Instance-based Classifiers

Riccardo Guidotti

a.a. 2021/2022

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining
Instance-based Classifiers

- Instead of performing explicit generalization, compare new instances with instances seen in training, which have been stored in memory.
- Sometimes called *memory-based* learning.

Advantages
- Adapt its model to previously unseen data by storing a new instance or throwing an old instance away.

Disadvantages
- Lazy learner: it does not build a model explicitly.
- Classifying unknown records is relatively expensive: in the worst case, given n training items, the complexity of classifying a single instance is $O(n)$.
Nearest-Neighbor Classifier (K-NN)

Basic idea: If it walks like a duck, quacks like a duck, then it’s probably a duck.

Requires three things

1. **Training set** of stored records
2. **Distance metric** to compute distance between records
3. **The value of k**, the number of nearest neighbors to retrieve
Nearest-Neighbor Classifier (K-NN)

Given a set of training records (memory), and a test record:

1. **Compute the distances** from the records in the training to the test.

2. **Identify the k “nearest” records.**

3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote).
Definition of Nearest Neighbor

- K-nearest neighbors of a record x are data points that have the k smallest distance to x.

(a) 1-nearest neighbor
(b) 2-nearest neighbor
(c) 3-nearest neighbor
Choosing the Value of K

- If k is too small, it is sensitive to noise points and it can lead to overfitting to the noise in the training set.

- If k is too large, the neighborhood may include points from other classes.

- General practice $k = \sqrt{N}$ where N is the number of samples in the training dataset.
Nearest Neighbor Classification

Compute distance between two points:

- Euclidean distance \(d(p, q) = \sqrt{\sum (p_i - q_i)^2}\)

Determine the class from nearest neighbors

- take the majority vote of class labels among the k nearest neighbors
- weigh the vote according to distance (e.g. weight factor, \(w = 1/d^2\))
Dimensionality and Scaling Issues

• Problem with Euclidean measure: high dimensional data can cause curse of dimensionality.
 • Solution: normalize the vectors to unit length

• Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes.

• Example:
 • height of a person may vary from 1.5m to 1.8m
 • weight of a person may vary from 10km to 200kg
 • income of a person may vary from $10K to $1M
• PEBLS is a nearest-neighbor learning system (k=1) designed for applications where the instances have symbolic feature values.

• Works with both continuous and nominal features.

• For nominal features, the distance between two nominal values is computed using Modified Value Difference Metric (MVDM)

\[d(V_1, V_2) = \sum_i \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right| \]

• Where \(n_1 \) is the number of records that consists of nominal attribute value \(V_1 \) and \(n_{1i} \) is the number of records whose target label is class \(i \).
Distance Between Nominal Attribute Values

- \(d(\text{Status}=\text{Single}, \text{Status}=\text{Married}) = |2/4 - 0/4| + |2/4 - 4/4| = 1 \)
- \(d(\text{Status}=\text{Single}, \text{Status}=\text{Divorced}) = |2/4 - 1/2| + |2/4 - 1/2| = 0 \)
- \(d(\text{Status}=\text{Married}, \text{Status}=\text{Divorced}) = |0/4 - 1/2| + |4/4 - 1/2| = 1 \)
- \(d(\text{Refund}=\text{Yes}, \text{Refund}=\text{No}) = |0/3 - 3/7| + |3/3 - 4/7| = 6/7 \)
Distance Between Records

- $\delta(X, Y) = w_X w_Y \sum_{i=0}^{d} d(X_i, Y_i)$

- Each record X is assigned a weight $w_X = \frac{N_{X_{predict}}}{N_{X_{correct}}}$, which represents its reliability

- $N_{X_{predict}}$ is the number of times X is used for prediction

- $N_{X_{correct}}$ is the number of times the prediction using X is correct

- If $w_X \approx 1$ X makes accurate prediction most of the time

- If $w_X > 1$, then X is not reliable for making predictions. High $w_X > 1$ would result in high distance, which makes it less possible to use X to make predictions.
Characteristics of Nearest Neighbor Classifiers

• Instance-based learner: makes predictions without maintaining abstraction, i.e., building a model like decision trees.

• It is a lazy learner: classifying a test example can be expensive because need to compute the proximity values between test and training examples.

• In contrast eager learners spend time in building the model but then the classification is fast.

• Make their prediction on local information and for low k they are susceptible to noise.

• Can produce wrong predictions if inappropriate distance functions and/or preprocessing steps are performed.
References

- Nearest Neighbor classifiers. Chapter 5.2. Introduction to Data Mining.
Exercises - kNN
b) k-NN (3 points)

Given the training set on the right, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3. For each point to classify, list the points of the dataset that belong to its k-NN set. Notice: A, B and C belong to the test set, not to the training set. Also, the Euclidean distance should be used.

Answer:
kNN(A) = \{3, 5, 12\} \rightarrow \text{CIRCLE}
kNN(B) = \{3, 5, 7, 10\} \rightarrow \text{CIRCLE}
kNN(C) = \{4, 6, 7\} \rightarrow \text{CIRCLE}
Given the training set on the right, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with $k=3$. For each point to classify, list the points of the dataset that belong to its k-NN set. Notice: A, B and C belong to the test set, not to the training set. Also, the Euclidean distance should be used.
A medical expert is going to build up a case-based reasoning system for diagnosis tasks. Cases correspond to individual persons where the case problem parts are made up of a number of features describing possible symptoms and the solution parts represent the diagnosis (classification of disease). The case base contains the seven cases provided in the table below.

<table>
<thead>
<tr>
<th>Training</th>
<th>Fever</th>
<th>Vomiting</th>
<th>Diarrhea</th>
<th>Shivering</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>c₁</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>healthy (H)</td>
</tr>
<tr>
<td>c₂</td>
<td>average</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>influenza (I)</td>
</tr>
<tr>
<td>c₃</td>
<td>high</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>influenza (I)</td>
</tr>
<tr>
<td>c₄</td>
<td>high</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>salmonella poisoning (S)</td>
</tr>
<tr>
<td>c₅</td>
<td>average</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>salmonella poisoning (S)</td>
</tr>
<tr>
<td>c₆</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>bowel inflammation (B)</td>
</tr>
<tr>
<td>c₇</td>
<td>average</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>bowel inflammation (B)</td>
</tr>
</tbody>
</table>

Similarity provided by an expert

\[
\begin{array}{c|c|c|c}
q & c & no & avg & high \\
\hline
\text{no} & 1.0 & 0.7 & 0.2 \\
\text{avg} & 0.5 & 1.0 & 0.8 \\
\text{high} & 0.0 & 0.3 & 1.0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
q & \text{sim}_D & \text{sim}_Sh \\
\hline
\text{yes} & 1.0 & 0.0 \\
\text{no} & 0.2 & 1.0 \\
\end{array}
\]

Weights

\[
\begin{align*}
w_F &= 0.3 \\
w_v &= 0.2 \\
w_D &= 0.2 \\
w_{Sh} &= 0.3
\end{align*}
\]
Classify the new instance \(q = (\text{high}; \text{no}; \text{no}; \text{no}) \) by applying the KNN algorithm with \(K=1,2,3 \)
Calculate the similarity between all cases from the case base and the new instance $q = (\text{high}; \text{no}; \text{no}; \text{no})$

$c_1 = (\text{no}; \text{no}; \text{no}; \text{no})$:
$\text{Sim}(q; c_1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70$

$c_2 = (\text{average}; \text{no}; \text{no}; \text{no})$:
$\text{Sim}(q; c_2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79$

$c_3 = (\text{high}; \text{no}; \text{no}; \text{yes})$:
$\text{Sim}(q; c_3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76$

$c_4 = (\text{high}; \text{yes}; \text{yes}; \text{no})$:
$\text{Sim}(q; c_4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68$

$c_5 = (\text{average}; \text{no}; \text{yes}; \text{no})$:
$\text{Sim}(q; c_5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63$

$c_6 = (\text{no}; \text{yes}; \text{yes}; \text{no})$:
$\text{Sim}(q; c_6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28$

$c_7 = (\text{average}; \text{yes}; \text{yes}; \text{no})$:
$\text{Sim}(q; c_7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47$
KNN Classification for K=1

c1 = (no; no; no; no):
Sim(q; c1) = 0.3*0.0 + 0.2 *1.0 + 0.2*1.0 + 0.3* 1.0 = 0.70

c2 = (average; no; no; no):
Sim(q; c2) = 0.3* 0.3 + 0.2 *1.0 + 0.2*1.0 + 0.3*1.0 = 0.79

c3 = (high; no; no; yes)
Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76

c4 = (high; yes; yes; no):
Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68

c5 = (average; no; yes; no):
Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63

c6 = (no; yes; yes; no):
Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28

c7 = (average; yes; yes; no):
Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47

Class: Influenza
KNN Classification for K=2

c1 = (no; no; no; no):
Sim(q; c1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70

c2 = (average; no; no; no):
Sim(q; c2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79

c3 = (high; no; no; yes):
Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76

c4 = (high; yes; yes; no):
Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68

c5 = (average; no; yes; no):
Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63

c6 = (no; yes; yes; no):
Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28

c7 = (average; yes; yes; no):
Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47
KNN Classification for K=3

<table>
<thead>
<tr>
<th>c1 = (no; no; no; no):</th>
<th>Sim(q; c1) = 0.30.0 + 0.2 1.0 + 0.21.0 + 0.3 1.0 = 0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2 = (average; no; no; no):</td>
<td>Sim(q; c2) = 0.3* 0.3 + 0.2 1.0 + 0.21.0 + 0.3*1.0 = 0.79</td>
</tr>
<tr>
<td>c3 = (high; no; no; yes):</td>
<td>Sim(q; c3) = 0.31.0 + 0.21.0 + 0.21.0 + 0.30.2 = 0.76</td>
</tr>
<tr>
<td>c4 = (high; yes; yes; no):</td>
<td>Sim(q; c4) = 0.31.0 + 0.20.2 + 0.20.2 + 0.31.0 = 0.68</td>
</tr>
<tr>
<td>c5 = (average; no; yes; no):</td>
<td>Sim(q; c5) = 0.30.3 + 0.21.0 + 0.20.2 + 0.31.0 = 0.63</td>
</tr>
<tr>
<td>c6 = (no; yes; yes; no):</td>
<td>Sim(q; c6) = 0.30.0 + 0.20.2 + 0.20.2 + 0.31.0 = 0.28</td>
</tr>
<tr>
<td>c7 = (average; yes; yes; no):</td>
<td>Sim(q; c7) = 0.30.3 + 0.20.2 + 0.20.2 + 0.31.0 = 0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sim</th>
<th>q</th>
<th>c</th>
<th>no</th>
<th>avg</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
<td>1.0</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>avg</td>
<td>0.5</td>
<td>1.0</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high</td>
<td>0.0</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weights:
- \(w_F = 0.3 \)
- \(w_v = 0.2 \)
- \(W_D = 0.2 \)
- \(w_{sh} = 0.3 \)

C1: healthy
C2: Influenza
C3: Influenza

Class: Influenza