ALTERNATIVE METHODS
FOR CLUSTERING




S
K-Means Algorithm

: Select K points as the initial centroids.
: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




e
Termination conditions

- Several possibilities, e.g.,
- A fixed number of iterations
- Objects partition unchanged
- Centroid positions don’t change
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Convergence of K-Means

- Define goodness measure of cluster c as sum of
squared distances from cluster centroid:
* SSE_(c,s) =2, (d. —s_)? (sum over all d. in cluster c)
- G(C,s) =2, SSE(c,s)
- Re-assighnment monotonically decreases G

- It is a coordinate descent algorithm (opt one component at a
time)

- At any step we have some value for G(C,s)
1) Fix s, optimize C = assign d to the closest centroid = G(C’,s) < G(C,s)
2) Fix C’, optimize s = take the new centroids = G(C',s’ ) < G(C’,s) < G(C,s)

The new cost is smaller than the original one = local minimum



Time Complexity: Assign points to clusters

Question

Assuming the computation of a similarity is linear in the
number of attributes |A|, what is the complexity of
assigning points to clusters?

Answer
P = the set of points

A = the set of attributes of each point
K = the number of clusters

O(k x [P x |A])




Time Complexity: Update centroids

Question
- What is the complexity of updating centroids?

Answer
P = the set of points

A = the set of attributes of each point
K = the number of clusters

O(IP[ > |A[)




Overall Time Complexity

Question

What is the complexity of k-means if t iterations are
necessary to converge?

Answer

P = the set of points

A = the set of attributes of each point
K = the number of clusters

O(t x k x|P[ x |A[)




MIXTURE MODELS AND
THE EM ALGORITHM




Model-based clustering (probabilistic)

- In order to understand our data, we will assume that there
IS a generative process (a model) that creates/describes
the data, and we will try to find the model that best fits
the data.

- Models of different complexity can be defined, but we will assume
that our model is a distribution from which data points are sampled

- Example: the data is the height of all people in Greece

- In most cases, a single distribution is not good enough to
describe all data points: different parts of the data
follow a different distribution

- Example: the data is the height of all people in Greece and China

- We need a mixture model
- Different distributions correspond to different clusters in the data.



Algorithm 9.2 EM algorithm.

1: Select an initial set of model parameters.

(As with K-means, this can be done randomly or in a variety of ways.)

repeat

Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;,0).

4.  Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

: until The parameters do not change.

(Alternatively, stop if the change in the parameters is below a specified
threshold.)

ot




EM (Expectation Maximization) Algorithm

- Initialize the values of the parameters in ® to some
random values

- Repeat until convergence
- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)
- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

E-Step: Assignment of points to clusters
K-means: hard assignment, EM: soft assignment

M-Step: K-means: Computation of centroids EM: Computation of the new model
parameters



D
Gaussian Distribution

- Example: the data is the height of all people in
Greece

- Experience has shown that this data follows a Gaussian
(Normal) distribution

- Reminder: Normal distribution:

1 _(x-w?
P(x) = mae 202

- 4 = mean, o = standard deviation



Gaussian Model

- What is a model?

- A Gaussian distribution is fully defined by the mean «#and the
standard deviation o

- We define our model as the pair of parameters 4= (4, o)

- This is a general principle: a model is defined as a vector
of parameters &



B
Fitting the model

- We want to find the normal distribution that best fits our
data
- Find the best values for #zand o
- But what does best fit mean?



L
Maximum Likelihood Estimation (MLE)

- Suppose that we have a vector X = (x4, ..., x,,) of values
- And we want to fit a Gaussian N (u, o) model to the data

- Probability of observing point x;:

1 _(xi—w)?
P(xi) = \/EO- 202

- Probability of observing all points (assume independence)

P(X) = l_lP(xl) = 1_[ 21w (xz;‘;)

- We want to find the parameters 6 = (u, o) that maximize
the probability P(X|6)
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Maximum Likelihood Estimation (MLE)

- The probability P(X|0) as a function of 8 is called the
Likelihood function

L6) 11[ 1 _Gew?
frs O’
11 \/Zna

- It is usually easier to work with the Log-Likelihood
function

2
1
LL(B)——Z(x — W ——nlog21t nlogo

- Maximum Likelihood Estimation
- Find parameters p, o that maximize LL(6@)

n

n
1
p= X; = px 0% = ;X(xi—u)z = 0%

"~ sampleMean ‘Sample Variance:
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MLE

- Note: these are also the most likely parameters
given the data

P(X|6)P(6)

P(6|X) = PCX)

- If we have no prior information about @, or X, then
maximizing P(X|6) is the same as maximizing
P(O|X)
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(a) Histogram of 200 points from a (b) Log likelihood plot of the 200 points for
Gaussian distribution. different values of the mean and standard
deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

- Suppose that you have the heights of people from Greece
and China and the distribution looks like the figure below
(dramatization)
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

- In this case the data is the result of the mixture of two
Gaussians
- One for Greek people, and one for Chinese people

- ldentifying for each value which Gaussian is most likely to have
generated it will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.
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Mixture Model

- Avalue x; is generated according to the following
process:

- First select the nationality

- With probability m; select Greek, with probability =, select China
(tg +mc = 1)

- Given the nationality, generate the point from the
corresponding Gaussian
« P(x;165) ~ N(ug, o) if Greece
« P(x;|6c) ~ N(uc,o.) if China



Mixture Models

- Our model has the following parameters

0 = (6, e, kg» Me» T, )
Mixture probabiliies  Distribution Parameters

- For value x;, we have:
P(x;|®) = mgP(x;|0¢) + mcP(x;|6¢)
- For all values X = (xq,...,x5)

Pixio) = | [Pxile)
i=1

- We want to estimate the parameters that maximize
the Likelihood of the data



Mixture Models

- Once we have the parameters
® = (m¢, e, Ug, e, O, Oc) We can estimate the
membership probabilities P(G|x;) and P(C|x;) for
each point x;:
- This is the probability that point x; belongs to the Greek
or the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

~ P(x;|G)mg + P(x;|C)me

P(Glx;) =




EM (Expectation Maximization) Algorithm

- Initialize the values of the parameters in ® to some
random values

- Repeat until convergence

- E-Step: Given the parameters © estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

1 1 n
=1 i=
n n
N\ P(Clxy) P(Glxi)
He = n* Xi U = Z Xi
n n
P(Clx;) P(Glx;)
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Bisecting K-means



Finding the best number of clusters

*In k-means the number of clusters K is given

- Partition n objects into predetermined number of
clusters

- Finding the “right” number of clusters is part of
the problem



S
Bisecting K-means

Variant of K-means that can produce
a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat

3:  Select a cluster from the list of clusters

4: for i =1 to number_of _iterations do

5 Bisect the selected cluster using basic K-means

6: end for

7:  Add the two clusters from the bisection with the lowest SSE to the list of clusters.
8: until Until the list of clusters contains K clusters
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Bisecting K-Means

- The algorithm is exhaustive terminating at singleton clusters
(unless K is known)

- Terminating at singleton clusters
- |Is time consuming
- Singleton clusters are meaningless

- Intermediate clusters are more likely to correspond to real
classes

- No criterion for stopping bisections before singleton clusters
are reached.



Bayesian Information Criterion (BIC)

- A strategy to stop the Bisecting algorithm when meaningful
clusters are reached to avoid over-splitting

- Using BIC as splitting criterion of a cluster in order to decide
whether a cluster should split or no

- BIC measures the improvement of the cluster structure
between a cluster and its two children clusters.

- Compute the BIC score of:
- A cluster
- Two children clusters

- BIC approximates the probability that the M, is describing the
real clusters in the data



L
BIC based split

——— Parent cluster:

/ \ BIC(K=1)=1980
\
__, Two resulting
Clusters:
BIC(K=2)=2245

The BIC score of the parent cluster is less than BIC score
of the generated cluster structure => we accept the
bisection.



e
X-Means

- Forward search for the appropriate value of k in a given
range [r1’rmax]:

- Recursively split each cluster and use BIC score to decide if we
should keep each split

1. Run K-means with k=r,
2. Improve structure
3. Ifk>r,, Stop and return the best-scoring model

- Use local BIC score to decide on keeping a split

- Use global BIC score to decide which K to output
at the end



X-Means

1. K-means with k=3

2. Split each centroid in 2
children moved a distance
propotional to the region size in
opposite direction (random)

3. Run 2-means in

each region locally 4. Compare BIC of 4. Only centroids with
parent and children higher BIC survives
.. BIC(k=1)=2471 I
._.‘-“".‘: BIC%L: = 2)=3088 '.""'_-:'
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BIC Formula

The BIC score of a data collection is defined as (Kass and
Wasserman, 1995):

n P
BIC(M .)=l.(D)—_flogR
JoJ 2

l}(D)is the log-likelihood of the data set D

P, is a function of the number of independent parameters:
céntroids coordinates, variance estimation.

R is the number of points of a cluster

Approximate the probability that the M, is describing the real
clusters in the data



BIC (Bayesian Information Criterion)

e Adjusted Log-likelihood of the model.

e The likelihood that the data is “explained by” the

clusters according to the spherical-Gaussian
assumption of k-means

A P
BIC(M ')=I_(D)—_JlogR
J

2
Focusing on the set D,, of points which belong to centroid n
~ Ry Ry, M . n— K
i(Da) =~ log(2m) -~ log(6?) — ~" =

+R,log R, — R, log R

It estimates how closely to the centroid are the points of the
cluster.



