the level and 0 ≤
𝛽∗ ≤ 1 is the smoothing parameter for the trend.



Holt-Winters’ Seasonal Method

• Holt (1957) and Winters (1960) extended Holt’s method to capture 
seasonality.
• m denotes the frequency of the seasonality, i.e., the number of 

seasons in a reference period, while 0 ≤ γ ≤ 1 − 𝛼 is the smoothing 
parameter for the seasonality.
• The additive method is preferred when the seasonal variations are 

constant through the TS 
• The multiplicative method is preferred when the seasonal variations 

are changing proportional to the level of the TS. 



Holt-Winters’ Seasonal Method

• Additive

• Multiplicative
k is the integer part 
of (h−1)/m, which 
ensures that the 
estimates of the 
seasonal indices 
come from the final 
period of the sample.



More on Exponential Smoothing

• ES methods are not restricted to those we have presented. 



ARIMA Models



Auto-Regressive Integrated Moving Averages

• The ARIMA forecasting for a stationary time series is a linear equation 
(like a linear regression).
• While ES are based on a description of the trend and seasonality, 

ARIMA models aim to describe the autocorrelations in the data.
• Before we introduce ARIMA models, we recall the concept of 

stationarity and the technique of differencing TS.



Stationarity (again)

• A stationary TS is one whose properties do not depend on the time at 
which the series is observed.
• TS with trends, or with seasonality, are not stationary: the trend and 

seasonality affect the value of the TS at different times. 
• A white noise series is stationary: it does not matter when you 

observe it, it looks much the same at any point in time.



Differencing (again)

• Differencing: compute the differences between consecutive 
observations.
• It is a possible transformation to make a non-stationary TS stationary.
• Indeed, it can help stabilize the mean of a TS by removing changes in 

the level, and thus eliminating (or reducing) trend and seasonality.
• In addition, transformations such as logarithms can help to stabilize 

the variance of a time series. 



Autoregressive Models

• In multiple regression model, we predict the variable of interest using 
a linear combination of predictors. 
• In an autoregression model, we forecast the variable of interest using 

a linear combination of past values of the variable. 
• The term autoregression indicates that it is a regression of the 

variable against itself.
• An autoregressive model of order p can be written as

• This is as an AR(p) model of order p (p = lag in the past)

white noise



Autoregressive Models

• We normally restrict AR models to stationary data, in which case 
some constraints on the values of the parameters are required.
• For AR(1): −1 ≤ 𝜙. ≤ 1
• For AR(2): −1 ≤ 𝜙/ ≤ 1, 𝜙.+ 𝜙/< 1, 𝜙/− 𝜙.< 1
• When p>2 the restriction are much more complicated.



Moving Average Models

• Rather than using past values of the forecast variable in a regression, 
a MA model uses past forecast errors in a regression-like model.

• This is as a MA(q) model of order q (q = lag in the past).
• MA models should not be confused with the moving average 

smoothing.
• It is possible to write any stationary AR(p) as MA(∞)

white noise



Moving Average Models

• It is possible to write any stationary AR(p) as MA(∞)
• The reverse result holds if we impose some constraints on the MA 

parameters.
• Then the MA model is called invertible.
• The invertibility constraints for other models are similar to the 

stationarity constraints.
• For MA(1): −1 ≤ 𝜃. ≤ 1
• For MA(2): −1 ≤ 𝜃/ ≤ 1, 𝜃.+𝜃/> −1, 𝜃.−𝜃/< 1
• When p>2 the restriction are much more complicated.



ARIMA Models (Non-Seasonal)

• If we combine differencing with an AR model and a MA model, we 
obtain a non-seasonal ARIMA model. ARIMA is an acronym for 
AutoRegressive Integrated Moving Average (“integration” is the 
reverse of differencing).

• where y’t is the differenced series.
• We call this model ARIMA(p,d,q) model, where p is the order of the 

autoregressive part, d is the degree of first differencing involved, q is 
the order of the moving average part



ARIMA Models (Non-Seasonal)

• The same stationarity and invertibility conditions that are used for AR 
and MA models also apply to an ARIMA model.
• Special cases of ARIMA models

• ARIMA(p,0,q) is also called ARMA(p,q)



• It is sometimes possible to use the ACF plot, and the closely related 
PACF plot, to determine appropriate values for p and q.
• ACF plot shows the autocorrelations which measure the relationship 

between yt and yt-k for different values of k.
• PACF measure the relationship between yt and yt-k after removing the 

effects of lags 1,2,3,…,k−1.
• If the TS are from an ARIMA(p,d,0) or ARIMA(0,d,q), then the ACF and 

PACF plots can be helpful in determining the value of p or q.
• If p and q are both positive, then the plots do not help in finding 

suitable values of p and q.

ACF and PACF plots (again)



ACF and PACF plots (again)

• The TS may follow an ARIMA(p,d,0) model if the ACF and PACF plots 
of the differenced TS show the following patterns:
• the ACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag p in the PACF, but none beyond lag p.

• The data may follow an ARIMA(0,d,q) model if the ACF and PACF plots 
of the differenced TS show the following patterns:
• the PACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag q in the ACF, but none beyond lag q.



ACF and PACF plots - Example

• There are three spikes in the ACF, 
followed by an almost significant 
spike at lag 4. In the PACF, there 
are three significant spikes, and 
then no significant spikes. 
• The pattern in the first three 

spikes is what we would expect 
from an ARIMA(3,0,0), as the 
PACF tends to decrease. 
• So in this case, the ACF and PACF 

lead us to think an ARIMA(3,0,0) 
model might be appropriate.



ARIMA – Parameters Estimation

• Once the model order has been identified (i.e., the values of p,d,q), 
we need to estimate the parameters 𝑐, 𝜙., … , 𝜙0, 𝜃., … , 𝜃0.
• Maximum Likelihood Estimation (MLE) can be used to find the values 

for these parameters.
• For ARIMA models, MLE is similar to the least squares estimates that 

would be obtained by minimizing

• Once the parameters are estimated they are placed in the equation 
and used to make the prediction of yt+1, yt+2, … , yt+n



Determining the order of an ARIMA model

• Akaike’s Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

• k=1 if c=0, k=0 otherwise
• Good models are obtained by minimizing the AIC, or BIC
• We highlight that AIC, or BIC  are not good guides to selecting the 

appropriate d, but only for selecting p and q.
• This is because the differencing changes the data on which the likelihood is 

computed, making the AIC values between models with different orders of 
differencing not comparable.



Modelling Procedure



Seasonal ARIMA Models

• ARIMA models can also model a wide range of seasonal data.
• A seasonal ARIMA model is formed by including additional seasonal 

terms in the ARIMA models we have seen so far.

• where m is the number of observations per period. 
• The seasonal part consists of terms that are similar to the non-

seasonal components, but involve backshifts of the seasonal period.



Advanced Forecasting Methods



Advanced Forecasting Methods

• Machine Learning models in form of (auto-)regressors can be used for 
time series forecasting.
• Decision Tree Regressors
• (Deep) Neural Networks Regressors
• Convolutional Neural Networks
• Recurrent Neural Networks

• Ensemble Regressors
• Bagging
• Bootstrapping
• Random Forest Regressors
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