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Regression

* Given a dataset containing N observations X, Y;i=1,2, .., N

* Regression is the task of learning a target function f that maps each
input attribute set X into an output Y.

* The goal is to find the target function that can fit the input data with
minimum error.

* The error function can be expressed as
* Absolute Error = ).; |y; — f(x;)]

* Squared Error =Y (y; — f(x))?

\

residuals



Linear Regression

* Linear regression is a linear approach to
modeling the relationship between a
dependent variable Y and one or more
independent (explanatory) variables X.

* The case of one explanatory variable is
called simple linear regression.

* For more than one explanatory variable,
the process is called multiple linear
regression.

* For multiple correlated dependent
variables, the process is called
multivariate linear regression.




What does it mean to predict Y?

We had some data...

Size




What does it mean to predict Y?

Then we fit a line
toit...
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What does it mean to predict Y?

If a new mouse

= " has this weight...
Size

3) Use the line to predict size given weight.




What does it mean to predict Y?

Size

3) Use the line to predict size given weight.




What does it mean to predict Y?

...then this is the
size that we .

-1~ predict from the

weight. ‘
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3) Use the line to predict size given weight.




What does it mean to predict Y?

* Look at X =5. There are many different Y values at X=5.
* When we say predict Y at X =5, we are really asking:
* What is the expected value (average) of Yat X =57
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What does it mean to predict Y?

* Formally, the regression function is given by E(Y|X=x). This is the
expected value of Y at X=x.

* The ideal or optimal predictor of Y based on Xis thus
e f(X) = E(Y | X=x)




Fitting a Line Example
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Measuring Line Error
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The distance between r'_'—l__,,
the line and the 1* : ®

data point = b -y,
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Measuring Line Error
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So far, the total distance between the data points
and the line is the sum of the two distances.

r

The distance between
the line and the
2" data point= b-y,< |

X» Y,




(b-y,)+(b-y,)
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(b-y,)+(b-y, Now we've add the 3" distance to our total sum.
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(b-y,)+(b-y,)+(b~-y,)
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(b-y)+(b-y,)+(b-y,)+(b-y,

& 3 Xs, Vs




(b =y, + (b =y, +(b =y + (b =y,)* (b =ye) + (b =ye) + (b =y,)* + (b -yg) + (b -y,)
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(b =y )2+ (b =y, +(b =y + (b =y, )* + (b =ye) + (b =yg)* + (b =y,)* + (b -yg) + (b -]
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b=y, +(b=y,2+(b=-y,2+(b-y 2 +(b-y)?+(b-y+(b-y,)+(b-yg) +(b-y,)

= 0
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? This is our measure of

i i how well this line fits the
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l It's called the “sum of

E squared residuals,

| because the residuals are
s 0 the differences between
the real data and the line,
' ' | | | | and we are summing the
square of these values.




Now let’s see how good the fit is if we rotate the line a little bit.




The sum of squared
residuals = 18.72

This is better than before.
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Does this fit improve if we rotate a little more?




Generic Line Equation

The generic line equation
1S:

y=a*x+b




Generic Line Equation Line Equation

The generic line equation
1S:

—— y= a*x+b
| The slope the intercept
-+




Generic Line Equation

= 0

The generic line equation
IS

. y=a"x+b
The slope. the intercept

We want to find the
et ep—t——{  Optimal values for “a” and
“b" so that we minimize
the sum of squared
residuals.




Least Square

Sum of squared residuals @ ((@*x, + b) =y,)* + ...
"

7

T | This is the value
of the line at x,.

This is the
observed value
at x,.

R — "




Least Square

Sum of squared residuals = ((a*x, + b) = y,)* + ((a*x, + b) = y,)* + ...

Since we want the line that will give us the smallest sum of
squares, this method for finding the best values for “a” and
“b” is called “Least Squares”.




Sum of Squares Residuals

Sum of
squared
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Finding Best Rotation

We take the derivative of this function.
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Finding Best Rotation

We take the derivative of this function.

—

Sumof <+ @
squared ¢
residuals —+ - v

The derivative tells us the slope
of the function at every point.
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Finding Best Rotation

Sum of
squared
residuals
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Finding Best Rotation

Sum of
squared
residuals

—
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The slope at the
best point (the

“least squares”) is

2ero.
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Finding Best Rotation

Sum of
squared
residuals

The slope at the
best point (the
“least squares”) is
2ero.

Remember, the different
rotations are just different
0 values for “a” (the slope) and

“b” (the intercept).

Fit= ((a*x, + b) = y,)? + ((a*x, + b) = y,)* +

| | | | | |




It works also for multiple params

Taking the derivatives of both
\ the slope and the intercepts tells
\ us where the optimal values are
for the best fit.

Sum of ~-
squared

residuals -+ |
o’ . intercept




Simple Linear Regression

Dependent Independent

Variable Variable
Linear Model: Y = mX + b Y = B, X+ B,
Slope Intercept (bias)

* In general, such a relationship may not hold exactly for the largely
unobserved population

 We call the unobserved deviations from Y the errors.

* The goal is to find estimated values m'and b’ for the parameters m
and b which would provide the "best" fit for the data points.



Least Square Method (LSM)

* A standard approach for doing this is to apBIy the method of least squares
which attempts to find the parameters m, b that minimizes the sum of
squared error.

* SSE=%;(y; — f(x))? =X;(yi — mx; — b)?
* also known as the residual sum of squares.

* The LSM finds m, b by setting to zero the first partial derivative of the
above function w.r.t. m and b which are therefore calculated as follows:

*m=(nj(xy)-3x3y)/(n>(x?)—(>x)*)
*b=0Qy-mjx)/n

e An alternative to find m, b, typically adopted in case of multivariate
regression is the Gradient Descent method (see next lectures)



m = (n 3(xy) - >x 3y)/ (n 3(x?) — (>x)? )
b=(y-m3x)/n

LSM - Example

"x“ "y"
Hours of Ice Creams
Sunshine Sold
2 4

3 5

5 7

7 10

9 15

Let us find the best m (slope) and b (y-intercept) that suits that data
y=mx+b



LSM - Example

X y
2 4
3 5
5 7
7 10
9 15

Step 1: Calculate x? and xy

49

81

o0

LS
35
70

135

m = (n 3(xy) - 3x 3y) / (n 5(x?) = (3x)? )
b=(3y-mpx)/n




LSM - Example

X y
2 4
3 5
5 7
7 10
9 15
Ix: 26 Iy: 41

Step 2: Sum all the columns

25
49

81

>x?: 168

o0

L
35
70
135

IXy: 263

m = (n 3(xy) - >x 3y)/ (n 3(x?) — (>x)? )
b=(y-m3x)/n




m = (n 3(xy) - 3x 3y) / (n 5(x?) = (3x)? )
b=(3y-mpx)/n

LSM - Example

_ N Z(xy) — ZX 2y

X - m
./ = - N 3(x2) — (5x)2
2 4 4 8
_ 5x263-26x41
3 5 9 15 5x 168 — 262
5 7 25 35 _ 1315 - 1066
840 — 676
7 10 49 70
- .249 -
9 15 81 135 S 1,5183...
ZXx: 26 Zy: 41 :x?: 168 Ixy: 263

_ 2y — m 2X
i N

41 — 1,5183 x 26
5

Step 3: Calcualte the slope and the intercept with N=5
= 0,3049...



LSM - Example

X Yy vy=1,518x + 0,305
2 4 3,34
3 > 4,86
5 7 7,89
7 10 10,93
9 15 13,97

Step 4: test y=1,518x + 0,305

If x = 8 then we expect to sell 12,45 ice creams

error
-0,66
-0,14
0,89
0,93

=103

15

10

m = (n 3(xy) - >x 3y)/ (n 3(x?) — (>x)? )
b=(y-m3x)/n




Alternative Fitting Methods

* Linear regressions fitted using gradient descent can benefit from some
regularizations.

 However, they can be fitted in other ways, such as by minimizing a
penalized version of the least squares cost function as in ridge regression
(L2-norm penalty) and lasso (L1-norm penalty).

* Tikhonov regularization, also known as ridge regression, is a method of
regularization of ill-posed problems particularly useful to mitigate the
multicollinearity, which commonly occurs in models with large numbers of
parameters.

* Lasso (least absolute shrinkage and selection operator) performs both
variable selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces.

Multicollinearity: is a phenomenon in which one predictor variable in a multiple regression model can be linearly
predicted from the others with a substantial degree of accuracy. In this situation, the coefficient estimates of the
multiple regression may change erratically in response to small changes in the model or the data.



Linear Regression Models Objective Functions

* Simple o+ Bix —y
* Multiple Bo + 2i(vi — Bix;)?
e Ridge Bo+ 2:(yi — ,Bixi)z + /12]- :sz
regularization
P

* Lasso fo + Zi(yi — ,Bixi)z + /12]- |:Bj



Evaluating Regression

* Coefficient of determination R?

* is the proportion of the variance in the dependent variable that is predictable
from the independent variable(s)

) Z?—l(y'i _37:')2 hat mea_n\s;zpredicted ] .
R2(y, el E‘n (y y)2 y= % Sayiand Y i (4 —9,) = &
i=1\J1

* Mean Squared/Absolute Error MSE/MAE

* a risk metric corresponding to the expected value of the squared
(quadratic)/absolute error or loss

1 n’-""mi’]“?‘_l 2 L X[ch:-_l
SE(y’ g) N Msamples i—0) (y? yz) NIAE(y, g) = n 1 E |yi _gil
‘ - samples i—0



Example

* Height (m): 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83
* Mass (kg): 52.21, 56.12, 54.48, 55.84, 53.20, 58.57, 59.93, 63.29, 63.11, 61.47, 66.28, 69.10, 67.92, 72.19, 74.46

* Intercept: -35.30454824113264 .
e Coefficient: 58.87472632 .
« R2: 0.93
e MSE: 3.40 "o
* MAE: 1.43 55 -

145 150 155 160 165 170 175 180 185
Height



Linear Regression Recap

* Linear regression is used to fit a
linear model to data where the
dependent variable is continuous. Y = ,BlX + ,BO

* Given a set of points (X,Y,), we
wish to find a linear function (or
line in 2 dimensions) that “goes
through” these points.

25

* |[n general, the points are not
exactly aligned.

* The objective is to find the line
that best fits the points.

0 50 100 150 200 250 300



References

* Regression. Appendix D. Introduction to
Data Mining.

introduction to b“ & . '

DATA MINING




