
DATA MINING 2
Imbalanced Learning
Riccardo Guidotti

a.a. 2020/2021

Imbalanced Classes

• Most classification methods assume classes are reasonably balanced.

50.0%

50.0%

Imbalanced Classes

• In reality it is quite common to have a very popular class and a rare
(yet interesting) class.

99.997%

0.003% This occurs when
there is a large
discrepancy between
the number of
examples with each
class label.

E.g. for 1M example
dataset only about 30
represent an event.

Examples

• About 2% of credit card accounts are defrauded per year1. (Most
fraud detection domains are heavily imbalanced.)
• Medical screening for a condition is usually performed on a large

population of people without the condition, to detect a small
minority with it (e.g., HIV prevalence in the USA is ~0.4%).
• Disk drive failures are approximately ~1% per year.
• Factory production defect rates typically run about 0.1%.

What happens on classification?

• A classifier that always predict the most common class has an
accuracy of 99.997%.

99.997%

0.003%

Evaluating Classifiers on Imbalanced Data

• When classes are slightly imbalanced, no balancing is need.
• Yet, take that into consideration when evaluating performances
• Assume the test set contains 100 records

• Positive cases = 75, Negative cases = 25
• Is a classifier with 70% accuracy good?
• No, the trivial classifier (always positive) reaches 75%

• Positive cases = 50, Negative cases = 50
• Is a classifier with 70% accuracy good?
• At least much better than the trivial classifier

Multiclass Problem

• Assume N classes
• If classes are perfectly balanced, a trivial classifier (e.g. majority) will

yield Atrivial ~100/N % accuracy
• N=2 → Atrivial ~ 50%
• N=4 → Atrivial ~ 25%
• Goodness of accuracy of a model should be compared against Atrivial

• E.g., If N=5, an accuracy of 40% would look large

Handling Imbalanced Data

• Balance the training set
• Undersampling the majority class
• Oversampling the minority class

• At the algorithm level
• Adjust the class weight by making the algorithm more sensitive to rare classes
• Adjust the decision threshold
• Design new algorithm to perform well on imbalanced data

• Switch to anomaly detection
• Do nothing and hope to be lucky

Undersampling the Majority Class

• Random Undersampling
• Neighbor-based approaches,

e.g., Condensed Nearest
Neighbor, Tomek Links, etc.

Random Undersampling

• Under-sample the majority class(es) by randomly picking samples
with or without replacement.

Condensed Nearest Neighbor

• Performs a smart undersampling by removing majority points having
as k-NN a minority point.

Condensed Nearest Neighbor

P. Hart, “The condensed nearest neighbor rule,” In
Information Theory, IEEE Transactions on, vol. 14(3),
pp. 515-516, 1968

Condensed Nearest Neighbor

CNN alternatives

• Tomek’s links
• One Sided Selection

Oversampling the Majority Class

• Random Oversampling
• Synthetic Minority Oversampling

Technique (SMOTE)
• Adaptive Synthetic (ADASYN)

sampling approach

Random Oversampling

• Over-sample the minority class(es) by picking samples at random with
replacement.

SMOTE Oversampling

• Over-sample the minority class(es) by adding points through
interporlation.

SMOTE

• It operates in the “feature space” rather than in the “data space”, and
effectively forces the decision region of the minority class to become
more general.
• The minority class is over-sampled by taking each minority class

sample and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbors.
• Depending upon the amount of over-sampling required, neighbors

from the k nearest neighbors are randomly chosen (by default k=5).
• E.g., if the amount of over-sampling needed is 200%, only two

neighbors from the five are chosen and one sample is generated in
the direction of each.

SMOTE – Samples Generation

• Take the difference between the feature vector (sample) under
consideration and its nearest neighbor.
• Multiply this difference by a random number between 0 and 1, and

add it to the feature vector under consideration.
• This causes the selection of a random point along the line segment

between two specific features.

Select only minority
class points

For each point
get k-NNs

Compute
mid-points

Add mid-points
to dataset

SMOTE alternatives

• SMOTENC: Over-sample for continuous and categorical features.
• BorderlineSMOTE: Over-sample using the borderline variant.
• SVMSMOTE: Over-sample using the SVM variant.
• ADASYN: Over-sample using ADASYN.

Adjust the Class Weight

• The classifier can be trained
considering different costs to be
paid for misclassification errors
on minority classes.
• This is generally done using a

“class weight’’.

Adjust the Class Weight

• Each outcome with respect to a confusion matrix can be associated to
a weight in a corresponding weight (or cost) matrix.
• Thus, the objective of the classification algorithm is to find the model

that minimizes the total cost.
• ∑!𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 𝑓𝑟𝑒𝑞(𝑥)

Actual

Predicted

Y N

Y 50 7

N 3 40

Confusion
Matrix

Weight
Matrix

Actual

Predicted

Y N

Y 0 95

N 5 0

Cost = 0.03*5 + 0.07*95

Meta-Cost Sensitive Classifier

• Apply a classifier getting probability of a class label P(j|x)
• Compute expected risk of classifying x with class i:

• Re-label the train data with the class i having lower risk
• Learn a model on the cost-sensitive train data

Adjust the Decision Threshold

• Several classification methods compute scores in terms of probability
of belonging to a class, and then assign class.
• Generally we have:
• Score p > 50% → class = Y
• Otherwise → class = N

• E.g.: decision trees have p = #positive/#negative cases over each leaf

Adjust the Decision Threshold

• What if we generalize the schema into:
• Score p > THR% → class = Y
• Otherwise → class = N

• For each THR (in [0-100]) we get a different set of predictions
• The confusion matrix changes and all indicators derived from it

change
• Accuracy
• True Positive Rate (TPR)
• False Positive Rate (FPR)
• ….

References

• I. Tomek, “Two modifications of CNN,” In Systems, Man, and Cybernetics,
IEEE Transactions on, vol. 6, pp 769-772, 2010.
• N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic

minority over-sampling technique,” Journal of artificial intelligence
research, 321-357, 2002.
• Domingos, Pedro. "Metacost: A general method for making classifiers cost-

sensitive." Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining. 1999.
• P. Hart, “The condensed nearest neighbor rule,” In Information Theory, IEEE

Transactions on, vol. 14(3), pp. 515-516, 1968.
• Python imblearn library: https://imbalanced-

learn.readthedocs.io/en/stable/index.html

https://imbalanced-learn.readthedocs.io/en/stable/index.html

