DATA MINING 2
Support Vector Machine

Riccardo Guidotti

a.a. 2021/2022

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining
Support Vector Machine (SVM)

• SVM represents the decision boundary using a subset of the training examples, known as the support vectors.

• We illustrate the basic idea behind SVM by introducing the concept of maximal margin hyperplane and explain the rationale of choosing such a hyperplane.
Maximum Margin Hyperplanes

• Find a linear hyperplane (decision boundary) that separates the data.
Maximum Margin Hyperplanes

• One possible solution.
Maximum Margin Hyperplanes

• Another possible solution.
Maximum Margin Hyperplanes

- Other possible solutions.
Maximum Margin Hyperplanes

• Let’s focus on B_1 and B_2.
• Which one is better?
• How do you define better?
Maximum Margin Hyperplanes

• The best solution is the hyperplane that **maximizes** the **margin**.
• Thus, B_1 is better than B_2.

![Graph showing hyperplanes and margins](image-url)
Linear SVM: Separable Case

• A linear SVM is a classifier that searches for a hyperplane with the largest margin (a.k.a. maximal margin classifier).

• w and b have to be learned.

• Given w and b the classifiers work as

$$f(\bar{x}) = \begin{cases}
 1 & \text{if } \bar{w} \cdot \bar{x} + b \geq 1 \\
 -1 & \text{if } \bar{w} \cdot \bar{x} + b \leq -1
\end{cases}$$

Example calculus dot product

$w = [.3 .2]$ $x = [1 2]$ $b = -2$

$w \cdot x + b = .3*1 + .2*2 + (-2) = -1.3$
Linear SVM: Separable Case

• What is the distance expression for a point \(x \) to a line \(wx+b=0 \) (the decision boundary)?

\[
d(x) = \frac{|x \cdot w + b|}{\sqrt{\|w\|^2}} = \frac{|x \cdot w + b|}{\sqrt{\sum_{i=1}^{d} w_i^2}}
\]
Linear SVM: Separable Case

- The distance between B_1 and b_{11} is $1/\|w\|$.
- The distance between b_{11} and b_{12}, i.e., the margin is:
 \[\text{Margin} = \frac{2}{\|\tilde{w}\|} \]
- Question!
- In order to maximize the margin we need to minimize $\|w\|$.
Learning a Linear SVM

• Learning the SVM model is equivalent to determining \(w \) and \(b \).
• How to find \(w \) and \(b \)?
• Objective is to \textbf{maximize the margin}.
• Which is equivalent to minimize
• Subject to the following constraints
• This is a constrained optimization problem that can be solved using the \textit{Lagrange} multiplier method.
• Introduce Lagrange multiplier \(\lambda \)

\[
\begin{align*}
\text{Margin} &= \frac{2}{||\vec{w}||} \\
L(\vec{w}) &= \frac{||\vec{w}||^2}{2} \\
y_i &= \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x}_i + b \geq 1 \\
-1 & \text{if } \vec{w} \cdot \vec{x}_i + b \leq -1
\end{cases} \\
x_i(\vec{w} \cdot \vec{x}_i + b) &\geq 1, \quad i = 1,2,...,N
\end{align*}
\]
Constrained Optimization Problem

Minimize $\| \mathbf{w} \| = \langle \mathbf{w} \cdot \mathbf{w} \rangle$ subject to $y_i((\mathbf{x}_i \cdot \mathbf{w}) + b) \geq 1$ for all i

Lagrangian method: maximize $\inf_{\mathbf{w}} L(\mathbf{w}, b, \alpha)$, where

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \| \mathbf{w} \| - \sum_i \alpha_i [(y_i(x_i \cdot w) + b) - 1]$$

At the extremum, the partial derivative of L with respect both \mathbf{w} and b must be 0. Taking the derivatives, setting them to 0, substituting back into L, and simplifying yields:

Maximize $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$

subject to $\sum_i y_i \alpha_i = 0$ and $\alpha_i \geq 0$

$\lambda = \alpha$
Example of Linear SVM

Support vectors

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3858</td>
<td>0.4687</td>
<td>1</td>
<td>65.5261</td>
</tr>
<tr>
<td>0.4871</td>
<td>0.611</td>
<td>-1</td>
<td>65.5261</td>
</tr>
<tr>
<td>0.9218</td>
<td>0.4103</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0.7382</td>
<td>0.8936</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0.1763</td>
<td>0.0579</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.4057</td>
<td>0.3529</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.9355</td>
<td>0.8132</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0.2146</td>
<td>0.0099</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A Geometrical Interpretation

\[a_6 = 1.4 \]

\[
\begin{align*}
 a_1 &= 0.8 \\
 a_2 &= 0 \\
 a_3 &= 0 \\
 a_4 &= 0 \\
 a_5 &= 0 \\
 a_7 &= 0 \\
 a_8 &= 0.6 \\
 a_9 &= 0 \\
 a_{10} &= 0
\end{align*}
\]

\[
\begin{align*}
 w^T x + b &= 1 \\
 w^T x + b &= -1
\end{align*}
\]
Linear SVM: Non-separable Case

• What if the problem is not linearly separable?
• We must allow for errors in our solution.
Slack Variables

- The inequality constraints must be relaxed to accommodate the nonlinearily separable data.
- This is done introducing slack variables ξ (xi) into the constrains of the optimization problem.
- ξ provides an estimate of the error of the decision boundary on the misclassified training examples.
Learning a Non-separable Linear SVM

- Objective is to minimize
- Subject to to the constraints

- where C and k are user-specified parameters representing the penalty of misclassifying the training instances
- Lagrangian multipliers are constrained to $0 \leq \lambda \leq C$.

$$L(w) = \frac{\|w\|^2}{2} + C \sum_{i=1}^{N} \xi_i$$

$$y_i = \begin{cases}
1 & \text{if } \bar{w} \cdot \bar{x}_i + b \geq 1 - \xi_i \\
-1 & \text{if } \bar{w} \cdot \bar{x}_i + b \leq -1 + \xi_i
\end{cases}$$
Non-linear SVM

• What if the decision boundary is not linear?

\[y(x_1, x_2) = \begin{cases}
1 & \text{if } \sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} > 0.2 \\
-1 & \text{otherwise}
\end{cases} \]
Non-linear SVMs: Feature Spaces

Idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable.

\[\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]
\[(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2) \]
Non-linear SVM

• The trick is to transform the data from its original space x into a new space $\Phi(x)$ so that a linear decision boundary can be used.

$$x_1^2 - x_1 + x_2^2 - x_2 = -0.46.$$

$$\Phi : (x_1, x_2) \rightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

$$w_4x_1^2 + w_3x_2^2 + w_2\sqrt{2}x_1 + w_1\sqrt{2}x_2 + w_0 = 0.$$

• Decision boundary $\hat{w} \cdot \Phi(\vec{x}) + b = 0$
Learning a Nonlinear SVM

- Optimization problem

Which leads to the same set of equations but involve $\Phi(x)$ instead of x.

\[
\begin{align*}
\min_w & \frac{||w||^2}{2} \\
\text{subject to} & \quad y_i(w \cdot \Phi(x_i) + b) \geq 1, \; \forall \{x_i, y_i\}
\end{align*}
\]

\[
f(z) = \text{sign}(w \cdot \Phi(z) + b) = \text{sign}\left(\sum_{i=1}^{n} \lambda_i y_i \Phi(x_i) \cdot \Phi(z) + b\right).
\]

Issues:

- What type of mapping function Φ should be used?
- How to do the computation in high dimensional space?
 - Most computations involve dot product $\Phi(x) \cdot \Phi(x)$
 - Curse of dimensionality?
The Kernel Trick

• $\Phi(x) \cdot \Phi(x) = K(x_i, x_j)$

• $K(x_i, x_j)$ is a kernel function (expressed in terms of the coordinates in the original space)

• Examples:

$$K(x, y) = (x \cdot y + 1)^p$$

$$K(x, y) = e^{-\|x-y\|^2/(2\sigma^2)}$$

$$K(x, y) = \tanh(kx \cdot y - \delta)$$

Examples of Kernel Functions

- Polynomial kernel with degree d
 \[K(x, y) = (x^T y + 1)^d \]

- Radial basis function kernel with width σ
 \[K(x, y) = \exp(-||x - y||^2/(2\sigma^2)) \]

 - Closely related to radial basis function neural networks
 - The feature space is infinite-dimensional

- Sigmoid with parameter κ and θ
 \[K(x, y) = \tanh(\kappa x^T y + \theta) \]

 - It does not satisfy the Mercer condition on all κ and θ

- Choosing the Kernel Function is probably the most tricky part of using SVM.
The Kernel Trick

- The linear classifier relies on inner product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every datapoint is mapped into high-dimensional space via some transformation Φ: $x \rightarrow \Phi(x)$, the inner product becomes:

 $$K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$$

- A kernel function is a function that is equivalent to an inner product in some feature space.
- Example:

 2-dimensional vectors $x = [x_1 \ x_2]$; let $K(x_i, x_j) = (1 + x_i^T x_j)^2$.

 Need to show that $K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$:

 $$K(x_i, x_j) = (1 + x_i^T x_j)^2 = 1 + x_{i1}^2 x_{j1} + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} =$$

 $$[1 \ x_{i1}^2 \ \sqrt{2} x_{i1} x_{i2} \ x_{i2}^2 \ \sqrt{2} x_{i1} \ \sqrt{2} x_{i2}]^T [1 \ x_{j1}^2 \ \sqrt{2} x_{j1} x_{j2} \ x_{j2}^2 \ \sqrt{2} x_{j1} \ \sqrt{2} x_{j2}] =$$

 $$= \Phi(x_i)^T \Phi(x_j), \quad \text{where } \Phi(x) = [1, \ x_1^2, \ \sqrt{2} x_1 x_2, x_2^2, \ \sqrt{2} x_1, \ \sqrt{2} x_2]$$

- Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\Phi(x)$ explicitly).
The Kernel Trick

Advantages of using kernel:
• Don’t have to know the mapping function Φ.
• Computing dot product $\Phi(x) \cdot \Phi(y)$ in the original space avoids curse of dimensionality.

Not all functions can be kernels
• Must make sure there is a corresponding Φ in some high-dimensional space.
• Mercer’s theorem (see textbook) that ensures that the kernel functions can always be expressed as the dot product in some high dimensional space.

$\begin{align*}
f(z) &= sign(w \cdot \Phi(z) + b) = sign\left(\sum_{i=1}^{n} \lambda_i y_i K(x_i, z) + b\right).
\end{align*}$

Mercer theorem: the function must be “positive-definite”

This implies that the n by n kernel matrix, in which the (i,j)-th entry is the $K(x_i, x_j)$, is always positive definite

This also means that optimization problem can be solved in polynomial time!
Constrained Optimization Problem with Kernel

Minimize $\| \mathbf{w} \| = \langle \mathbf{w}, \mathbf{w} \rangle$ subject to $y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \geq 1$ for all i

Lagrangian method: maximize $\inf_{\mathbf{w}} L(\mathbf{w}, b, \alpha)$, where

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \| \mathbf{w} \| - \sum_i \alpha_i [(y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) - 1)]$$

At the extremum, the partial derivative of L with respect to both \mathbf{w} and b must be 0. Taking the derivatives, setting them to 0, substituting back into L, and simplifying yields:

Maximize $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$

subject to $\sum_i y_i \alpha_i = 0$ and $\alpha_i \geq 0$

$$\lambda = \alpha$$
Example

class 1

\[\begin{array}{ccc}
\times & \times & \times \\
1 & 2 & 4 & 5 & 6
\end{array} \]
Example

• Suppose we have 5 one-dimensional data points
 - $x_1=1, x_2=2, x_3=4, x_4=5, x_5=6$, with values 1, 2, 6 as class 1 and 4, 5 as class 2
 - $\Rightarrow y_1=1, y_2=1, y_3=-1, y_4=-1, y_5=1$

• We use the polynomial kernel of degree 2
 - $K(x,z) = (xz+1)^2$
 - C is set to 100

• We first find α_i ($i=1, ..., 5$) by

$$\max \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$

subject to $100 \geq \alpha_i \geq 0$, $\sum_{i=1}^{5} \alpha_i y_i = 0$
Example

• By using a QP solver, we get
 • $\alpha_1=0$, $\alpha_2=2.5$, $\alpha_3=0$, $\alpha_4=7.333$, $\alpha_5=4.833$
 • Note that the constraints are indeed satisfied
 • The support vectors are $\{x_2=2, x_4=5, x_5=6\}$

• The discriminant function is

$$f(z) = 2.5(1)(2z + 1)^2 + 7.333(-1)(5z + 1)^2 + 4.833(1)(6z + 1)^2 + b$$
$$= 0.6667z^2 - 5.333z + b$$

• b is recovered by solving $f(2)=1$ or by $f(5)=-1$ or by $f(6)=1$, as x_2 and x_5 lie on the line $\phi(w)^T\phi(x) + b = 1$ and x_4 lies on the line $\phi(w)^T\phi(x) + b = -1$

• All three give $b=9$

 $$f(z) = 0.6667z^2 - 5.333z + 9$$
Example

Value of discriminant function

class 1

class 2

class 1
Characteristics of SVM

• Since the learning problem is formulated as a convex optimization problem, efficient algorithms are available to find the **global** minima of the objective function (many of the other methods use greedy approaches and find **locally** optimal solutions).

• Overfitting is addressed by maximizing the margin of the decision boundary, but the user still needs to provide the type of kernel function and cost function.

• Difficult to handle missing values.

• Robust to noise.

• High computational complexity for building the model.
References

• Support Vector Machine (SVM). Chapter 5.5. Introduction to Data Mining.

• http://www.kernel-machines.org/

• http://www.support-vector.net/

• An Introduction to Support Vector Machines. N. Cristianini and J. Shawe-Taylor.