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Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?
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Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs. These
are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of each
class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling normal
behavior with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical shapes.



How do we find Motifs?

* Given a predefined motif length m, a brute-force method searches for
motifs from all possible comparisons of subsequences.

* It is obviously very slow and computationally expensive.

* The most reference algorithm is based on a hot idea from
bioinformatics, random projection* and the fact that SAX allows use

to lower bound discrete representations of TSs.

e J Buhler and M Tompa. Finding motifs using random projections. In
RECOMB'01. 2001.



Example of the Motif Discovery Algorithm

* Assume that we have a time series T MWWW
of length 1,000, and a motif of \ -
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Example of the Motif Discovery Algorithm

* A mask {1,2} was randomly chosen, so the values in columns {1,2}
were used to project matrix into buckets.

* Collisions are recorded by incrementing the appropriate location in
the collision matrix.
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Example of the Motif Discovery Algorithm

* A mask {2,4} was randomly chosen, so the values in columns {2,4}
were used to project matrix into buckets.

* Once again, collisions are recorded by incrementing the appropriate
location in the collision matrix.
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Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given a time series, T and a desired subsequence length, m.



Matrix Profile
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m We can use sliding window of length m to
extract all subsequences of length m.
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We can then compute the pairwise
distance among these subsequences.
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Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest nelghbor. set of all set of corresponding
subsequences nearest neighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.
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The matrix profile value at location i is the
distance between ' and its nearest neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each subsequence is
also stored in a vector called matrix profile index.

time
series, T

matrix
profile
index, |
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Matrix Profile

 The MP index allows to find the nearest neighbor to any subsequence in constant time.
* Note that the pointers in the matrix profile index are not necessarily symmetric.

* If A points to B, then B may or may not point to A

* The classic TS motif: the two smallest values in the MP must have the same value, and
their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are anomalies).

Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords

| J J |
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Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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At the first iteration, a subsequence

is randomly selected from T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between | and every subsequences from T (time complexity = O(| T|log(|T|)))
We then put the distances in a vector based on the position of the subsequences

3 2 5 3 4 5 1 2 9 3 4 2 3 4 8 6 2 1

\ The distance between . and T; (first subsequence) is 3



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We compute the distances between

and every subsequences from T (time complexity = O(| T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say
the third value in the distance vector is O

happen to be the third subsequences, therefore




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.

‘ o w L A . o\ A i
M AANW ‘x.s“\v'*"*"\ S I\ NAV S \\ /\/w/\’J ~y\,~M\¢—/ ‘/\’M\"H,f\/\ N “‘ LS NN AN~ NN AN Y NA NN
|/ \ | /A s

inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf

in Matrix profile is updated by apply elementwise minimum to
these two vectors
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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In the second iteration, we randomly select another subsequence ' and it happens to be the 12t
subsequences




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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Once again, we compute the distance between | and every subsequences of T




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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min The same elementwise minimum




How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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We repeat the two steps (distance computation and update) until we have
used every subsequences



How to Compute Matrix Profile?

* Given a time series, T and a desired subsequence length, m.
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There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(| T|2%log(|T]))



Motif Discovery From Matrix Profile
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Motif Discovery From Matrix Profile
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Top-K Motifs

© ®  We need a parameter R.
° 1 <R < (small number, say 3)
e e Lets make R = 2 for now.

¢ * We begin by finding the nearest
© . . . .
° °o® pair of points, the motif pair....

¢ ° * This the pair of subsequences
° corresponding to lowest pair of
° o values in the MP
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Top-K Motifs

* We find the nearest pair of
points are D1 apart.

(%)) * Lets draw a circle, D1 times R,
s around both points.

% * Any points that are within either
o .

o of these circles, are added to
o this motif, in this case just one.

* The Top-1 motif has three
members, it is done.
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Top-K Motifs

X

* Now lets find the Top-2 motif.

We find the nearest pair of
points, excluding anything from
the top motif.

The nearest pair of points are
D2 apart.

Lets draw a circle D1 times R,
around both points.

Any points that are within
either of these circles, is added
to this motif, in this case there
are two for a total of four items
in the Top-2 Motif



Top-K Motifs

* We are done with the Top-2 Motif

* Note that we will always have:
*D;<D,<D;... Dy

 When to stop? (what is K?)

* We could use MDL or a predefined K.



Anomaly Discovery From Matrix Profile
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* We need a parameter E of
subsegeunces to exclude in
the vicinity of the anomaly.

e Lets make E = 2 for now.

* We begin by finding the
subsequence with the
highest distance in the MP

* This corresponding to
biggest anomaly



Top-K Anomaly
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* Then we look for the E
closest subsequences to
the anomaly.

e We remove all of them.

* We can use a predefined K
or the MDL to stop.



Shapelet



Time Series Classification

* Given a set X of n time series, X = {x;, x,, ..., x,}, each time series has
m ordered values x; = < X;;, X;5, ..., X;, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification

1. Represent a TS as a vector of Urtica dioica
distances with representative -
subsequences, namely shapelets. Verbena urticifolia

2. Use it to as input for machine Q
learning classifiers.
Shapelet Dictionary 3 1 W
5.1 #
° 3.2 8.7

0 10 20 30

Does Q have a subsequcﬁle within Leaf Decision T 1.4 7.9
a distance 5.1 of shape ? | €al vecision 1ree
/yes/ \no\ 6.7 4.2
0 1 9.2 34
Verbena urticifolia Urtica dioica Verbena urticifolia Urtica dioica



Time Series Shapelets

e Shapelets are TS subsequences which are

maximally representative of a class. Verbena 0.87

_ ] Urtica  0.34
* Shapelets can provide interpretable results,

which may help domain practitioners
better understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.

Verbena urticifolia Urtica dioica



Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Distance with a Subsequence

» Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

* SubsequenceDist(T, S) = min(Dist(S, S')), for S' €5;/5/
» where S;/5/is the set of all possible subsequences of T

* Intuitively, it is the distance between S and its best matching location in T.

best —» : N~
matching P T
location £

0 10 20 30 40 50 60 70 80




Testing The Utility of a Candidate Shapelet

* Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet

Split Point
candidate S plit Poin

By
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candidate ./ \E ,
Entropy PRI

A TS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D; and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objects in D, is f(D,;) and in D, is f(D,),
* The total entropy of D after splitting is (D) = f(D,)I(D,) + f(D,)I(D,).



it Poi
candidate S Split Point

. . et
Information Gain ) d 4l d W

Split point

* Given a certain split strategy sp which divides distance from
D into two subsets D; and D,, the entropy shapelet = 5.1
before and after splitting is /(D) and /(D).
* The information gain for this splitting rule is:
* Galn(sp) = I(D) - i\(D) = Shapelet Dictionary ,\ Z
- = I(D) - f(D,)I(D,) + f(D)I(D). o i

Does Q have a subsequence within .
Leaf Decision Tree

a distance 5.1 of shapem? |
- / \
* We use the distance from T to a shapelet S as yes no_

the splitting rule sp. 0 1

Verbena urticifolia Urtica dioica




Problem

MAXLEN

 The total number of candidate is Z Z
(

I|-1+1)

I=MINLEN T.€D

* For each candidate you have to compute the distance between this
candidate and each training sample

* For instance
e 200 instances with length 275
» 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates is expensive.
* Reduce the time in two ways

* Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning

* reduce the number of distance calculations

' Poi
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Distance Early Abandon

* We only need the minimum distance. best matching )
location 'd Dist= 0.4

e Method

* Keep the best-so-far distance

« Abandon the calculation if the current 0O 10 20 30 40 50 60 70 8 90 100
distance is larger than best-so-far.

Dist> 0.4

calculation -
abandoned at this point

O 10 20 30 40 50 60 70 8 90 100



Admissible Entropy Prunining

* We only need the best shapelet for X LY
each class >

* For a candidate shapelet

* We do not need to calculate the
distance for each training sample

e After calculating some training
samples, the upper bound of ¢
information gain < best candidate 0
shapelet

 Stop calculation
* Try next candidate




An Alternative Way for Extracting Shapelets

The minimum distances (M) between Ts and Shapelets can be used as predictors to
approximate the TSs label (Y) using a linear model (W):

A logistic regression loss can measure the quality of the prediction:

LY,V) = —y’hm(i')-(1—)-’)111(1—0(}"))

The objective is to minimize a regularized loss function accross all the instances (l) :

I
argmin F(S,W) = argnlinz L(Y:, Y:) 4+ dw||[W||?
=1

S.W S,W

We can find the optimal shapelet for the objective function in a NN fashion by updating
the shapelets in the minimum direction of the objective, hence the first gradient.
Similarly, the weights can be jointly updated towards minimizing the objective function.



Motif/Shapelet Summary
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pattern/subsequence in a given TS.

Shapelet

N

* A shapelet is a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.

Verbena urticifolia Urtica dioica
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Abstract— The allpairs-similarity-search (or similarity join)
problem has been extensively studied for text and 2 handful of

other datatype. However, ssprisingly il progres bas been
e an s oo o hsennences. The ekt
progrrs probabl

sorichm ean take monr b ui the rypi

[ e bounding. (rangular-
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saznitude speedup. In this work we introduce

ble slgorithm for time series subsequence all-pairs-
ek For exceptonaly arge e, the g

desktop, even if the data arrival frequency was much faster than
Our algorithm uses an ulra-fast similarity scarch algorithm

un malized Euclidean distance 25 a subroutinc.

exploiting the overlap between subsequences wsing the classic

Fast Fouricr Transform (FFT) algorithm.
Our method has the following advantages features:

= Ttis exact, providing no flsc positives or falsc dismissals.

« It is simple and parameter-fiec. In contrast, the more
gencral metric space APSS algorithms require building and

uning spatial access methods andor hash functions.

= Our algorithm requires an inconscquential space overhead,
just O(n) with a small constant factor.

 While ou exact algorithm is extremely scalable, for
extremely large datascts we can compute the results in an
anytime fashion. allowing ultra-fast approvimate solutions.

including motif
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all-pairs-similarity-search (slso known as smlarity

discovery, mavelty discovery, shapelet discovery, o+ Having computed the mmlamv join for a dataset, we can
semantic segmentation, density. estimation, and contrast. set nere

meatally update ficiently. In many domains
e e an, <fftiely s xach Jom on

g s e

provides full joins, climinating the nced to

pcify a sy hasho, ich s e il show s
near impossible task in this domain.

,m) p‘o\ka\m\)ﬁ~ i several vasiants The base ask i this: + Our algorithan is embarmassingly paralelizable, both on

Grven a collection of data objects, retrieve the nearest neighbor el

Jor_cach object. In the text domain the algorithm has
applications in a host of problems, including community
discovery.  duplicate _detection, , ing
clustering, and query refinement [1]. While virtally all text
rocessing algorithms have analogues in time series data
mining, there has been surprisingly litle progress on Time.
Serics subsequences All-Pairs-Similarity-Scarch (TSAPSS).

We believe that this lack of progress stems not from a lack
terest in this uscful primitive. but from the dauning nature

of the problem. Consider the following example that reflects the
nceds of an industrial collaborator. A boiler at a chemical
once a minute. After a year, we have a

‘may wish to do
2 abssqpences

{19080)to disover operying regines fomaras vs. wint
light disllate vs beavy st e ) The obvious nesied oop
algoitn_ requies 152850692560 Fucliden  disanes

s, If we assume cach one takes 0.0001 seconds
it o will ke 1598 degs- The core conribtion of tis

v that we can reduce sing
o lhe~bel o ot Moscove vt o s
join can be computed ted incrementally. Thus we
could maintain this join essentially forever on a standard

This i the author’s version of an article published in Data Mining and
authenticated version is available online at: https: //doi . org/10.1007/s
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Time Series Shapelets: A New Primitive for Data Mining
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ABSTRACT
time series bas been

the past decade. Recent empirical vidence has strongly suggesicd

yond mere classfication accuracy. we offen wish 10 gai some
e e

new tme series primitive. fme series
Shapetos whichaddeescsthse tasons Tformally. shapelcs
are time seres subsequences which are in some sease. ty

eptesentative of a class. As we shall shot

empirial evaluations in diverse domains, algorithans based on the
E primitives can be interpretable, more accurate

Deep learning for time series classificatiol

Hassan Ismail Fawaz! - Germain Forestier'? - Jonathan W
Lhassane Idoumghar! - Pierre-Alain Muller!

Abstract Time Series Classification (TSC) is an important and challe
With the increase of time series data a hundreds of TSC a
Among these methods, only a few have considered Deep Neural Net
task. This is surprising as deep learning has seen very successful applic
have indeed fevolutionized the field of computer vision especially w:
architectures such as Residual and Convolutional Neural Networks.

data such as text and audio can also be processed with DNNs to reac
for document classification and specch recognition. In this article,

the-art performance of decp learning algorithms for TSC by present
most recent DNN architectures for | e give an overview of the
applications in various time series domains under a unified taxonon
provide an open source deep learning framework to the TSC communi
of the compared approaches and evaluated them on a univariate TS
archive) and 12 multivariate time series datasets. By training 8,73
time series datasets, we propose the most exhaustive study of DN

Keywords Deep learning - Time series - Classification - Review
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1. INTRODUCTION

While the last decade has seen 4 huge terest i time series

clasifcaton. to date the most accurate and robust method is the

nerghbor algortm has the advaniages of simplicity smd mot

requiring extensive parameter funing. it does have several

Chief amone

requremens, i e fct st dos st el i sboms

1 8 particularobject was assgaed t a paricular
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mining. plication of themn i i
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During the last two decades, Time Series Classification (TSC) has been considered as one of the
06;

most challenging problems in data mining (Yang and Wu, 2006; Esling and
increase of temporal data availability (Silva et al. 2018), hundreds of TS
proposed since 2015 (Bagnall et al., 2017). Due to their natural temporal o
are present in almost ever,

some notion of ordering, can be cast as a TSC problem (Cristian Borges Ca

are encountered in many real-world
et al., 2018) and human activity recognition (Nweke et al., 20

classification (Nwe et al. and cyber-security (Susto et a
the datasets’ types in the UCR/UEA archive (Chen et al., 2015b; Bagnall

Wang et al

task that requires some sort of human cogniti
et al., 2014). In fact, any classification problem, using data that is registered taking
.

d Agon, 2012). With the
C algorithms have been
rdering, time series data
process (Lingkvist

to account
mboa, 2017). Time series

pplications ranging from electronic health records (Rajkomar

2018) to acoustic scene

15). In addition, the diversity of

et al., 2017) (the largest

repository of time series datasets) shows the different applications of the TSC problem.
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Because we are defning and solving a new problem, we will ke
some time to consider 8 derailed motivting example. Figure 1
e examples of leaves fom two classcs, Urtica dioica
(sunging netls) and Verbena uricifolia. These two plants e
commonly confuscd. hence the colloquial name “fals et for

( )

£ Leaves rom o speces. Note that seversl
et e the et e

Urtica dioica

in the global shape src very subile. Furthermore, it is very
common for leaves to have distorions or “occhsions” due 1o
. likely to confuse aay global

measutes of shape. lnstead we attempt the following. We fst
convert cach leaf nto 8 one-dimensional representation a5 shown

m -

Virbena il
’,w»wwv\../‘ [AVNEwY

A shape can be comveted inlo 2 one dinensional “tme
representation. The resson for the highlightd section of he
e eres will b e appavent

seprescntations have been successfully used for the
Ciicanon g and ot deceson ofsopes i ecenn

i

to be due to the fict e
e and il st Jenih). a0 T mo 1+ 0gh 1o
swamp the subtle differences in the shapes



