ATA VINING

Imbalanced Data and Performance Evaluation

Riccardo Guidotti

a.a. 2019/2020

Imbalanced Data

Imbalanced Classes

* Most classification methods assume classes are reasonably balanced.

Imbalanced Classes

* In reality it is quite common to have a very popular class and a rare
(yet interesting) class.

0.003% This occurs when

there is a large
discrepancy between
the number of
examples with each
class label.

99.997%

E.g. for 1M example
dataset only about 30
represent an event.

Examples

* About 2% of credit card accounts are defrauded per yearl. (Most
fraud detection domains are heavily imbalanced.)

* Medical screening for a condition is usually performed on a large
population of people without the condition, to detect a small
minority with it (e.g., HIV prevalence in the USA is ~0.4%).

* Disk drive failures are approximately ~1% per year.
* Factory production defect rates typically run about 0.1%.

What happens on classification?

A classifier that always predict the most common class has an
accuracy of 99.997%.

0.003%

99.997%

Evaluating Classifiers on Imbalanced Data

* When classes are slightly imbalanced, no balancing is need.
* Yet, take that into consideration when evaluating performances
e Assume the test set contains 100 records

* Positive cases = 75, Negative cases = 25

* |s a classifier with 70% accuracy good?
* No, the trivial classifier (always positive) reaches 75%

* Positive cases = 50, Negative cases = 50
* |s a classifier with 70% accuracy good?
e At least much better than the trivial classifier

Multiclass Problem

e Assume N classes

* If classes are perfectly balanced, a trivial classifier (e.g. majority) will
yield A,y ~100/N % accuracy

* N=2 = A, i~ 50%

* N=4 - Aia ~ 25%

* Goodness of accuracy of a model should be compared against A,
* E.g., If N=5, an accuracy of 40% would look large

Handling Imbalanced Data

* Balance the training set
* Undersampling the majority class
* Oversampling the minority class

* At the algorithm level
* Adjust the class weight by making the algorithm more sensitive to rare classes

e Adjust the decision threshold
* Design new algorithm to perform well on imbalanced data

e Switch to anomaly detection
* Do nothing and hope to be lucky

Undersampling the Majority Class

e Random Undersampling —

* Neighbor-based approaches,
e.g., Condensed Nearest — N\
Neighbor, Tomek Links, etc.

| f |
Original dataset

Final dataset

Random Undersampling

* Under-sample the majority class(es) by randomly picking samples
with or without replacement.

Condensed Nearest Neighbor

* Performs a smart undersampling by removing majority points having
as k-NN a minority point.

2 .:. o ° [s) (o] °
2 1 Se
1 ° Y g o ® o Q
S %ae ® §o
’] ol ® “ ® o %0@0
.0. : © ©
_2 p (o] O o O o
-1 ®O§
oo o0 © ©
o ° o
-6 -3 T T

1) The first sample is placed in sToRE.
2) The second sample is classified by the NN rule, using as a
: ' he current contents of sTorE. (Since sTORE has onl
ndensed Nearest Neighbor reference sct ¢ contents of STORE. y
Co & one point, the classification is trivial at this stage.) If the second
sample 15 classified correctly it is placed in graBBAG; otherwise it

P. Hart, “The condensed nearest neighbor rule,” In 1s placed 1n S’FORE-. | | . |
Information Theory, IEEE Transactions on, vol. 14(3), 3) Proceedmg 1nduct1vely, the sth sample 18 classified by the
pp. 515-516, 1968 current contents of srore. If classified correctly it is placed in

GRABBAG; otherwise it is placed in sTORE.

4) After one pass through the original sample set, the procedure
continues to loop through GraBBAG until termination, which can
occur in one of two ways:

> 0o O L0 0p © ‘D o a) The GraBBAG is exhausted, with all its members now trans-
bV - PRI %50 0 ferred to sTore (in which case, the consistent subset found
o 9 0 X x v is the entire original set), or
Z¥° 0 o o x Y o o : -
%43 0 o o Xxx 0 0 o b) One complete pass is made through ¢raBBAG With no
€, 000 © o XX v« 000 ¢ transfers to store. (If this happens, all subsequent passes
X x O O O x X ¥ o © . . ’
through erasBac will result in no transfers, since the

underlying decision surface has not been changed.)

5) The final contents of sTore are used as reference points for
the NN rule; the contents of GraBBAG are discarded.

Condensed Nearest Neighbor

a) pass « 1,
b) choose x € D randomly, D(1) = D — {x}, E = {x},
c¢) D (pass + 1) = &, count « 0,
d) choose x € D (pass) randomly, classify x by NN using E,
e) if classification found in d) agrees with actual membership
of x
then D(pass + 1) = D(pass + 1) U {x}
else £E = E U {x}, count « count + 1,
f) D(pass) = D(pass) — {x},
g) if D(pass) # J go to d),
h) if count = 0
then end of algorithm
else pass « pass + 1, go to b).

35
3.0 1
25 1

2.0 -
15 4
10 A1
0.5 1

0.0 -

- Minority class
Majority class

0.0

0.5 10 15 20 25 30

35

CNN alternatives

e Tomek’s links
* One Sided Selection

Oversampling the Majority Class

* Random Oversampling

* Synthetic Minority Oversampling
Technique (SMOTE)

* Adaptive Synthetic (ADASYN)
sampling approach

f
Original dataset

f
Final dataset

Random Oversampling

* Over-sample the minority class(es) by picking samples at random with
replacement.

SMOTE Oversampling

e Over-sample the minority class(es) by adding points through
interporlation.

SMOTE

* It operates in the “feature space” rather than in the “data space”, and
effectively forces the decision region of the minority class to become
more general.

* The minority class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbors.

* Depending upon the amount of over-sampling required, neighbors
from the k nearest neighbors are randomly chosen (by default k=5).

* E.g., if the amount of over-sampling needed is 200%, only two
neighbors from the five are chosen and one sample is generated in
the direction of each.

SMOTE - Samples Generation

* Take the difference between the feature vector (sample) under
consideration and its nearest neighbor.

* Multiply this difference by a random number between 0 and 1, and
add it to the feature vector under consideration.

* This causes the selection of a random point along the line segment
between two specific features.

A

. '.';:. o.
" . o o ¢
AN T + v .
e = § | I | . o . | b o X | ese .
Select only minority For each point Compute Add mid-points

class points get k-NNs mid-points to dataset

SMOTE alternatives

* SMOTENC: Over-sample for continuous and categorical features.
* BorderlineSMOTE: Over-sample using the borderline variant.

* SYMSMOTE: Over-sample using the SVM variant.

* ADASYN: Over-sample using ADASYN.

Adjust the Class Weight

 The classifier can be trained .
considering different costs to be Ty — no weights

/ |

. with weights
paid for misclassification errors 6
on minority classes.

* This is generally done using a
“class weight”.

Adjust the Class Weight

* Each outcome with respect to a confusion matrix can be associated to
a weight in a corresponding weight (or cost) matrix.

* Thus, the objective of the classification algorithm is to find the model
that minimizes the total cost.

* Yxweight(x)freq(x)

O

W o

Weight
Matrix
o

Confusion
Matrix

paipald
panipaid

C

Meta-Cost Sensitive Classifier

* Apply a classifier getting probability of a class label P(j|x)
 Compute expected risk of classifying x with class i:

R(i|z) = Z P(j|z)C (i, j)

* Re-label the train data with the class i having lower risk

 Learn a model on the cost-sensitive train data

Adjust the Decision Threshold

 Several classification methods compute scores in terms of probability
of belonging to a class, and then assign class.

* Generally we have:
e Score p > 50% — class =Y
e Otherwise — class =N

* E.g.: decision trees have p = #positive/#negative cases over each leaf

Adjust the Decision Threshold

* What if we generalize the schema into:
e Score p > THR% — class =Y
e Otherwise — class =N

* For each THR (in [0-100]) we get a different set of predictions

* The confusion matrix changes and all indicators derived from it
change

* Accuracy
* True Positive Rate (TPR)
* False Positive Rate (FPR)

Performance Evaluation

Receiver Operating Characteristic Curve

* It illustrates the ability of a binary classifier as its
discrimination threshold THR is varied. 07 |

* The ROC curve is created by plotting the true ¢
positive rate (TPR) against the false positive rate 04 |

(FPR) at various THR.
. 02 It RehgJones —
i The TPR - TP / (TP + FN) IS also known aS 0.1 ; 'ZleuraIgasgol:ré?:glg?ns;i(gsg S
o, 0 o oo . euralGasColorClustering)
sensitivity, recall or probability of detection. g NeuraiGasColorChuterig (C2C) ——\|
0O 01 02 03 04 05 06 07 08 09 1
* The FPR = FP / (TN + FP) is also known as

probability of false alarm and can be calculated
as (1 - specificity).

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

http://www?2.cs.uregina.ca/~dbd/cs831/notes/lift chart/lift chart.html

Lift Cha rt http://mlwiki.org/index.php/Cumulative _Gain Chart

* The lift curve is a popular technique in direct marketing.

* The input is a dataset that has been “scored” by appending to each
case the estimated probability that it will belong to a given class.

* The cumulative lift chart (also called gains chart) is constructed with
the cumulative number of cases (descending order of probability) on
the x-axis and the cumulative number of true positives on the y-axis.

* The dashed line is a reference line. For any given number of cases (the
X-axis value), it represents the expected number of positives we
would predict if we did not have a model but simply selected cases at
random. It provides a benchmark against which we can see
performance of the model.

Notice: “Lift chart” is a rather general term, often used to
identify also other kinds of plots. Don'’t get confused!

http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html
http://mlwiki.org/index.php/Cumulative_Gain_Chart

Lift Chart — Example

Serial no. Predicted prob of 1 Actual Class Cumulative Actual class

1 0.995976726 1 1
2 0.987533139 1 2 14 -
3 0.984456382 1 3
4 0.980439587 1 4
5 0.948110638 1 5
6 0.889297203 1 6 - -
- 0.847631864 1 5 @ — Cumulative 1's
8 0.762806287 0 7 = sorted by
9 0.706991915 1 8 S predicted values
10 0.680754087 1 9 g - == Cumulative 1's
1" 0.656343749 1 10 - USIng average
12 0.622419543 0 10 o
13 0.505506928 1 11
14 0.47134045 0 11
15 0.337117362 0 11
16 0.21796781 1 12
17 0.199240432 0 12 l
18 0.149482655 0 12 30
19 0.047962588 0 12
20 0.038341401 0 12 # cases
21 0.024850999 0 12
2 0.021806029 0 12
2 0.016129906 0 12
24 0.003559986 0 12

Lift Chart — Application Example

* From Lift chart we can easily derive an “economical value” plot, e.g. in
target marketing.

* Given our predictive model, how many customers should we target to
maximize income?

* Profit = UnitB*MaxR*Lift(X) - UnitCost*N*X/100

e UnitB = unit benefit, UnitCost = unit postal cost

* N = total customers

* MaxR = expected potential respondents in all population (N)
e Lift(X) = lift chart value for X, in [0,..,1]

Lift Chart — Application Example

[

HENWLAUIONRVO
0 00000000000

UnitB = 6€ N=30000
MaxR = 10500 UnitCost = 2.30€

€ 20.000 \
€ 15.000 }‘"\
€ 10.000 / AN
€ 5.000
€0
-€ 5.000 =
-€ 10.000

Q

6060,‘0%00)?»00

Yo
0
Y9
Yo

References

* |. Tomek, “Two modifications of CNN,” In Systems, Man, and Cybernetics,
|IEEE Transactions on, vol. 6, pp 769-772, 2010.

* N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: synthetic
minority over-sampling technique,” Journal of artificial intelligence
research, 321-357, 2002.

* Domingos, Pedro. "Metacost: A general method for making classifiers cost-
sensitive." Proceedings of the fifth ACM SIGKDD international conference

on Knowledge discovery and data mining. 1999.

e P. Hart, “The condensed nearest neighbor rule,” In Information Theory, IEEE
Transactions on, vol. 14(3), pp. 515-516, 1968.

* Python imblearn library: https://imbalanced-
learn.readthedocs.io/en/stable/index.html

https://imbalanced-learn.readthedocs.io/en/stable/index.html

