efsize one to three

THEOREM 5. ThiXgtatic COSB-{fee represents a set D of N el-
ements, and supports Rg :

queries. The operatiof MEMBER(x) runs in O(1 + loggN +
llx||/B) memory transfe .. and PRED(X), and succ(k)
run in O(1 + logg N + ||x| I<'||/B) memory transfers w.h.p.,
where ' is the predecessq
tion RANGE-QUERY(K,
\|OII)/B) transfers, whefe

in O(1 +logg N + (Jix]| + I¥'|| +
of keys in the result.

ge compared to mem-
its that we compute

Q(M), i.e., the key is 12
his case, the Karp-Rabin fingerp
fit in memory at the same time.

is dominated
transdichoto-
assumption

long as logN < ||x||/B. Since the CO model
mous (B = Q(logN)) [14] and satisfies the tall-cac]
(M =Q(B%)[15],10gN < M/B < |x||/B.

The scan bounds are trivially obtained.

O

3.2 Locality-preserving front compression

In this subsection we show how to add compression to our static
COSB-tree. We develop a new strategy for achieving front com-
pression without high decoding cost. The front-compressed data
then replaces the array of keys used in the static COSB-tree above.

Front compression works as follows: Given a sequence of keys
Ki,X2,...,Kj t0 store, a naive representation requires 3, [[x;||
memory. Instead, we let ;| be the longest common prefix of
X; and K;1. In this case, we can remove nearly 3 ; ||n;| memory
from the representation by representing the keys as

k1, |72l 62, [imsl, . -, fimill, o

where g is the suffix of «; after removing the first 7; bits. To de-
code K ;, one concatenates the first 7t; bits from x;_; to 6;. Finding
the first 7; bits of k;.; may require further decoding, possibly re-
sulting in expensive decoding. This lossless compression scheme
has the same space use as the (uncompacted) trie for © [20]. The
total size of a front-compressed set of keys © is written as {D).
Front and rear compression was described in [9, 10]. A more
accessible description can be found in [26]. Publication {20] de-
scribes front compression in an exercise, but provides less detail.
Publication [5] argues that front and rear compression are partic-
ularly important for secondary indices. Front compression is rele-
vant for compressing the keys stored at the leaves of a search tree,
whereas rear compression is essentially used only in the indices,

N

and is subsumed by the string-B-tree techniques presented here and
in [13].

Our goal is to achieve O(1 + ||x||/B) memory transfers to de-
compress any key in D, but to store © with O({D)) space. The
challenge is that uncompressing a single key may require scanning
back through the entire compressed representation. This is a well
known problem for front compression. One common strategy is to
compress enough keys to fill some predefined block and to start the
compression over when that block is full. This idea does not pro-
vide any theoretical bounds, however: the compression achieved
can be much worse than the best front compression; and a block
size may be arbitrarily bigger than ||Q||, so decompression also has
no guarantees. Here we show a locality-preserving front compres-
sion (LPFC), which meets our goal.

Our modified compression scheme begins with key k. Suppose
we have compressed the first i — 1 keys and now we want to add
key K;. We scan back c||x;|| characters in the compression to see if
we could decode x; from just this information. If so, we add =;, o;
as before. If not, we add 0, x; to the compression, that is, we do not
compress key x; at all. Call this sequence the locality-preserving
Jront compression of D, denoted LPFC(D).

The decoding scheme is just as with standard front compres-
sion, and it immediately matches the desired bounds: decoding
K; touches at most c||x;|| contiguous characters, and decoding Q
touches O(||Q]]) contiguous characters. The issue here is to show
that the compression is (1 +€){2}), which we do as follows.

LEMMA 6. The total length of the LPFC(D) is at most (1 +
e){D) and every key ; can be decoded with O(||x;||/eB) block
transfers.

Proof. Call any key K that has been inserted uncompressed a
copied key. Denote as native any characters in the compression
that are not copied. Denote the precedmg c||x]] characters as the
left extent of k. Notice that if x is a copied key, there can be no
copied key beginning in the left extent of k. However, a copied key
may end within K’s left extent.

We consider two cases. In the first case, the preceding copied
key ends at least ¢||k||/2 characters before k. Then, we say that x
is uncrowded. In the second case the preceding copied key «k ends
within c{[{| /2 characters of x. Then, we say that k is crowded.

Partition the sequence of all copied keys just before each un-
crowded key. We call each such subsequence a chain. Note that
each chain begins with an uncrowded key and is followed by a se-
quence of crowded keys.

Furthermore, the lengths of these crowded keys decrease geo-
metrically. To see this, consider a crowded key x. Since K’s pre-
decessor in the chain, ¥/, must begin before ’s left extent, it must
have length at least ¢||x|| /2.

Thus, if x is uncrowded, the kth crowded key in its chain has
length at most ||x||(2/c)*. The total length of all keys in a chain
starting at « is thus at most c||x{|/(c — 2).

Finally, charge the cost of copying these keys to the cfjx||/2
characters preceeding the uncrowded key at the beginning of the
chain. This charge is at most 2/(c — 2) per character. Finally, set

£=2/(c—-2). O

(resp. successory’of X. The operation RANGE- QUERY(K lc’) runs

