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K-Means



K-Means Clustering

Partitional clustering approach

. Number of clusters, K, must be specified

 Each cluster is associated with a centroid (center point)
 Each point is assigned to the cluster with the closest centroid
*  The basic algorithm is very simple

: Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.
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until The centroids don’t change




Example of K-Means Clustering
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Example of K-Means Clustering
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K-Means Clustering — Details

Initial centroids are often chosen randomly.
. Clusters produced vary from one run to another.

« The centroid is (typically) the mean of the points in the cluster.

. ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
« K-means will converge for common similarity measures mentioned above.

*  Most of the convergence happens in the first few iterations.

. Often the stopping condition is changed to ‘Until relatively few points change clusters’
e ComplexityisO(n*K*I1*d)
. n = number of points, K = number of clusters,

| = number of iterations, d = number of attributes



Evaluating K-Means Clusters

* Most common measure is Sum of Squared Error (SSE) : A
* For each point, the error is the distance to the nearest cluster

* To get SSE, we square these errors and sum them. 0 o s
K -
SSE =Y dist*(m;,x)
i=1 xeC;

X is a data point in cluster C; and m; is the representative point for cluster Ci
can show that mi corresponds to the center (mean) of the cluster

- Given two sets of clusters, we prefer the one with the smallest error
One easy way to reduce SSE is to increase K, the number of clusters

- A good clustering with smaller K can have a lower SSE than a poor clustering
with higher K



Two different K-Means Clusterings
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Limitations of K-Means

* K-Means has problems when clusters are of differing
* Sizes
* Densities
* Non-globular shapes

* K-Means has problems when the data contains outliers.



Limitations of K-Means: Differing Sizes

Original Points K-means (3 Clusters)



Overcoming K-Means Limitations

i O%QEJJD—‘T:E g; ‘ ) C()é) © "
1 F = 0 I : o
fo
2t - OOO
3 il
4 3 2 1 0 1 2 3 4‘1 4 3 2 1 0 1 2 3 4
X X
Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Limitations of K-Means: Differing Density

Original Points K-means (3 Clusters)



Overcoming K-Means Limitations

Original Points K-means Clusters



Limitations of K-Means: Non-globular Shapes
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Original Points K-means (2 Clusters)



Overcoming K-Means Limitations

Original Points K-means Clusters



Pre-processing and Post-processing

* Pre-processing
e Normalize the data
* Eliminate outliers

* Post-processing

Eliminate small clusters that may represent outliers

Split ‘loose’ clusters, i.e., clusters with relatively high SSE
Merge clusters that are ‘close’ and that have relatively low SSE

Can use these steps during the clustering process
 |ISODATA



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.



10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.



Solutions to Initial Centroids Problem

* Multiple runs
* Helps, but probability is not on your side

 Sample and use hierarchical clustering to determine initial centroids

* Select more than k initial centroids and then select among these initial centroids
* Select most widely separated

* Postprocessing
e Generate a larger number of clusters and then perform a hierarchical clustering

* Bisecting K-means
* Not as susceptible to initialization issues



K-Means Extensions

Bisecting K-Means



Bisecting K-means

 Variant of K-Means that can produce a hierarchical clustering
* The number of clusters K must be specified.
 Start with a unique cluster containing all the points.

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3:  Select the cluster with the highest SSE to the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic 2-Means
end for

Add the two clusters from the bisection to the list of clusters.

until Until the list of clusters contains K clusters




Bisecting K-means Limitations

* The algorithm can be also exhaustive and terminating at a singleton
clusters if K is not specified.

* Terminating at singleton clusters
* |s time consuming
 Singleton clusters are meaningless (i.e., over-splitting)
* Intermediate clusters are more likely to correspond to real classes

* Bisecting K-Means do not use any criterion for stopping bisections
before singleton clusters are reached.



