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29.1 Basic Definitions and Properties

Suffix trees and suffix arrays are versatile data structures fundamental to string processing
applications. Let s’ denote a string over the alphabet X. Let $ ¢ ¥ be a unique termination
character, and s = s'$ be the string resulting from appending $ to s’. We use the following
notation: |s| denotes the size of s, s[i] denotes the i*» character of s, and s[i..j] denotes the
substring sfi]s[i + 1] ...s[j]. Let suff; = s[i]s[i + 1]...s[|s|] be the suffix of s starting at
it* position.

The suffix tree of s, denoted ST'(s) or simply ST, is a compacted trie (See Chapter 28)
of all suffixes of string s. Let |s| = n. It has the following properties:

. The tree has n leaves, labeled 1...n, one corresponding to each suffix of s.

. Each internal node has at least 2 children.

. Each edge in the tree is labeled with a substring of s.

. The concatenation of edge labels from the root to the leaf labeled i is suf f;.

. The labels of the edges connecting a node with its children start with different
characters.

U W N e

The paths from root to the suffixes labeled 7 and j coincide up to their longest common
prefix, at which point they bifurcate. If a suffix of the string is a prefix of another longer
suffix, the shorter suffix must end in an internal node instead of a leaf, as desired. It is
to avoid this possibility that the unique termination character is added to the end of the
string. Keeping this in mind, we use the notation ST'(s’) to denote the suffix tree of the
string obtained by appending $ to s'.

29-1
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FIGURE 29.1: Suffix tree, suffix array and Lcp array of the string mississippi. The suffix
links in the tree are givenby z — 2z sy —»u —r,v > r,and w — r.

As each internal node has at least 2 children, an n-leaf suffix tree has at most n — 1
internal nodes. Because of property (5), the maximum number of children per node is
bounded by |X| + 1. Except for the edge labels, the size of the tree is O(n). In order to
allow a linear space representation of the tree, each edge label is represented by a pair of
integers denoting the starting and ending positions, respectively, of the substring describing
the edge label. If the edge label corresponds to a repeat substring, the indices corresponding
to any occurrence of the substring may be used. The suffix tree of the string mississippi
is shown in Figure 29.1. For convenience of understanding, we show the actual edge labels.

The suffix array of s = s’$, denoted SA(s) or simply SA, is a lexicographically sorted
array of all suffixes of s. Each suffix is represented by its starting position in s. SA[¢] = j
iff Suff; is the i** lexicographically smallest suffix of s. The suffix array is often used in
conjunction with an array termed Lcp array, containing the lengths of the longest common
prefixes between every consecutive pair of suffixes in SA. We use lcp(a, 8) to denote the
longest common prefix between strings « and 3. We also use the term lcp as an abbreviation
for the term longest common prefir. Lepli] contains the length of the lcp between suf fsay
and suf fsafiy1), 1.€., Lepli] = lep(suf fsapi, suf fsapvy))- As with suffix trees, we use the
notation SA(s’) to denote the suffix array of the string obtained by appending $ to s’. The
suffix and Lep arrays of the string mississippi are shown in Figure 29.1.

Let v be a node in the suffix tree. Let path-label(v) denote the concatenation of edge
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labels along the path from root to node v. Let string-depth(v) denote the length of path-
label(v). To differentiate this with the usual notion of depth, we use the term tree-depth of
a node to denote the number of edges on the path from root to the node. Note that the
length of the longest common prefix between two suffixes is the string depth of the lowest
common ancestor of the leaf nodes corresponding to the suffixes. A repeat substring of
string S is right-mazimal if there are two occurrences of the substring that are succeeded
by different characters in the string. The path label of each internal node in the suffix tree
corresponds to a right-maximal repeat substring and vice versa.

Let v be an internal node in the suffix tree with path-label ca where ¢ is a character and
a is a (possibly empty) string. Therefore, ca is a right-maximal repeat, which also implies
that o is also a right maximal repeat. Let u be the internal node with path label a. A
pointer from node v to node u is called a suffiz link; we denote this by SL(v) = u. Each
suffix suff; in the subtree of v shares the common prefix coa. The corresponding suffix
suf fi+1 with prefix a will be present in the subtree of u. The concatenation of edge labels
along the path from v to leaf labeled 7, and along the path from u to leaf labeled i + 1 will
be the same. Similarly, each internal node in the subtree of v will have a corresponding
internal node in the subtree of u. In this sense, the entire subtree under v is contained in
the subtree under w.

Every internal node in the suffix tree other than the root has a suffix link from it. Let v
be an internal node with SL(v) = u. Let v’ be an ancestor of v other than the root and let
u' = SL(v'). As path-label(v') is a prefix of path-label(v), path-label(u') is also a prefix of
path-label(u). Thus, u' is an ancestor of u. Each proper ancestor of v except the root will
have a suffix link to a distinct proper ancestor of u. It follows that tree-depth(u) > tree-
depth(v) — 1.

Suffix trees and suffix arrays can be generalized to multiple strings. The generalized suffix
tree of a set of strings S = {s;, 32,..., sk}, denoted GST(S) or simply GST, is a compacted -
trie of all suffixes of each string in S. We assume that the unique termination character
$ is appended to the end of each string. A leaf label now consists of a pair of integers
(1,7), where i denotes the suffix is from string s; and j denotes the starting position of the
suffix in s;. Similarly, an edge label in a GST is a substring of one of the strings. An edge:
label is represented by a triplet of integers (i, ,), where i denotes the string number, and
J and [ denote the starting and ending positions of the substring in s;. For convenience of
understanding, we will continue to show the actual edge labels. Note that two strings may
have identical suffixes. This is compensated by allowing leaves in the tree to have multiple
labels. If a leaf is multiply labeled, each suffix should come from a different string. If N
is the total number of characters (including the $ in each string) of all strings in S, the
GST has at most N leaf nodes and takes up O(N) space. The generalized suffix array of
8, denoted GSA(S) or simply GSA, is a lexicographically sorted array of all suffixes of
each string in S. Each suffix is represented by an integer pair (4, 5) denoting suffix starting
from position j in s;. If suffixes from different strings are identical, they occupy consecutive
positions in the GSA. For convenience, we make an exception for the suffix $ by listing it
only once, though it occurs in each string. The GST and GSA of strings apple and maple
are shown in Figure 29.2.

Suffix trees and suffix arrays can be constructed in time linear to the size of the input.
Suffix trees are very useful in solving a plethora of string problems in optimal run-time
bounds. Moreover, in many cases, the algorithms are very simple to design and understand.
For example, consider the classic pattern matching problem of determining if a pattern P
occurs in text T over a constant sized alphabet. Note that P occurs starting from position
i in T iff P is a prefix of suf f; in T. Thus, whether P occurs in T or not can be determined
by checking if P matches an initial part of a path from root to a leaf in ST(T). Traversing
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sy : apple
s : maple
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FIGURE 29.2: Generalized suffix tree and generalized suffix array of strings apple and
maple.

from the root matching characters in P, this can be determined in O(|P|) time, independent
of the size of T'. As another application, consider the problem of finding a longest common
substring of a pair of strings. Once the GST of the two strings is constructed, all that is
needed is to identify an internal node with the largest string depth that contains at least
one leaf from each string. These and many other applications are explored in great detail in
subsequent sections. Suffix arrays are of interest because they require much less space than
suffix trees, and can be used to solve many of the same problems. We first concentrate on
linear time construction algorithms for suffix trees and suffix arrays. The reader interested
in applications can safely skip to Section 29.3.

29.2 Linear Time Construction Algorithms

In this section, we explore linear time construction algorithms for suffix trees and suffix
arrays. We also show how suffix trees and suffix arrays can be derived from each other in
linear time. In suffix tree and suffix array construction algorithms, three different types of
alphabets are considered: a constant or fixed size alphabet (|X| = O(1)), integer alphabet
(L ={1,2,...,n}), and arbitrary alphabet. Suffix trees and suffix arrays can be constructed
in linear time for both constant size and integer alphabets. The constant alphabet size case
covers many interesting application areas, such as English text, or DNA or protein sequences
in molecular biology. The integer alphabet case is interesting because a string of length n
can have at most n distinct characters. Furthermore, some algorithms use a recursive
technique that would generate and require operating on strings over integer alphabet, even
when applied to strings over a fixed alphabet.

29.2.1 Suffix Trees vs. Suffix Arrays

We first show that the suffix array and Lcp array of a string can be obtained from its suffix
tree in linear time. Define lexicographic ordering of the children of a node to be the order
based on the first character of the edge labels connecting the node to its children. Define
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lexicographic depth first search to be a depth first search of the tree where the children of
each node are visited in lexicographic order. The order in which the leaves of a suffix tree
are visited in a lexicographic depth first search gives the suffix array of the corresponding
string. In order to obtain lcp information, the string-depth of the current node during the
search is remembered. This can be easily updated in O(1) time per edge as the search
progresses. The length of the lcp between two consecutive suffixes is given by the smallest
string-depth of a node visited between the two suffixes.

Given the suffix array and the Lep array of a string s (|s$] = n), its suffix tree can
be constructed in O(n) time. This is done by starting with a partial suffix tree for the
lexicographically smallest suffix, and repeatedly inserting subsequent suffixes in the suffix
array into the tree until the suffix tree is complete. Let T} denote the compacted trie of the
first 4 suffixes in lexicographic order. The first tree T} consists of a single leaf labeled S A1]
connected to the root with an edge labeled suf fg A =$.

To insert SA[i + 1] into T;, start with the most recently inserted leaf SA[i] and walk up
(lsuf fsapl — {lep(suf fsap), suf fsajv1)l) = ((n — SA[i] + 1) — Lepli]) characters along the
path to the root. This walk can be done in O(1) time per edge by calculating the lengths of
the respective edge labels. If the walk does not end at an internal node, create an internal
node. Create a new leaf labeled SA[i + 1] and connect it to this internal node with an
edge. Set the label on this edge to s[SA[i + 1] + Lcp[i]..n]. This creates the tree Ti 1.
The procedure works because suf fg Afi+1) shares a longer prefix with suf fs Ap) than any
other suffix inserted so far. To see that the entire algorithm runs in O(n) time, note that
inserting a new suffix into T} requires walking up the rightmost path in T;. Each edge that
is traversed ceases to be on the rightmost path in 7}y, and thus is never traversed again.
An edge in an intermediate tree T; corresponds to a path in the suffix tree ST. When a
new internal node is created along an edge in an intermediate tree, the edge is split into two
edges, and the edge below the newly created internal node corresponds to an edge in the
suffix tree. Once again, this edge ceases to be on the rightmost path and is never traversed
again. The cost of creating an edge in an intermediate tree can be charged to the lowest
edge on the corresponding path in the suffix tree. As each edge is charged once for creating
and once for traversing, the total run-time of this procedure is O(n). :

Finally, the Lcp array itself can be constructed from the suffix array and the stringm
linear time [14]. Let R be an array of size n such that R[i] contains the position in SA
of suffi. R can be constructed by a linear scan of SA in O(n) time. The Lcp array
is computed in n iterations. In iteration i of the algorithm, the longest common prefix
between suf f; and its respective right neighbor in the suffix array is computed. The array
R facilitates locating an arbitrary suffix suf f; and finding its right neighbor in the suffix
array in constant time. Initially, the length of the longest common prefix between suf f,
and its suffix array neighbor is computed directly and recorded. Let suff; be the right
neighbor of suf f; in SA. Let ! be the length of the longest common prefix between them.
Suppose I > 1. As suff; is lexicographically greater than suf f; and s[i] = s[4}, suf fj41 is
lexicographically greater than suf fi11. The length of the longest common prefix between
them is [ — 1. It follows that the length of the longest common prefix between suf fi.1
and its right neighbor in the suffix array is > | — 1. To determine its correct length, the
comparisons need only start from the [** characters of the suffixes.

To prove that the run time of the above algorithm is linear, charge a comparison between
the r** character in suffix suff; and the corresponding character in its right neighbor
suffix in SA4 to the position in the string of the r** character of suff;, ie., i +r — 1.
A comparison made in an iteration is termed successful if the characters compared are
identical, contributing to the longest common prefix being computed. Because there is one
failed comparison in each iteration, the total number of failed comparisons is O(n). As
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for successful comparisons, each position in the string is charged only once for a successful
comparison. Thus, the total number of comparisons over all iterations is linear in n.

In light of the above discussion, a suffix tree and a suffix array can be constructed from
each other in linear time. Thus, a linear time construction algorithm for one can be used to
construct the other in linear time. In the following subsections, we explore such algorithms.
Each algorithm is interesting in its own right, and exploits interesting properties that could
be useful in designing algorithms using suffix trees and suffix arrays.

—

29.2.2 Linear Time Construction of Suffix Trees

LeX s be a string of length n including the termination character $. Suffix tree construction
algoNthms start with an empty tree and iteratively insert suffixes while maintaining the
that each intermediate tree represents a compacted trie of the suffixes inserted so
far. Whag all the suffixes are inserted, the resulting tree will be the suffix tree. Suffix links
used to speedup the insertion of suffixes. While the algorithms are identified by

a way we feel cofzgributes to ease of understanding.

McCreight’s Algor!

McCreight’s algorithi\ inserts suffixes in the order suf f, suf fo, . .., suf fn. Let T; denote
the compacted trie after sy f f; is inserted. T is the tree consisting of a single leaf labeled 1
that is connected to the rod{ by an edge with label s[1..n]. In iteration 4 of the algorithm,
suf f; is inserted into tree T;_\jo form tree T;. An easy way to do this is by starting from the
root and following the unique path matching characters in suf f; one by one until no more
matches are possible. If the travesgal does not end at an internal node, create an internal
node there. Then, attach a leaf lakeled i to this internal node and use the unmatched
portion of suff; for the edge label. Che run-time for inserting suff; is proportional to
|suf fi| = n — i+ 1. The total run-time N the algorithm is T ; (n — i + 1) = O(n?).

In order to achieve an O(n) run-time, sh{fix links are used to significantly speedup the
insertion of a new suffix. Suffix links are udeful in the following way — Suppose we are
inserting suf f; in T;—; and let v be an internaNnode in T;_; on the path from root to leaf
labeled (i — 1). Then, path-label(v) = ca is a prelig of suff;—1. Since v is an internal node,
there must be another suffix suff; (j < ¢ — 1) that\lso has co as prefix. Because suf f;.,1
is previously inserted, there is already a path from tRe root in T;_; labeled o. To insert
suf f; faster, if the end of path labeled « is quickly foundycomparison of characters in suf f;
can start beyond the prefix . This is where suffix links w] be useful. The algorithm must
also construct suffix links prior to using them.

LEMMA 29.1 Let v be an internal node in ST'(s) that is createq in iteration ¢ — 1. Let
path-label(v) = ca, where c is a character and a is a (possibly empt\, string. Then, either
there exists an internal node u with path-label(u) = a or it will be creXed in iteration z.

Proof As v is created when inserting suf f;_1 in T;_s, there exists anoth
(7 < 2 — 1) such that lep(suffi—1,suff;) = co. It follows that lep(suf fi, su
The tree T; already contains suf f;11. When suf f; is inserted during iteration
node u with path-label « is created if it does not already exist.

suffix suf f;
j+1) = a.
L, internal
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he above lemma establishes that the suffix link of a newly created internal node can be

§ edge connecting v’ and v. Let «/ = SL(v') unless ¢’ is the root, in which
case let v’ be throot itself. It follows that path-label(u’) is a prefix of suf f;. Furthermore,
it is guaranteed thgat there is a path below »’ that matches the next |3| characters of suf f;.
Traverse || charaders along this path and either find an internal node u or insert an
internal node u if on\ does not already exist. In either case, set SL(v) = u. Continue by
starting character comMarisons skipping the first |a| characters of suf f;.

The above procedure rguires two different types of traversals — one in which it is known
that there exists a path bélow that matches the next |3] characters of suff; (type I), and
the other in which it is unkdpown how many subsequent characters of suff; match a path
below (type II). In the latter cage, the comparison must proceed character by character until
a mismatch occurs. In the formex case, however, the traversal can be done by spending only
O(1) time per edge irrespective oNthe length of the edge label. At an internal node during
such a traversal, the decision of wiNch edge to follow next is made by comparing the next
character of suff; with the first chagacters of the edge labels connecting the node to its
children. However, once the edge is selcted, the entire label or the remaining length of g
must match, whichever is shorter. Thud, the traversal can be done in constant time per
edge, and if the traversal stops within aN edge label, the stopping position can also be
determined in constant time. :

The insertion procedure during iteration i Xan now be described as follows: Start with
the internal node v to which suff;_1 is attachdd as a leaf. If v has a suffix link, follow it
and perform a type II traversal to insert suf f;. Oherwise, walk up to »’s parent, take the
suffix link from it unless it is the root, and perform ¥ type I traversal to either find or create
the node v which will be linked from v by a suffix IIlxk. Continue with a type II traversal
below u to insert suf f;.

LEMMA 29.2 The total time spent in type I traversals\over all iterations is O(n).

Proof A type I traversal is performed by walking down along a path from root to a leaf
in O(1) time per edge. Each iteration consists of walking up a\ most one edge, following
a suffix link, and then performing downward traversals (either tyge II or both type I and
type II). Recall that if SL(v) = u, then tree-depth(u) > tree-depth{y) — 1. Thus, following
a suffix link may reduce the depth in the tree by at most one. It followg that the operations
that may cause moving to a higher level in the tree cause a decrease inNdepth of at most 2
per iteration. As both type I and type II traversals increase the depth in Yhe tree and there
are at most n levels in ST, the total number of edges traversed by type I tigversals over all
the iterations is bounded by 3n.
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-quntil there is a mismatch. When a mismatch occurs, an internal node is created if there does
ot exist one already. Then, the remaining part of suf f; becomes the edge label connecting
labeled ¢ to the internal node. Charge each successful comparison of a character in
5 to the corresponding character in the original string s. Note that a character that is

lemmas prove that the total run-time of McCreight’s algorithm is O(n). Mc-
ithm is suitable for constant sized alphabets. The dependence of the run-time
oring suffix trees on the size of the alphabet |L]| is as follows: A simple way

Creight’s alg
and space for

the edge label begiding with a given character, or whether an edge label exists with a
given character, can b} determined in O(log |X|) time. However, as all |X| + 1 pointers are
kept irrespective of how\nany children actually exist, the total space is O(]2|n). If the tree
is stored such that each iNernal node points only to its leftmost child and each node also
points to its next sibling, if \ny, the space can be reduced to O(n), irrespective of {¥|. With
this, searching for a child conyected by an edge label with the appropriate character takes
O(|Z|) time. Thus, McCreighttg algorithm can be run in O(nlog|%|) time using O(n|X|)
space, or in O(n|X|) time using (X(n) space. ‘

Generalized Suffix Trees

McCreight’s algorithm can be easilj\adapted to build the generalized suffix tree for a
set § = {s1,s2,...,sk} of strings of totyl length N in O(N) time. A simple way to do
this is to construct the string S = s1$1%82...5x3%, where each $; is a unique string
termination character that does not occur in\any string in S. Using McCreight’s. algorithm,
ST(S) can be computed in O(N) time. Thiddiffers from GST(S).in the following way:
Consider a suffix suff; of string.s; in GST( The corresponding suffix in ST(S) is
8i[j.-|5:1)$:5i+18i41 - - . sk8k. Let v be the last intgrnal node on the path from root to leaf
representing this suffix in ST'(S). As each $; is uniq\e and path-label(v) must be a common
prefix of at least two suffixes in S, path-label(v) mdgt be a prefix of s;[j..|s;]]. Thus, by
simply shortening the edge label below v to terminaXe at the end of the string s; and
attaching a common termination character $ to it, the cdyresponding suffix in GST(S) can
be generated in O(1) time. Additionally, all suffixes in\S7'(S) that start with some $;
should be removed and replaced by a single suffix $ in GST(X). Note that the suffixes to be
removed are all directly connected to the root in ST(S), allowing easy O(1) time removal
per suffix. Thus, GST(S) can be derived from ST'(S) in O(N) \Xime.

Instead of first constructing ST'(S) and shortening edge labeR of edges connecting to
leaves to construct GST(S), the process can be integrated into thé\tree construction itself
to directly compute GST'(S). When inserting the suffix of a string,
label connecting to the newly created leaf to terminate at the end of
by $. As each suffix that begins with $; in ST(S) is directly attached to
of McCreight’s algorithm on S will always result in a downward traversal &arting from the

algorithm, insert all the suffixes of the next string, and continue this procedude until all
strings are inserted. To insert the first suffix of a string, start by matching thg unique
path in the current tree that matches with a prefix of the string until no more matckes are
possible, and insert the suffix by branching at this point. To insert the remaining suffixes,
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cogtinue as described in constructing the tree for one string.
¢ procedure immediately gives an algorithm to maintain the generalized suffix tree

of a seN\of strings in the presence of insertions and deletions of strings. Insertion of a
string is the same as executing McCreight’s algorithm on the current tree, and takes time
proportional ¥ the length of the string being inserted. To delete a string, we must locate the
leaves correspondigg to all the suffixes of the string. By mimicking the process of inserting
the string in GST Mjing McCreight’s algorithm, all the corresponding leaf nodes can be
reached in time linear IN¢he size of the string to be deleted. To delete a suffix, examine the
corresponding leaf. If it isWultiply labeled, it is enough to remove the label corresponding
to the suffix. It it has only on®abel, the leaf and edge leading to it must be deleted. If the
parent of the leaf is left with only\gne child after deletion, the parent and its two incident
edges are deleted by connecting the 3xgviving child directly to its grandparent with an edge
labeled with the concatenation of the labels of the two edges deleted. As the adjustment at
each leaf takes O(1) time, the string can b\deleted in time proportional to its length.

Suffix trees were invented by Weiner [23], ™o also presented the first linear time algo-
rithm to construct them for a constant sized alPphabet. McCreight’s algorithm is a more
space-economical linear time construction algorithm 9]. A linear time on-line construction
algorithm for suffix trees is invented by Ukkonen [22/N\In fact, our presentation of Mc-
Creight’s algorithm also draws from ideas developed by onen. A unified view of these
three suffix tree construction algorithms is studied by Giegeri and Kurtz [10]. Farach [7]
presented the first linear time algorithm for strings over integer Mphabets. The algorithm
recursively constructs suffix trees for all odd and all even suffixes, r. ectively, and uses a
clever strategy for merging them. The complexity of suffix tree construdion algorithms for
various types of alphabets is explored in [8].

29.2.3 Linear Time Construction of Suffix Arrays

Suffix arrays were proposed by Manber and Myers [18] as a space-efficient alternative to
suffix trees. While suffix arrays can be deduced from suffix trees, which immediately implies
any of the linear time suffix tree construction algorithms can be used for suffix arrays, it
would not achieve the purpose of economy of space. Until recently, the fastest known direct
construction algorithms for suffix arrays all required O(nlogn) time, leaving a frustrating
gap between asymptotically faster construction algorithms for suffix trees, and asymptot-
ically slower construction algorithms for suffix arrays, despite the fact that suffix trees
contain all the information in suffix arrays. This gap is successfully closed by a number of
researchers in 2003, including Kéarikkanen and Sanders [13], Kim et al. [15], and Ko and
Aluru [16]. All three algorithms work for the case of integer alphabet. Given the simplicity
and/or space efficiency of some of these algorithms, it is now preferable to construct suffix
trees via the construction of suffix arrays.

Kirikkanen and Sanders’ Algorithm

Karikkanen and Sanders’ algorithm is the simplest and most elegant algorithm to date
to construct suffix arrays, and by implication suffix trees, in linear time. The algorithm also
works for the case of an integer alphabet. Let s be a string of length n over the alphabet
¥ =1{1,2,...,n}. For convenience, assume n is a multiple of three and s[n+1] = s[n+2] = 0.
The algorithm has the following steps:

1. Recursively sort the %n suffixes suf f; with i mod 3 #£ 0.
2. Sort the %n suffixes suf f; with ¢ mod 3 = 0 using the result of step (1).
3. Merge the two sorted arrays.
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To execute step (1), first perform a radix sort of the Zn triples (slz], s[i+1], s[i4-2]) for each
i mod 3 # 0 and associate with each distinct triple its rank € {1,2,..., %n} in sorted order.
If all triples are distinct, the suffixes are already sorted. Otherwise, let suf f/ denote the
string obtained by taking suf f; and replacing each consecutive triplet with its corresponding
rank. Create a new string s’ by concatenating suf f] with suf f5. Note that all suf f] with
i mod 3 =1 (i mod 3 = 2, respectively) are suffixes of suff] (suffs, respectively). A
lexicographic comparison of two suffixes in s’ never crosses the boundary between su ff
and suf f because the corresponding suffixes in the original string can be lexicographically
distinguished. Thus, sorting s’ recursively gives the sorted order of suf f; with i mod 3 # 0.

Step (2) can be accomplished by performing a radix sort on tuples (s[i], rank(suf fi+1))
for all i mod 3 = 0, where rank(suffi11) denotes the rank of suffi; in sorted order
obtained in step (1).

Merging of the sorted arrays created in steps (1) and (2) is done in linear time, aided
by the fact that the lexicographic order of a pair of suffixes, one from each array, can be
determined in constant time. To compare suff; (i mod 3 = 1) with suff; (i mod 3 = 0),
compare s[i] with s[j]. If they are unequal, the answer is clear. If they are identical,
the ranks of suffiy1 and suff;+1 in the sorted order obtained in step (1) determines the
answer. To compare suff; (i mod 3 = 2) with suff; (i mod 3 = 0), compare the first two
characters of the two suffixes. If they are both identical, the ranks of suf fi12 and suff; 2
in the sorted order obtained in step (1) determines the answer.

The run-time of this algorithm is given by the recurrence T'(n) = T ([%]) + O(n), which
results in O(n) run-time. Note that the %— : % split .is designed to make the merging step
easy. A % : % split does not allow easy merging because when comparing two suffixes for
merging, no matter how many characters are compared, the remaining suffixes will not
fall in the same sorted array, where ranking determines the result without need for further
comparisons. Kim et al.’s linear time suffix array construction algorithm is based on a % : %
split, and the merging phase is handled in a clever way so as to run in linear time. This is
much like Farach’s algorithm for constructing suffix trees [7] by constructing suffix trees for
even and odd positions separately and merging them. Both the above linear time suffix array
construction algorithms partition the suffixes based on their starting positions in the string.
A completely different way of partitioning suffixes based on the lexicographic ordering of
a suffix with its right neighboring suffix in the string is used by Ko and Aluru to derive
a linear time algorithm [16]. This reduces solving a problem of size n to that of solving
a problem of size no more than [2], while eliminating the complex merging step. The
algorithm can be made to run in only 2n words plus 1.25n bits for strings over constant
alphabet. Algorithmically, Kirikkanen and Sanders’ algorithm is akin to mergesort and
Ko and Aluru’s algorithm is akin to quicksort. Algorithms for constructing suffix arrays in
external memory are investigated by Crauser and Ferragina [5].

It may be more space efficient to construct a suffix tree by first constructing the corre-
sponding suffix array, deriving the Lep array from it, and using both to construct the suffix
tree. For example, while all direct linear time suffix tree construction algorithms depend on
constructing and using suffix links, these are completely avoided in the indirect approach.
Furthermore, the resulting algorithms have an alphabet independent run-time of O(n) while
using only the O(n) space representation of suffix trees. This should be contrasted with the
O(JZ|n) run-time of either McCreight’s or Ukkonen’s algorithms.

29.2.4 Space

are space efficient in an asymptotic sense because the memory
ut size. However, the actual space usage is of significant

Suffix trees and suffix arr
required grows linearly with T
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coINern, especially for very large strings. For example, the human genome can be repre-
sented\as a large string over the alphabet ¥ = {A, C, G, T} of length over 3 x 10°. Because
of lineal\dependence of space on the length of the string, the exact space requirement is
easily charscterized by specifying it in terms of the number of bytes per character. Depend-
ber of bytes per character required, a data structure for the human genome
memory, may need a moderate sized disk, or might need a large amount
e. This has significant influence on the run-time of an application as
torage is considerably slower. It may also become impossible to run
an application for largg data sizes unless careful attention is paid to space efficiency.

Consider a naive impN\nentation of suffix trees. For a string of length n, the tree has n
leaves, at most n — 1 intePRal nodes, and at most 2n — 2 edges. For simplicity, count the
space required for each integexor a pointer to be one word, equal to 4 bytes on most current
computers. For each leaf node, \ye may store a pointer to its parent, and store the starting
index of the suffix represented by Yhe leaf, for 2n words of storage. Storage for each internal
node may consist of 4 pointers, one\each for parent, leftmost child, right sibling and suffix
link, respectively. This will require 3proximately 4n words of storage. Each edge label
consists of a pair of integers, for a tota\ of at most 4n words of storage. Putting this all
together, a naive implementation of suffix\rees takes 10n words or 40n bytes of storage.

Several techniques can be used to consideNgbly reduce the naive space requirement of 40
bytes per character. Many applications of intergst do not need to use suffix links. Similarly,
a pointer to the parent may not be required for dgplications that use traversals down from
the root. Even otherwise, note that a depth first ségrch traversal of the suffix tree starting
from the root can be conducted even in the absence oNparent links, and this can be utilized
in applications where a bottom-up traversal is needed \Another technique is to store the
internal nodes of the tree in an array in the order of them\first occurrence in a depth first
search traversal. With this, the leftmost child of an interna\node is found right next to it
in the array, which removes the need to store a child pointer. Izgstead of storing the starting
and ending positions of a substring corresponding to an edge Ipel, an edge label can be
stored with the starting position and length of the substring. The\ydvantage of doing so is
that the length of the edge label is likely to be small. Hence, one by®§ can be used to store
edge labels with lengths < 255 and the number 255 can be used to den\ge edge labels with
length at least 255. The actual values of such labels can be stored in exceptions list,
which is expected to be fairly small. Using several such techniques, the spaxe required per
character can be roughly cut in half to about 20 bytes [17].

A suffix array can be stored in just one word per character, or 4 bytes. Most aj\plications
using suffix arrays also need the Lep array. Similar to the technique employed 1
edge labels on suffix trees, the entries in Lep array can also be stored using one bytd, with
exceptions handled using an ordered exceptions list. Provided most of the lep values K¢ in
a byte, we only need 5 bytes per character, significantly smaller than what is required
suffix trees. Further space reduction can be achieved by the use of compressed suffix tree
and suffix arrays and other data structures [9, 11]. However, this often comes at the expense
of increased run-time complexity.

access to secondar

29.3 Applications

”~
In this section, we present algorithms for several string problems using suﬁix—t/rees and suffix
arrays. While the same run-time bounds can be achieved for many interesting applications
with either a suffix tree or a suffix array, there are others which involve a space vs. time
trade off. Even in cases where the same run-time bound can be achieved, it is often easier
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to design the algorithm first for a suffix tree, and then think if the implementation can be
done using a suffix array. For this reason, we largely concentrate on suffix trees. The reader
interested in reading more on applications of suffix arrays is referred to [1,2].

29.3.1 Pattern Matching

Given a pattern P and a text T', the pattern matching problem is to find all occurrences of
PinT. Let |P| = m and |T| = n. Typically, n >> m. Moreover, T remains fixed in many
applications and the query is repeated for many different patterns. For example, T could be
a text document and P could represent a word search. Or, T' could be an entire database
of DNA sequences and P denote a substring of a query sequence for homology (similarity)
search. Thus, it is beneficial to preprocess the text T so that queries can be answered as
efficiently as possible.

Pattern Matching using Suffix Trees

The pattern matching problem can be solved in optimal O(m+ k) time using ST'(T'), where
k is the number of occurrences of P in T. Suppose P occurs in T starting from position
i. Then, P is a prefix of suff; in T. It follows that P matches the path from root to leaf
labeled i in ST. This property results in the following simple algorithm: Start from the
root of ST and follow the path matching characters in P, until P is completely matched or
a mismatch occurs. If P is not fully matched, it does not occur in 7. Otherwise, each leaf
in the subtree below the matching position gives an occurrence of P. The positions can be
enumerated by traversing the subtree in time proportidnal to the size of the subtree. As
the number of leaves in the subtree is k, this takes O(k) time. If only one occurrence is
of interest, the suffix tree can be preprocessed in O(n) time such that each internal node
contains the label of one of the leaves in its subtree. Thus, the problem of whether P occurs
in T or the problem of finding one occurrence can be answered in O(m) time.

Pattern Matching using Suffix Arrays

Consider the problem of pattern matching when the suffix array of the text, SA(T), is
available. As before, we need to find all the suffixes that have P as a prefix. As SAis a
lexicographically sorted order of the suffixes of T', all such suffixes will appear in consecutive
positions in it. The sorted order in S A allows easy identification of these suffixes using binary
search. Using a binary search, find the smallest index ¢ in SA such that suf fga[;) contains
P as a prefix, or determine that no such suffix is present. If no suffix is found, P does not
occur in 7. Otherwise, find the largest index j(> ¢) such that suffga[; contains P as a
prefix. All the elements in the range SA[:..j] give the starting positions of the occurrences
of PinT.

A binary search in SA takes O(logn) comparisons. In each comparison, P is compared
with a suffix to determine their lexicographic order. This requires comparing at most
| P| = m characters. Thus, the run-time of this algorithm is O(mlogn). Note that while this
run-time is inferior to the run-time using suffix trees, the space required by this algorithm
is only n words for SA apart from the space required to store the string. Note that the Lep
array is not required. Assuming 4 bytes per suffix array entry and one byte per character
in the string, the total space required is only 5n bytes.

The run-time can be improved to O(m + logn), by using slightly more space and keep-
ing track of appropriate lcp information. Consider an iteration of the binary search. Let
SA[L..R] denote the range in the suffix array where the binary search is focused. To be-
gin with, L = 1 and R = n. At the beginning of an iteration, the pattern P is known
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to be lexicographically greater than or equal to suf fsajr) and lexicographically smaller
than or equal to suffg A[R)- Let M = }'L—“;E'I During the iteration, a lexicographic com-
parison between P and suffg A[M) is made. Depending on the result, the search range
is narrowed to either SA[L..M] or SA[M..R]. Assume that [ = |lep(P, suf fsajz))| and
r = |lep(P, suf fs A[r])| are known at the beginning of the iteration. Also, assume that
llcp(suffSA[L},suffSA{M])l and |lep(suf fsapm), suf fsar))| are known. From these val-
ues, we wish to determine |lcp(P, suf fs A[m))| for use in next iteration, and consequently
determine the relative lexicographic order between P and su ffsam. As SAis a lexico-
graphically sorted array, P and suf fg A[M] Must agree on at least min(l,r) characters. If [
and r are equal, then comparison between P and suf fg A[M) is done by starting from the
(I 4+ 1)™ character. If | and r are unequal, consider the case when [ > r.

CaseI: | < [lcp(suffSA[L],suffSA[M])l. In this case, P is lexicographically
greater than suf fsapn and |lep(P, suf fsam) = |lep(P, suffsajr))|. Change
the search range to SA[M..R)]. No character comparisons are needed.

Case II: I > llcp(suffSA[L],suffSA[M])I. In this case, P is lexicographically
smaller than suf fsaar and |lep(P, suf fsappn)| = |lep(Suf fsapwy, suf fsapn)l-
Change the search range to SA[L..M]. Again, no character comparisons are
needed.

Case III; | = |lcp(suffSA[L],sufng[M])l. In this case, P agrees with the first
l characters of suffsam;. Compare P and suf fsam) starting from (I + 1)tk
character to determine |lcp(P, suf fg AjMm))| and the relative lexicographic order
of P and suf fsaim-

Similarly, the case when r > [ can be handled such that comparisons between P and
suf fsam), if at all needed, start from (r + 1)®* character. To start the execution of the
algorithm, lep(P, suf fg Aq)) and lep(P, suf fs An}) are computed directly using at most 2|P|
character comparisons. This ensures |lcp(P, suf fg A(z))| and |lep(P, suf fs 4 r))| are known
at the beginning of the first iteration. This property is maintained for each iteration as L or
R is shifted to M but |lcp(P, suf fg A[M))| is computed. For now, assume that the required

llep(suf fsaiL), suf fsapm)| and |lep(suf fsagry, suf fsappn)| values are available.

LEMMA 29.4 The total number of character comparisons made by the algorithm is
O(m + logn).

Proof The algorithm makes at most 2m comparisons in determining the longest common
prefixes between P and suf fg A[1] and between P and suf fs Aln]- Classify the comparisons
made in each iteration to determine the longest common prefix between P and suf fg A[M]
into successful and failed comparisons. A comparison is considered successful if it contributes
the longest common prefix. There is at most one failed comparison per iteration, for a
total of at most logn such comparisons over all iterations. As for successful comparisons,
note that the comparisons start with (maz(l,r) + 1)** character of P, and each successful
comparison increases the value of maz(l,r) for next iteration. Thus, each character of P is
involved only once in a successful comparison. The total number of character comparisons
is at most 3m + logn = O(m + logn).

It remains to be described how the llep(suf fsarL)s suf fsaim))| and {lep(suf fsarn) suf fsam)l
values required in each iteration are computed. Suppose the Lep array of T is known. For
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any 1 <¢<j<mn,
llep(suf fsapi, suf Fsap)l = miniZ; Leplk]

The lcp of two suffixes can be computed in time proportional to the distance between them
in the suffix array. In order to find the lcp values required by the algorithm in constant
time, consider the binary tree corresponding to all possible search intervals used by any
execution of the binary search algorithm. The root of the tree denotes the interval [1..n].
If [¢..5] (j — i > 2) is the interval at an internal node of the tree, its left child is given by
[i..[<5£]] and its right child is given by [[%52]..5]. The execution of the binary search tree
algorithm can be visualized as traversing a path in the binary tree from root to a leaf. If
lep value for each interval in the tree is precomputed and recorded, any required lcp value
during the execution of the algorithm can be retrieved in constant time. The leaf level in
the binary tree consists of intervals of the type [i..; + 1]. The lcp values for these n — 1
intervals is already given by the Lep array. The lcp value corresponding to an interval at an
internal node is given by the smaller of the lcp values at the children. Using a bottom-up
traversal, the lcp values can be computed in O(n) time. In addition to the Lcp array, n— 2
additional lcp values are required to be stored. Assuming approximately 1 byte per lep
value, the algorithm requires approximately 2n bytes of additional space. As usual, lep
values larger than or equal to 255, if any, are stored in an exceptions list and the size of
such list should be very small in practical applications.

Thus, pattern matching can be solved in O(mlogn) time using 5n bytes of space, or
in O(m + logn) time using 7n bytes of space. Abouelhoda et al. [2] reduce this time
further to O(m) time by mimicking the suffix tree algorithm on a suffix array with some
auxiliary information. Using clever implementation techniques, the space is reduced to
approximately 6n bytes. An interesting feature of their algorithm is that it can be used in
other applications based on a top-down traversal of suffix tree.

29.3.2 Longest Common Substrings

Consider the problem of finding a longest substring common to two given strings s; of size
m and s of size n. To solve this problem, first construct the GST of strings s; and s2. A
longest substring common to s; and sz will be the path-label of an internal node with the
greatest string depth in the suffix tree which has leaves labeled with suffixes from both the
strings. Using a traversal of the GST, record the string-depth of each node, and mark each
node if it has suffixes from both the strings. Find the largest string-depth of any marked
node. Each marked internal node at that depth gives a longest common substring. The
total run-time of this algorithm is O(m + n).

The problem can also be solved by using the suffix tree of one of the strings and suffix
links. Without loss of generality, suppose the suffix tree of s; is given. For each position 1
in 81, we find the largest substring of s; starting at that position that is also a substring of
so. For position 1, this is directly computed by matching suf f; of s; starting from the root
of the suffix tree until no more matches are possible. To determine the longest substring
match from position 2, simply walk up to the first internal node, follow the suffix link, and
walk down as done in McCreight’s algorithm. A similar proof shows that this algorithm
runs in O(m + n) time.

Now consider solving the longest common substring problem using the GSA and Lcp
array for strings s; and sg. First, consider a one string variant of this problem — that of
computing the longest repeat in a string. This is given by the string depth of the deepest
internal node in the corresponding suffix tree. All children of such a node must be leaves.
Any consecutive pair of such leaves have the longest repeat as their longest common prefix.
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Thus, each largest value in the Lcp array reveals a longest repeat in the string. The number
of occurrences of a repeat is one more than the number of consecutive occurrences of the
corresponding largest value in the Lcp array. Thus, all distinct longest repeats, and the
number and positions of their occurrences can be determined by a linear scan of the Lep
array.

To solve the longest common substring problem, let v denote an internal node with the
greatest string depth that contains a suffix from each of the strings. Because such a pair
of suffixes need not be consecutive in the suffix array, it might appear that one has to look
at nonconsecutive entries in the Lep array. However, the subtree of any internal node that
is a child of v can only consist of suffixes from one of the strings. Thus, there will be two
consecutive suffixes in the subtree under v, one from each string. Therefore, it is enough to
look at consecutive entries in the GSA. In a linear scan of the GSA and Lcp arrays, find the
largest lcp value that corresponds to two consecutive suffixes, one from each string. This
gives the length of a longest common substring. The starting positions of the suffixes reveals
the positions in the strings where the longest common substring occurs. The algorithm runs
in O(m + n) time.

29.3.3 Text Compression

Compression of text data, is useful for data transmission and for compact storage. A simple,
not necessarily optimal, data compression method is the Ziv-Lempel compression [24,25].
In this method, the text to be compressed is considered a large string, and a compact
representation is obtained by identifying repeats in the string. A simple algorithm following
this strategy is as follows: Let T' denote the text to be compressed and let |T] = n. At some
stage during the execution of the compression algorithm, suppose that the string T'[1..i — 1]
is already compressed. The compression is extended by finding the length I; of a largest
prefix of suf f; that is a substring of T'[1..i — 1]. Two cases arise:

L. I; = 0. In this case, a compressed representation of T[1..1] is obtained by append-
ing T'[4] to the compressed representation of T'[1..: — 1].

2. 1; > 0. In this case, a compressed representation of T'[1..i 4 I; — 1] is obtained by
appending (4, ;) to the compressed representation of T[1..i — 1].

The algorithm is initiated by setting T'[1] to be the compressed representation of T[1..1], and
continuing the iterations until the entire string is compressed. For example, executing the
above algorithm on the string mississippi yields the compressed string mis(3,1)(2,3)(2,1)p
(9,1)(2,1). The decompression method for such a compressed string is immediate.

Suffix trees can be used to carry out the compression in O(n) time [20]. They can be used
in obtaining l;, the length of the longest prefix of suff; that is a substring of the portion
of the string already seen, T{1..4 — 1]. If j is the starting position of such a substring, then
Tj.j+li—1]=T[.i+1—1) and ¢ > j + ;. It follows that Hep(suf fj, suffi)| = ;. Let
v = lca(i, j), where i and j are leaves corresponding to suff; and suf fj, respectively. It
follows that T'[i..i + I; — 1] is a prefix of path-label(v). Consider the unique path from the
root of ST(T') that matches T'[i..i +1; — 1]. Node v is an internal node in the subtree below,
and hence j is a leaf in the subtree below. Thus, I; is the largest number of characters along
the path T'[i..n] such that J leaf j in the subtree below with J+1; <i. Note that any j in
the subtree below that satisfies the property j + I; < i is acceptable. If such a Jj exists, the
smallest leaf number in the subtree below certainly satisfies this property, and hence can
be chosen as the starting position j.

This strategy results in the following algorithm for finding /;: First, build the suffix tree of
T'. Using an appropriate linear time tree traversal method, record the string depth of each
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node and mark each internal node with the smallest leaf label in its subtree. Let min(v)
denote the smallest leaf label under internal node v. To find [;, walk along the path T'[i..n]
to identify two consecutive internal nodes u and v such that min(u) + string-depth(u) < i
and min(v) + string-depth(v) > i. If min(v) + string-depth(u) > i, then set l; = string-
depth(u) and set the starting position to be min(u). Otherwise, set I; = i —min(v) and set
the starting position to be min(v).

To obtain O(n) run-time, it is enough to find ; in O(l;) time as the next /; characters of
the string are compressed into an O(1) space representation of an already seen substring.
Therefore, it is enough to traverse the path matching T[i..n] using individual character
comparisons. However, as the path is guaranteed to exist, it can be traversed in O(1) time
per edge, irrespective of the length of the edge label.

.4 String Containment

set of strings S = {s1, 52, ...,sx} of total length N, the string containment problem
ify each string that is a substring of some other string. An example application

the GST(S) in\Q(N) time. To find if a string s; is contained in another, locate the leaf
e label of the edge connecting the leaf to its parent is labeled with the
string $, s; is contal
0O(1) time per string.

Suppose we are given a set of Nyings S = {s1,2,...,sx} of total length N. The suffix-
prefix overlap problem is to identi¥y, for each pair of strings (s;, s;), the longest suffix of s;
that is a prefix of s;. Suffix-prefix oWglaps are useful in algorithms for finding the shortest
common superstring of a given set of'\\trings. They are also useful in applications such
as genome assembly where significant sulig-prefix overlaps between pairs of fragments are
used to assemble fragments into much largeNsequences.

The suffix-prefix overlap problem can be sol%d using GST'(S) in optimal O(N +k2) time.
Consider the longest suffix a of s; that is a prefx of s;. In GST(S), a is an initial part
of the path from the root to leaf labeled (j,1) tha\culminates in an internal node. A leaf
that corresponds to a suffix from s; should be a chiM of the internal node, with the edge
label $. Moreover, it must be the deepest internal node\qn the path from root to leaf (j,1)
that has a suffix from s; attached in this way. The length&{ the corresponding suffix-prefix
overlap is given by the string depth of the internal node.

Let M be a k x k output matrix such that M|z, j] should conl
suffix of s; that overlaps a prefix of s;. The matrix is compute
(DFS) traversal of GST(S). The GST is preprocessed to record tPg string depth of every
node. During the DFS traversal, k stacks A1, Az, . .., Ak are maintaineN, one for each string.
The top of the stack A; contains the string depth of the deepest nodeN\aglong the current
DFS path that is connected with edge label $ to a leaf corresponding to 3\suffix from s;.
If no such node exists, the top of the stack contains zero. Each stack A; isNpiti
pushing zero onto an empty stack, and is maintained during the DFS as fol

in the length of the longest
sing a depth first search

maintained during the DFS traversal. When the DFS traversal leaves the node v to retutn
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back to its par again identify each ¢ that has the above property and pop the top element
from the corresponding stack A;.

The output matrix M 1 ilt one column at a time. When the DFS traversal reaches a
leaf labeled (4, 1), the top of stai ; contains the longest suffix of s; that matches a prefix
of s;. Thus, column j of matrix M btained by setting M[i, j] to the top element of
stack S;. To analyze the run-time of the ahsqrithm, note that each push (similarly, pop)
operation on a stack corresponds to a distinct sifx of one of the input strings. Thus, the
total number of push and pop operations is bounded DR Q(N). The matrix M is filled in
O(1) time per element, taking O(k?) time. Hence, all suffix- x overlaps can be identified
in optimal O(N + k?) time.

29.4 Lowest Common Ancestors

Consider a string s and two of its suffixes suff; and suff;. The longest common prefix
of the two suffixes is given by the path label of their lowest common ancestor. If the
string-depth of each node is recorded in it, the length of the longest common prefix can
be retrieved from the lowest common ancestor. Thus, an algorithm to find the lowest
common ancestors quickly can be used to determine longest common prefixes without a
single character comparison. In this section, we describe how to preprocess the suffix tree
in linear time and be able to answer lowest common ancestor queries in constant time [3].

Bender and Farach’s lca algorithm

Let T be a tree of n nodes. Without loss of generality, assume the nodes are numbered
1...n. Let lca(i,j) denote the lowest common ancestor of nodes i and j. Bender and
Farach’s algorithm performs a linear time preprocessing of the tree and can answer lca
queries in constant time.

Let E be an Euler tour of the tree obtained by listing the nodes visited in a depth first
search of T starting from the root. Let L be an array of level numbers such that L]
contains the tree-depth of the node E[i]. Both E and L contain 2n — 1 elements and can
be constructed by a depth first search of T in linear time. Let R be an array of size n such
that RJ[i] contains the index of the first occurrence of node i in E. Let RMQ (%, §) denote
the position of an occurrence of the smallest element in array A between indices ¢ and j
(inclusive). For nodes i and j, their lowest common ancestor is the node at the smallest
tree-depth that is visited between an occurrence of 7 and an occurrence of j in the Euler
tour. It follows that

lea(i, j) = EIRMQL (R, Rj))

Thus, the problem of answering lca queries transforms into answering range minimum
queries in arrays. Without loss of generality, we henceforth restrict our attention to an-
swering range minimum queries in an array A of size n.

To answer range minimum queries in A, do the following preprocessing: Create |logn|+1
arrays Bo, B1,..., Bliogn| such that Bj;[i] contains RMQA(3,i + 27, provided i + 2/ < n.
By can be computed directly from A in linear time. To compute B[i], use Bj_;[i] and
Bi_i[i + 21] to find RMQa(4,i + 2'') and RMQa(é + 2'71,i + 2!), respectively. By
comparing the elements in A at these locations, the smallest element in the range Als.i+2Y
can be determined in constant time. Using this method, all the |logn] + 1 arrays are
computed in O(n logn) time.

Given an arbitrary range minimum query RMQ (4, j), let k be the largest integer such
that 2% < (j —i). Split the range [i..j] into two overlapping ranges [i..i + 2¥] and [j — 2..5].
Using By[i] and Bi[j — 2F], a smallest element in each of these overlapping ranges can be
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located in constant time. This will allow determination of RM Q@ 4(%, 7) in constant time.
To avoid a direct computation of k, the largest power of 2 that is smaller than or equal to
each integer in the range [1..n] can be precomputed and stored in O(n) time. Putting all of
this together, range minimum queries can be answered with O(n logn) preprocessing time
and O(1) query time.

The preprocessing time is reduced to O(n) as follows: Divide the array A into 102gnn blocks
of size % logn each. Preprocess each block such that for every pair (i, ) that falls within a
block, RMQ4(i,j) can be answered directly. Form an array B of size 102—"n that contains
the minimum element from each of the blocks in A, in the order of the f)locks in A, and
record the locations of the minimum in each block in another array C. An arbitrary query
RMQ 4(i,7) where i and j do not fall in the same block is answered as follows: Directly
find the location of the minimum in the range from ¢ to the end of the block containing
it, and also in the range from the beginning of the block containing j to index j. All that
remains is to find the location of the minimum in the range of blocks completely contained
between 7 and 7. This is done by the corresponding range minimum query in B and using
C to find the location in A of the resulting smallest element. To answer range queries in B,

B is preprocessed as outlined before. Because the size of B is only O (Bg;), preprocessing
B takes O (1’527 x log Eﬁ) = O(n) time and space.

It remains to be described how each of the blocks in A is preprocessed to answer range
minimum queries that fall within a block. For each pair (i,j) of indices that fall in a
block, the corresponding range minimum query is precomputed and stored. This requires
computing O(log®n) values per block and can be done in O(log® n) time per block. The
total run-time over all blocks is rfg"—n x O(log® n) = O(nlogn), which is unacceptable. The
run-time can be reduced for the special case where the array A contains level numbers of
nodes visited in an Euler Tour, by exploiting its special properties. Note that the level
numbers of consecutive entries differ by +1 or —1. Consider the 13—"” blocks of size % logn.
Normalize each block by subtracting the first element of the block from each element of
the block. This does not affect the range minimum query. As the first element of each
block is 0 and any other element differs from the previous one by +1 or —1, the number
of distinct blocks is 27 18n-1 = %\/ﬁ Direct preprocessing of the distinct blocks takes
%\/1—1 x O(log?n) = O(n) time. The mapping of each block to its corresponding distinct
normalized block can be done in time proportional to the length of the block, taking O(n)
time over all blocks.

Putting it all together, a tree T' of n nodes can be preprocessed in O(n) time such that
lea queries for any two nodes can be answered in constant time. We are interested in an
application of this general algorithm to suffix trees. Consider a suffix tree for a string of
length n. After linear time preprocessing, lca queries on the tree can be answered in constant
time. For a given pair of suffixes in the string, the string-depth of their lowest common
ancestor gives the length of their longest common prefix. Thus, the longest common prefix
can be determined in constant time, without resorting to a single character comparison!

This feature is exploited in many suffix tree algorithms.

29.5 Admd Applications

29.5.1 Suffix Links

m Lowest Common Ancestors

Suppose we are given a suffix tree™»qd it is required to establish suffix links for each internal
node. This may become necessary if suffix tree creation algorithm does not construct
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may be cOxgtructed via suffix arrays, completely avoiding the construction and use of suffix
g the tree. The links can be easily established if the tree is preprocessed for
lca queries.

Mark each internal™qde v of the suffix tree with a pair of leaves (i, §) such that leaves
labeled ¢ and 7 are in the trees of different children of v. The marking can be done in
linear time by a bottom-up travéeal of the tree. To find the suffix link from an internal node
v (other than the root) marked withNg, ), note that v = lca(i, §) and lep(suff;, suff;) =
path-label(v). Let path-label(v) = co, Where c is the first character and « is a string. To
establish a suffix link from v, node u with pathJabel a is needed. Aslcp(suf fiy1, suffit1) =
@, node u is given by lca(i + 1,5 + 1), which calN\pe determined in constant time. Thus, all
suffix links can be determined in O(n) time. This hod trivially extends to the case of a
generalized suffix tree.

29.5.2 Approximate Pattern Matching

The simpler version of approximate pattern matching problem is as follows: Given a pattern
P (|P| = m) and a text T (|T| = n), find all substrings of length |P| in T that match P
with at most k mismatches. To solve this problem, first construct the GST of P and T.
Preprocess the GST to record the string-depth of each node, and to answer lca queries in
constant time. For each position ¢ in T, we will determine if T[i..i + m — 1] matches P with
at most k mismatches. First, use an lca query lca((P, 1), (T,)) to find the largest substring
from position ¢ of T' that matches a substring from position 1 and P. Suppose the length of
this longest exact match is [. Thus, P[1..l) = T[i..i+ 1 — 1], and Pl +1] # T[i +I]. Count
this as a mismatch and continue by finding lca((P,! + 2), (T, i+ ! + 1)). This procedure is
continued until either the end of P is reached or the number of mismatches crosses k. As
each lca query takes constant time, the entire procedures takes O(k) time. This is repeated
for each position 7 in T for a total run-time of O(kn).

Now, corisider the more general problem of finding the substrings of 7' that can be derived
from P by using at most k character insertions, deletions or substitutions. To solve this
problem, we proceed as before by determining the possibility of such a match for every
starting position i in T'. Let | = string-depth(lca((P, 1), (T,1))). At this stage, we consider
three possibilities:

1. Substitution — P[l 4- 1] and T'[é + {] are considered a mismatch. Continue by
finding lca((P,1 + 2),(T,i + 1 + 1)).

2. Insertion — T'[i+1] is considered an insertion in P after P[l]. Continue by finding
lea((P,1+1),(T,i+1+1)).

3. Deletion — P[l + 1] is considered a deletion. Continue by finding lca((P,! +
2),(T,i+1)).

After each lca computation, we have three possibilities corresponding to substitution, inser-
tion and deletion, respectively. All possibilities are enumerated to find if there is a sequence
of k or less operations that will transform P into a substring starting from position ¢ in

T. This takes O(3*) time. Repeating this algorithm for each position  in T' takes O(3*n)

time.

The above algorithm always uses the longest exact match possible from a given pair
of positions in P and T before considering the possibility of an insertion or deletion. To
prove the correctness of this algorithm, we show that if there is an approximate match
of P starting from position ¢ in T that does not use such a longest exact match, then
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there exists another approximate match that uses only longest exact matches. Consider
an approximate match that does not use longest exact matches. Consider the leftmost
position j in P and the corresponding position 7 + k in T where the longest exact match
is violated. i.e., P[j] = T'[i + k] but this is not used as part of an exact match. Instead,
an insertion or deletion is used. Suppose that an exact match of length r is used after
the insertion or deletion. We can come up with a corresponding approximate match where
the longest match is used and the insertion/deletion is taken after that. This will either
keep the number of insertions/deletions the same or reduce the count. If the value of k is
small, the above algorithms provide a quick and easy way to solve the approximate pattern
matching problem. For sophisticated algorithms with better run-times, see [4,21].

'9"}76;‘; o

29.5.3 Maximal Palindromes

A strimsjs called a palindrome if it reads the same forwards or backwards. A substring
s[i..j] of agring s is called a maximal palindrome of s, if s[i..j] is a palindrome and
s[i — 1] # s[j W] (unless i = 1 or j = n). The maximal palindrome problem is to find all
maximal palindrowes of a string s.

For a palindrome d{ odd length, say 2k + 1, define the center of the palindrome to be the
(k + 1)** character. FOxa palindrome of even length, say 2k, define the center to be the
position between charactedk and k + 1 of the palindrome. In either case, the palindrome
is said to be of radius k. StalMjng from the center, a palindrome is a string that reads the
same in both directions. Obser™g that each maximal palindrome in a string must have a
distinct center. As the number of Igssible centers for a string of length n is 2n — 1, the
total number of maximal palindromes’f a string is 2n — 1. All such palindromes can be
identified in linear time using the followiny algorithm.

Let s™ denote the reverse of string s. truct a GST of the strings s and s” and
preprocess the GST to record string depths of i¥gernal nodes and for answering lca queries.
Now, consider a character s[i] in the string. The maXjmal odd length palindrome centered at
s[i] is given by the length of the longest common prefil\petween suf f; .1 of s and suf fr—it2
of s™. This is easily computed as the string-depth of lca(¥& i + 1), (s",n —i+2)) in constant
time. Similarly, the maximal even length palindrome cent®ed between s[i] and s[i + 1} is
given by the length of the longest common prefix between su
s". This is computed as the string-depth of lea((s,i + 1), (s7,n —%

These and many other applications involving strings can be solve ciently using suffix
trees and suffix arrays. A comprehensive treatise of suffix trees, suffix™\qrrays and string
algorithms can be found in the textbooks by Gusfield [12], and Crochemorend Rytter [6].
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