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Support Vector Machine (SVM)

• SVM represents the decision boundary 
using a subset of the training examples, 
known as the support vectors.

• We illustrate the basic idea behind SVM 
by introducing the concept of maximal 
margin hyperplane and explain the 
rationale of choosing such a hyperplane.



Maximum Margin Hyperplanes

• Find a linear hyperplane (decision 
boundary) that separates the data.



Maximum Margin Hyperplanes

• One possible solu7on.
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Maximum Margin Hyperplanes

• Another possible solution.
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Maximum Margin Hyperplanes

• Other possible solu7ons.
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Maximum Margin Hyperplanes

• Let’s focus on B1 and B2.
• Which one is better?
• How do you define better?
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Maximum Margin Hyperplanes

• The best solution is the hyperplane 
that maximizes the margin.
• Thus, B1 is better than B2.
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Linear SVM: Separable Case

• A linear SVM is a classifier that searches 
for a hyperplane with the largest margin 
(a.k.a. maximal margin classifier).

• w and b are parameters.

• Given w and b the classifiers work as
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Example calculus dot product
w = [.3  .2]   x = [1 2]   b = -2
w ! x + b = .3*1 + .2*2 +(-2) = -1.3



Learning a Linear SVM

• Learning the model is equivalent to 
determining w and b.
• How to find w and b?
• Objective is to maximize the margin. 
• Which is equivalent to minimize
• Subject to to the following constraints
• This is a constrained optimization 

problem that can be solved using the 
Lagrange multiplier method.
• Introduce Lagrange multiplier 𝜆
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Example of Linear SVM

x1 x2 y l
0.3858 0.4687 1 65.5261
0.4871 0.611 -1 65.5261
0.9218 0.4103 -1 0
0.7382 0.8936 -1 0
0.1763 0.0579 1 0
0.4057 0.3529 1 0
0.9355 0.8132 -1 0
0.2146 0.0099 1 0

Support vectors



Linear SVM: Nonseparable Case 

• What if the problem is not 
linearly separable?



Slack Variables

• The inequality constraints must be 
relaxed to accommodate the 
nonlinearly separable data.
• This is done introducing slack 

variables 𝜉 into the constrains of the 
optimization problem.
• 𝜉 provides an estimate of the error of 

the decision boundary on the 
misclassified training examples.
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Learning a Nonseparable Linear SVM

• Objective is to minimize
• Subject to to the constraints
• where C and k are user-specified 

parameters representing the 
penalty of misclassifying the 
training instances
• Lagrangian multipliers are 

constrained to 0 ≤ 𝜆 ≤ 𝐶.
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https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html#sphx-glr-auto-examples-svm-plot-linearsvc-support-vectors-py

https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html


Nonlinear SVM

• What if the decision boundary is not 
linear?



Nonlinear SVM

• The trick is to transform the data 
from its original space 𝑥 into a new 
space Φ(𝑥) so that a linear decision 
boundary can be used.

• Decision boundary 0)( =+F• bxw !!



Learning a Nonlinear SVM

• Optimization problem

• Which leads to the same set of equations but involve Φ(𝑥)
instead of 𝑥.

Issues:
• What type of mapping function Φ should be used?
• How to do the computation in high dimensional space?

• Most computations involve dot product Φ(𝑥) ( Φ(𝑥)
• Curse of dimensionality?



Kernel Trick

• Φ 𝑥 & Φ 𝑥 = 𝐾(𝑥) , 𝑥*)
• 𝐾(𝑥) , 𝑥*) is a kernel function 

(expressed in terms of the 
coordinates in the original space)
• Examples:

h"ps://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py
h"ps://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html#sphx-glr-auto-examples-exercises-plot-iris-exercise-py

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html


Kernel Trick

Advantages of using kernel:
• Don’t have to know the mapping function Φ.
• Computing dot product Φ(𝑥) ) Φ(𝑦) in the 

original space avoids curse of dimensionality.
Not all functions can be kernels
• Must make sure there is a corresponding Φ in 

some high-dimensional space.
• Mercer’s theorem (see textbook) that ensures 

that the kernel functions can always be 
expressed as the dot product in some high 
dimensional space.



CharacterisCcs of SVM

• Since the learning problem is formulated as a convex optimization 
problem, efficient algorithms are available to find the global minima 
of the objective function (many of the other methods use greedy 
approaches and find locally optimal solutions).
• Overfitting is addressed by maximizing the margin of the decision 

boundary, but the user still needs to provide the type of kernel 
function and cost function.
• Difficult to handle missing values.
• Robust to noise.
• High computational complexity for building the model.
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