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Support Vector Machine (SVM)

* SVM represents the decision boundary
using a subset of the training examples,
known as the support vectors.

SVC with linear kernel LinearSVC (linear kernel)
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* We illustrate the basic idea behind SVM SUCWIROFkemel - SVC with polnomial degree 3 kernel
by introducing the concept of maximal : |
margin hyperplane and explain the
rationale of choosing such a hyperplane.
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Maximum Margin Hyperplanes

* Find a linear hyperplane (decision
boundary) that separates the data.




Maximum Margin Hyperplanes

* One possible solution.
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Maximum Margin Hyperplanes

* Another possible solution.
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Maximum Margin Hyperplanes

* Other possible solutions. 5
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Maximum Margin Hyperplanes

B,

* Let’s focus on B; and B,.
* Which one is better?
* How do you define better?
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Maximum Margin Hyperplanes

* The best solution is the hyperplane O
that maximizes the margin. .0 ®
* Thus, B, is better than B,. | " ?
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Linear SVM: Separable Case Wei+b=+tl
B, i /
* Alinear SVM is a classifier that searches O
for a hyperplane with the largest margin O O
(a.k.a. maximal margin classifier). / - O
decision boundarV ©
* wand b are parameters. wex+b=0 / Ao
/ ] o
wex+b=-1 -
- |
O
* Given w and b the classifiers work as u |
(F) 1 if weX+b>1 O
X )=
1 ifweX+b<—1 - -
Example calculus dot product . 2 1z
w=[3.2] x=[12] b=-2 Margm:m

Wex+b=.3%1+.2%2 +(-2) = -1.3
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Learning a Linear SVM

* Learning the model is equivalent to
determining w and b.

e How to find wand b?

* Objective is to maximize the margin.

* Which is equivalent to minimize

* Subject to to the following constraints

* This is a constrained optimization
problem that can be solved using the
Lagrange multiplier method.

* Introduce Lagrange multiplier A



Example of Linear SVM
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Support vectors
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: o 0.3858|  0.4687 1]/765.526

0 03 o4 08 03 | 04871 0611 1[\_65.5261

1 0.9218| 0.4103 A 0

0.7382|  0.8936 A 0

0.1763|  0.0579 1 0

0.4057|  0.3529 1 0

0.9355| 0.8132 A 0

0.2146|  0.0099 1 0




Linear SVM: Nonseparable Case

* What if the problem is not

linearly separable?




Slack Variables

* The inequality constraints must be

relaxed to accommodate the
nonlinearly separable data.

* This is done introducing slack
variables ¢ into the constrains of the

optimization problem.

* ¢ provides an estimate of the error of

the decision boundary on the
misclassified training examples.
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Learning a Nonseparable Linear SVM

. . . . e — N
. w
Objective is to minimize L(w) = || n C(Zé:ikj
e Subject to to the constraints -
* where C and k are user-specified P
1 if wex. +b {9
Vi = {

parameters representing the R
penalty of misclassifying the —1 ifwex;+b S

training instances

* Lagrangian multipliers are
constrainedto 0 <A <C.

https://scikit-learn.org/stable/auto examples/svm/plot linearsvc support vectors.html#sphx-glr-auto-examples-svm-plot-linearsvc-support-vectors-py



https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html

Nonlinear SVM

* What if the decision boundary is not

linear?

if /(21 —0.5)?+ (29 —0.5)% > 0.2
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Nonlinear SVM

* The trick is to transform the data
from its original space x into a new
space ®(x) so that a linear decision
boundary can be used.

2 2 -
r] —r1 + x5 — 2 = —0.46.

. \ ;92 92 /= f~ .
O:(ry.29) — (27. 25, V221, V220, 1).

2 2 — = i
wyr] + wars + wov2ry + wiV2r9 + wo = 0.

* Decision boundary we®d(x¥)+b=0
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Learning a Nonlinear SVM

)

* Optimization problem min =
subject to yilw- ®(x)+b) =1, (z.u)}

* Which leads to the same set of equations but involve ®(x)
instead of x.

n
flz) =signiw - ®(z) + b) = signl E AiyiP(x;) - ®(z) + b).
1=1

Issues:
* What type of mapping function ® should be used?

* How to do the computation in high dimensional space?

* Most computations involve dot product ®(x) - ®(x)
e Curse of dimensionality?



Kernel Trick

* ®(x) - P(x) = K(x;x)

* K(x;, x;) is a kernel function 1
(expressed in terms of the -
coordinates in the original space) .

* Examples: -

, A. : s
K(x,y)=(x-y+1)" 04
(x.y) = e~ Ix=¥112/(20?)
K(x.y) =e F7IHA=00 N
Ki(x.y) =tanh(kx -y — d) 0.1

https://scikit-learn.org/stable/auto examples/svm/plot svm kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py
https://scikit-learn.org/stable/auto examples/exercises/plot iris exercise.html#sphx-glr-auto-examples-exercises-plot-iris-exercise-py



https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html

Kernel Trick

Advantages of using kernel:
* Don’t have to know the mapping function .

* Computing dot product ®(x) - ®(y) in the
original space avoids curse of dimensionality.

Not all functions can be kernels

* Must make sure there is a corresponding @ in
some high-dimensional space.

* Mercer’s theorem (see textbook) that ensures
that the kernel functions can always be
expressed as the dot product in some high
dimensional space.



Characteristics of SVM

* Since the learning problem is formulated as a convex optimization
problem, efficient algorithms are available to find the global minima
of the objective function (many of the other methods use greedy
approaches and find locally optimal solutions).

* OQverfitting is addressed by maximizing the margin of the decision
boundary, but the user still needs to provide the type of kernel
function and cost function.

* Difficult to handle missing values.
* Robust to noise.
* High computational complexity for building the model.
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