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What is neuromorphic computing?

We can define neuromorphic computing as the act of performing a computation in a

manner similar to the brain.

Our brain elaborates inputs coming from our sensors and produces outputs in term of

generated motions and stored information.
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Classic computing

This kind of computing is very similar to what can be found in a robotic controller.

But the sensors and actuators are completely different, compared to the ones of

humans and animals, thus the brain is substituted by a computer.
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Brain vs machines

Getting to know your Brain

• 1.3 Kg, about 2% of body weight

• 1011 neurons

• neuron growth:

250,000 / min (early pregnancy)

-1 neuron/s (adult life)
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Getting to know your CPU

• 50g

• 1010 transistors (Ryzen 9)

• no modification over lifetime

“Operating mode” of Neurons

• analog computation in the soma

• digital pulses along axons

• 1014 stochastic synapses

• typical operating frequency:

< 100Hz, asynchronous

“Operating mode” of CPUs

• digital Boolean logic processing

• digital signal propagation

• reliable storage of data

• typical operating frequency:

GHz, synchronous



Why neuromorphic computing (in robotics)?

A brain is what defines a living being
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A brain is what make us be active in the environment (cfr. sea squirt).



Why neuromorphic computing (in robotics)?

A brain is what defines a living being
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Thus, we can apply neuromorphic computing to give brains to robots.
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Why neuromorphic computing (in robotics)?

Today, bio-inspired sensing and actuation technologies are starting to emerge.
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As such, neuromorphic computing can be used to control this new kind of robots.



Neuromorphic Computing

Lorenzo Vannucci

Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Neuronal physiology

The neuron is the fundamental structural and functional unit of the brain.
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Neuronal physiology

Many kind of neurons share the same cellular physiology.
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Neuronal physiology

Neuronal electrophysiological activity lies on the cell membrane.
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• Lipid bilayer, impermeable to charged

ions.

• Ionic channels allow ions to flow in or

out, selectively.

• The neuron maintains a potential

difference across it membrane via the

ionic pumps (expelling Na+ and allowing

K+ in).

• When no external stimulus is present, we

can refer to it as resting potential.

0 mV

-70 mV



Action potentials

The activity of a neuron (its “output”) is the action potential (or spike), generated by

voltage-gated ionic channels.
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1. An external electric stimulus reach the

membrane, depolarizing it.

2. Depolarization of the membrane opens

Na+ channels (→ even more

depolarization).

3. If membrane potential exceeds the

threshold potential, an action potential

occurs.

4. Afterwards, the membrane repolarize by

expelling K+ ions and the neuron enters

the refractory period.



Action potentials

The action potential is transmitted through the axon towards other neurons.

Each non-myelinated section (node of Ranvier) replicates the spike.
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Propagation speed ranges from 1 to 100 m/s.



Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the

mean number of spikes per second.
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𝑟𝑎𝑡𝑒 =
𝑛. 𝑠𝑝𝑖𝑘𝑒𝑠
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the

mean number of spikes per second.
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1s

It is not always an easy task!

1s
The instantaneous firing rate cannot be computed real-time, due to causality.

𝑟𝑎𝑡𝑒 =
𝑛. 𝑠𝑝𝑖𝑘𝑒𝑠

𝑡𝑖𝑚𝑒



Action potentials

Usually, we are interested in looking at the spike events, instead of the membrane

potential, and for a high number of neurons (a population).

We can do so with raster plots.
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Synapses

Axons and dendrites are connected through synapses. Each neuron has roughly

1000-10000 synapses.
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Synapses can be chemical or electrical, excitatory or inhibitory:

Synapses

Neuromorphic Computing

Lorenzo Vannucci

Spikes
• a chemical excitatory synapse releases

Glutamate → opening of ion channels for
Na+ influx → membrane depolarization
(membrane potential increases);

• a chemical inhibitory synapse releases
GABA neurotransmitter → K+ leaves cell
through ion channels → membrane
hyperpolarization (membrane potential
decreases).

Every synapse, once reached by an action potential, generates a postsynaptic current
(PSC) which turns in a postsynaptic potential (PSP).



Synapses and action potentials

Each spike coming for pre-synaptic neurons and activating excitatory synapses

contributes to the generation of an action potential in the post-synaptic neuron.
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Synaptic plasticity

Synapses are the basis for memory and learning.

If neuron A repeatedly takes part in making neuron B spike, then the synapse from a to

B is strengthened and vice versa. This leads to two phenomena:
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EPSP Before

EPSP After

Pairing

Long term potentiation (LTP) Long term depression (LTD)



Synaptic plasticity

This adaptation mechanism depends on the timing of the EPSP and the action

potential. Thus, it is called Spike-Timing Dependent Plasticity (STDP).
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Neural coding

What kind of information can a neuron represent?
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Neural information processing

What kind of information can a neuron process?
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None! (by himself)

Information is stored in the network topology and synaptic properties.



Receptive fields

A simple way of encoding information is the receptive field topology.
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Each receptive field is made up of several input neurons

and one output neuron that modulates the combination of

their responses.

Receptive fields have been identified in the human brain to

encode sensory information (auditory system,

somatosensory system, visual system).



Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

The retinal circuit implements receptive fields to process the image.
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Preferred stimulus

Neural response



Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

Receptive fields from the retina are in turn used to create oriented receptive fields in

the visual cortex.
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Retina

receptive

fields

V1

receptive

field



Neural coding

Each sensory input has its own dedicated brain areas that encode the information

received. Different types of encoding are being used in the brain. The most well-

understood are the following three:
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population coding temporal codingrate coding



Neural coding

In population coding, there is a population of neurons that respond differently to

different values of the same sensory information. E.g. cricket cercal cells, some visual

areas in the human brain.
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Neural coding

In population coding, there is a population of neurons that respond differently to

different values of the same sensory information. E.g. cricket cercal cells, some visual

areas in the human brain.
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Is the representation efficient?

Aren’t c1 and c2 enough?

𝑟𝑖 = Ԧ𝑣 ∙ 𝑐𝑖
The resulting value r is called the

population vector.



Neural coding

In rate coding, all the information is encoded by directly translating it into firing rates.

Thus, all neurons in the same population respond in the same manner to the same

stimulus. This is common in many sensory afferents, e.g. mammalian muscle spindles.
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Neural coding

A more complex encoding mechanism is temporal coding, where absolute or relative

spike times are used. There are evidence for this kind of encoding in the auditory and

gustative systems.
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Neuron abstractions

In order to simulate the behaviour of neural circuits we have to model the neuron

dynamics.

Thus, we have to translate neurophysiologic properties into equations that we can

implement.
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Abstract neuron models

• Rate-based

• Point neuron

• Detailed neuron



Detailed neural abstraction

In these kind of models every aspect of the cell morphology is taken into account:

diameter of the soma, length of the axons, position of synapses on the dendrites,

distribution of ionic channels, neurotransmitter types, etc…
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Pros:

• very accurate

• can model any aspect of neural

activity

Cons:

• much knowledge is needed to model

networks

• simulation times are high

Some detailed neural simulators exist, i.e.

NEURON (www.neuron.yale.edu/neuron). Too little abstraction!



Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:
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Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:
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10 20 10 10 20 40

30 30 60 80 70 70

30 10 40 0 30 50

By doing so, we are:

• discretizing time

• forgetting about single action potential events



Rate-based abstractions

Activity of a post-synaptic neuron can be computed as a function of the rates of pre-

synaptic neurons.
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Rate-based abstractions

What about synapses? We can add weights on the connections.
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r1

ror2

rn

.

.

.

𝑟𝑜 = 𝑓 

𝑖=0

𝑛

𝑟𝑖 ∙ 𝑤𝑖

w1

w2

wn

Too much abstraction!
→ Rosenblatt’s perceptron and 

Artificial Neural Networks.



Point neuron abstractions

Why are these called point-neuron abstractions?

Because we do not take into account the neuron morphology. Each neuron is dimensionless
and currents propagate instantaneously from all the receiving synapses.
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Point neuron abstractions – neuron models

The neuron electrical properties can be described through electrical circuits:

• the lipidic membrane acts as a capacitor (Cm);

• all PSP can be summed up and represented as an external current generator (Iext).

We are interested in the voltage between the two termination of the capacitor

(membrane potential, Vm) and we also add the action potential rule:
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If Vm > Vth then Vm resets to

Vreset and a spike is emitted.



Point neuron abstractions – neuron models

A first circuit representing neural activity is the Integrate and fire model (IAF).
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Kirchhoff’s law: 𝐼𝐶(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

By deriving the law

of capacitance:

𝑄 𝑡 = 𝐶𝑚𝑉𝑚(𝑡)

𝐼𝐶(𝑡) = 𝐶𝑚
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𝑑𝑡
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A first circuit representing neural activity is the Integrate and fire model (IAF).
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Kirchhoff’s law: 𝐼𝐶(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

By deriving the law

of capacitance:

𝑄 𝑡 = 𝐶𝑚𝑉𝑚(𝑡)

𝐼𝐶(𝑡) = 𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡

Thus, we obtain:
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚



Point neuron abstractions – simulation loop (I)

We can employ the differential equation to compute the dynamics of the membrane in

a simulation loop, by discretizing time in small intervals.
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Let’s try it out!

𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚

T = 2000.0 // total simulation time, ms
time = 0.0
V = 0.0
dt = 1.0  // simulation step, ms

while (time < T) {

Iext = sum_external_currents()

dVm = membrane_update(Iext)

V += dVm * dt // discrete integration

if (V > Vth) emit_spike();

time += dt

}



Point neuron abstractions – neuron models

Neurons have the refractory period, that must be taken into account for an accurate

simulation. Otherwise, the firing rate will rise indefinitely.
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without: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡)
lim
𝐼→+∞

𝑟(𝐼) = +∞



Point neuron abstractions – neuron models

Neurons have the refractory period, that must be taken into account for an accurate

simulation. Otherwise, the firing rate will rise indefinitely.
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without: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡)
lim
𝐼→+∞

𝑟(𝐼) = +∞

with: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡) + 𝑡𝑟𝑒𝑓𝐼
lim
𝐼→+∞

𝑟(𝐼) =
1

𝑡𝑟𝑒𝑓



Point neuron abstractions – neuron models

In the IAF model, the membrane continues to keep the gained potential, even if there

is no external input current and the spike threshold is not reached. This is not true for

the biological neuron.
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Point neuron abstractions – neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium

potential of the cell membrane.
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The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium

potential of the cell membrane.

Neuromorphic Computing

Lorenzo Vannucci

Kirchhoff’s law: 𝐼𝐶 𝑡 + 𝐼𝑅(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

Ohm’s law: 𝐼𝑅(𝑡) =
(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡)

𝑅

Thus, we obtain:
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚
−
(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡)

𝐶𝑚𝑅



There are many others neuron models:

Hodgkin–Huxley: each ionic channel is modelled as a resistance-battery parallel circuit, with a
probabilistic conductance.
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𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚
−

1

𝐶𝑚


𝑖

𝑔𝑖(𝑉𝑚 𝑡 − 𝐸𝑖)

Point neuron abstractions – neuron models



Point neuron abstractions – neuron models

There are many others neuron models:

Izhikevich: two differential equations can model many different neuron behaviours.
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www.izhikevich.com



Point neuron abstractions – synapses models
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Transport delay

Time

Amongst the most common PSC types
there is the alpha-shaped one: 𝐼 𝑡 =

𝑡

𝜏𝑠
𝑒
−
𝑡
𝜏𝑠

Each action potential is transmitted as an event to all postsynaptic neurons connected,

after a transmission delay (travel time on the axon). When such event is received a
proper EPSC or IPSC is generated and added to the total input current.



Point neuron abstractions – synapses models

Each synapse has a weight that has two roles:

1. distinguishing between inhibitory and excitatory synapses by being negative or positive;

2. representing the strength of the connection between the two neurons.

Synaptic weights can be changed via rules implementing STDP, for example:
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∆𝑤𝑖𝑗 =

𝑓



𝑛

𝑊(𝑡𝑖
𝑓
− 𝑡𝑗

𝑛) 𝑊(𝑥) = ൞
𝐴+𝑒

(−
𝑥
𝜏+
)
𝑓𝑜𝑟 𝑥 > 0

−𝐴−𝑒
(−

𝑥
𝜏−
)
𝑓𝑜𝑟 𝑥 < 0



Point neuron abstractions – simulation loop (II)

Given the previous equations we could in principle create a network simulation loop

like the following:
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while (time < T) {

foreach (n : neurons) {

Iext = n.sum_external_currents(n.received_spikes)

dVm = n.membrane_update(Iext, n.V)

n.V += dVm * dt

if (n.V > n.Vth) {

n.send_spike()

n.adjust_weights(n.received_spikes)

}

time += dt
}

}

Send spike through delayed
and weighted connection
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Point neuron simulators - NEST

We don’t have to implement a whole simulator by ourselves, several already exist!

Among these, a popular choice is NEST (NEural Simulation Tool), an open source

spiking neural network simulator developed by the NEST initiative (www.nest-

simulator.org). Among its features, there are:

• over 50 neuron models (including LIAF, Hodgkin-Huxley and Izhikevich)

• over 10 synapse models (including STDP)

• minimal dependencies

• open source (GNU GPLv2)

• “easily” extendable
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Point neuron simulators - NEST

NEST has a simulation kernel (written in C++) and two layers of interface towards it.
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NEST 

Kernel
SLIPyNEST

The kernel cannot be directly accessed. In fact, the executable launches the

Simulation Language Interpreter to which one can send commands to create the

network.

/iaf_neuron Create /n Set
/poisson_generator Create /pg Set
pg << /rate 220.0 Hz >> SetStatus
pg n Connect

n = nest.Create('iaf_neuron')
pg = nest.Create('poisson_generator')
nest.SetStatus(pg, {'rate': 220.0})
nest.Connect(pg, n)

Why PyNEST? Because SLI is basically PostScript!



Point neuron simulators - NEST

PyNEST provides an usable interface towards SLI.
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Point neuron simulators - NEST

A NEST network is a directed weighted graph:

• Nodes

• neurons, devices, sub-networks

• have a dynamic state that changes over

time and can be influenced by events

• Events

• pieces of information of a particular type

(e.g. spike, voltage or current event)

• Connections

• communication channels for the

exchange of events

• directed (pre to post)

• weighted (synaptic weights)

• delayed (delay must be greater than 0!)
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Node 1

Node 2

E
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Point neuron simulators - NEST
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The simulation is discretized into time steps of a certain duration (Δt). The simulation

loop works as follows:

1. PSC for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δt



Point neuron simulators - NEST

Neuromorphic Computing

Lorenzo Vannucci

The simulation is discretized into time steps of a certain duration (Δt). The simulation

loop works as follows:

1. PSC for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δt

Δt

Notes:

• actually 1 and 2 occur inside an inner loop with a time step < Δt!

• delay of connections must be >= Δt

• during the time step, the node is isolated from the rest



NEST example – cortical microcircuit

Neuromorphic Computing

Lorenzo Vannucci

We want to simulate (a layer of) the cerebral cortex:

• 1mm2

• 0.3 billion synapses, 80000 neurons

• 6 layers

• 2 population of LIAF neurons per layer

Let’s try it out!

Potjans, Tobias C., and Diesmann, Markus. “The cell-type

specific cortical microcircuit: relating structure and activity in a

full-scale spiking network model.” Cerebral Cortex 24.3 (2014):

785-806



NEST examples – Poisson generators
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In order to give inputs to the system, representing activity of brain areas not modelled or

sensory information, we need to generate spikes without actually simulate neurons.

It has been observed that most of the times (excluding when time encoding mechanisms

are in action) the timing of successive action potential is highly irregular, probably

because of stochastic forces.

Thus, when generating spikes, we want to avoid generating uniformly spaced action

potentials.

Bad Good



NEST examples – Poisson generators
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To generate irregular spikes we can assume that every spike is independent from the

previous one and that the generation depends solely on the instantaneous firing rate.

Upon this hypothesis we can generate spikes using a Poisson process:

𝑃 𝑛 𝑠𝑝𝑖𝑘𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡 = 𝑒−𝑟∆𝑡
(𝑟∆𝑡)𝑛

𝑛!

𝑃 1 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡 ≈ 𝑟∆𝑡 ∗

* For a sufficiently short Δt



NEST example – STDP
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Let’s see an example of synaptic plasticity.

• two populations, connected with STDP-enabled
synapses

• external spike sources that trigger activity

• execution phases and expected results:

1. only pre stimulation→ no post activity

2. pre and post stimulation→ plasticity

3. only pre stimulation→ also post activity

Let’s try it out!

pre post

spike
source

spike 
source

STDP



NEST examples
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What did we learn from these example?

• using nest is very easy to set up neural simulation

• nice syntactic sugar for randomized connection and weights

• useful spike recording utilities

• but it can take more than 10 seconds to simulate 1!

We need to find a way to speed up the simulation.



NEST – parallel simulations
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Let’s recall the kernel simulation loop:

1. PSP for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δ

Inside a single time step, each neuron is decoupled from the others, thus the

simulation of a single time step is an embarrassingly parallel problem.

In fact, NEST natively supports MPI and the parallelization of the loop.

Moreover, MPI is supported on High Performance Computing platforms!

MPI thread

MPI process



NEST – HPC
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How well does nest perform on supercomputers?

Legend:

K - RIKEN, Japan

663,552 nodes, 4th

JUQUEEN - Jülich, Germany

229,376, 11th

Largest network simulation performed to date (2015):

1.86x109 neurons, 6000 synapses each

1.08x109 neurons, 6000 synapses each



NEST – HPC
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How well does nest perform on supercomputers?

Legend:

K - RIKEN, Japan

663,552 nodes, 4th

JUQUEEN - Jülich, Germany

229,376, 11th

Simulation time of 1 second of real time varies between:

between 6 and 42 minutes

between 8 and 41 minutes



NEST – Final Remarks
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Is this a viable solution for physical robotics? Not really.

• even if we would like to simulate smaller networks, simulations will not be real-time

• usually robotics labs do not have supercomputers

• supercomputers work with job systems and as of today no interactive job

mechanism exists

• latencies between the supercomputer and the robot

• power consumption (9.89 MW for K supercomp.)

However, NEST can be coupled with robotics simulations (more on this later).



Neuromorphic hardware
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A new kind of processors, specifically designed to compute neural dynamics, have

been developed in the last few years. This is what is called neuromorphic hardware.

Usually, these kind of processors have these characteristics:

• massively parallel computation

• energy efficiency

• fault tolerance

• self organization of the network

• fast simulation times

• compactness



Neuromorphic hardware – SpiNNaker
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SpiNNaker is a neuromorphic hardware platform developed by the University of

Manchester.

• 1W chip

• 18 ARM-968 cores

• 1Gbit DDR-2 SDRAM

• 240MHz

• 6 bi-directional links

• optimized for 10million 32-bit packets/s



Neuromorphic hardware – SpiNNaker
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SpiNNaker cores are arranged on 48 chips boards.

• 1000 neurons per core (theoretical)

• 18000 neurons per chip

• 864000 neurons per board

• 3.1Gbps SATA connections for

connecting to other boards

• two 100Mbps Ethernet for control

• max 70W consumption, low temp



Neuromorphic hardware – SpiNNaker
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Multiple boards can be connected through SATA to allow further parallel processing

exploitation.

Current largest setup:

• 120 boards per cabinet

• ~1,000,000 cores

• 50 kW peak consumption

• up to a billion neurons



Neuromorphic hardware – SpiNNaker
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In order to provide fast spike transmission between cores, a proper connectivity

method must be exploited.

Toroidal connectivity ensures fast spike delivery among chips.



Neuromorphic hardware – SpiNNaker
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How do one use these boards? There is a Python library that we can use to set up the

network on the SpiNNaker cores: PyNN.

PyNN is a frontend for 

different neural simulators 

(including SpiNNaker and 

NEST)

neuralensemble.org/PyNN



Neuromorphic hardware
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SpiNNaker is not the only neuromorphic hardware platform:

Name Developer Features

TrueNorth IBM Custom processor, 4096 cores with 256 neurons each

BrainScaleS Heidelberg Physical model, accelerated simulation time

Brainstorm Stanford Physical model, real time

Zeroth Qualcomm Deep learning on Snapdragon



Neuromorphic hardware – Final remarks
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Pros:

• real time neural simulation

• low power consumption

• portable (can be embedded on

robots)

Cons:

• cost, availability

• limited number of neurons and

connections by design

• still in development

• can lose spikes if firing rates are too

high

Suitable to be embedded on a physical robotic platform.
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Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Robotic applications
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How can we integrate brain models with robotic platforms?

• spiking neural network can be integrated alongside classic robot controllers,

relieving them of some computation

• bio-inspired brain models works well for processing of data coming from bio-inspired

sensors

• bio-inspired brain models works well for bio-inspired actuators (tendon driven

robots, muscle like actuators)

• if connected to a robot, the neural simulation must run in real-time

• if real-time neural simulation is not possible we have to simulate also the robot



The Neurorobotic Closed Loop

One way of integrating neuromorphic computing and robotics is implementing a closed 

loop, a complete action-perception mechanism that involves exchanging information 

between a robot and a brain model. Information between the two must be properly 

processed and converted.

Neuromorphic Computing

Lorenzo Vannucci

Closed 
Loop

Sense

Robot

Action

Brain 
Model



The Neurorobotic Closed Loop

Information between the robot and the brain model must be properly converted and 

exchanged.

• robot to neuron: translate sensory 

information into spikes and current 

amplitudes, performing some encoding

• neuron to robot: take measurements on 

the neural network (spike rate, 

membrane potential) and transform them 

into robot commands, thus performing 

some decoding

Neuromorphic Computing

Lorenzo Vannucci



Neurorobotic Closed Loop example

Describe the behaviour of the network below (i.e. what is computed by neuron 5 with 

respect to neurons 1 and 2). How can such a network be used to implement a low level 

controller for a motor-actuated robot joint?

Neuromorphic Computing
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Neurorobotic Closed Loop example

Solution: a PI controller.
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Kp

Ki

reference

encoder

motor 
command



Neurorobotic Closed Loop example

Solution: a PI controller.

Neuromorphic Computing
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rate encoding

reference

rate encoding

rate decoding

motor 
command

encoder



The Neurorobotic Closed Loop

Can we find some general methods to translate information between the two worlds?

Perhaps we could use biological models to do so.

Neuromorphic Computing

Lorenzo Vannucci



Retinal visual tracking
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In this work we integrated bio-inspired sensing with spiking neural network in order to

perform a visual tracking task.

We used the same setup as before where we also integrated a retina simulation as a

robot to neuron transfer function.

COREM simulator, developed by

University of Granada.

• custom retina models

• based on linear/non-linear

analysis

• produces an output compatible

with NEST, but not spiking

Ambrosano, Alessandro, Lorenzo Vannucci, Ugo Albanese, Murat Kirtay, Egidio Falotico, Georg Hinkel, Jacques Kaiser et al. "Retina color-opponency 
based pursuit implemented through spiking neural networks in the neurorobotics platform." In Conference on Biomimetic and Biohybrid Systems, pp. 

16-27. Springer International Publishing, 2016.



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

At first we performed a target detection via retinal image processing.

We used a complete retina model, but

only with the pathway coming from M-

cones (more sensitive to green).

Analogue output from the ganglion cells

is sent to a LIAF neuron layer via current

generators devices.

current generators LIAF neurons



Retinal visual tracking
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Then, we switched to a more sophisticated retina model, based on red-green

opponency.

The output value of this retina

model is higher for edges of

the target.



Retinal visual tracking
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In order to filter out the noise from the ganglion output and retain only the target

information, a two layer spiking neural network was used.

The first layer is a current to spike converter. Neurons

in the second layer receives spikes from a receptive

field of 7 neurons (pixels).



Retinal visual tracking
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Using output of the neural network we can estimate the target centroid and use this

information to generate motor commands for the robot eye.

The robot is able to follow the target thanks to the neural filtering of the retinal output.



Visual tracking with SpiNNaker
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The same controller was also implemented on the real iCub robotic platform, using

neuromorphic hardware for real-time neural simulation.

Real iCub robot, 

accessed via YARP

Same transfer function

Same PyNN brain 

model

Retrieval of spikes from 

SpiNNaker receiver 

devices



Visual tracking with SpiNNaker
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The same controller was also implemented on the real iCub robotic platform, using

neuromorphic hardware for real-time neural simulation.

COREM framework for 

simulating retinal 

computation.

Processing 320x240 images 

up to 20Hz.

Simulation of DC generator + 

IAF neuron dynamics for the 

generation of spikes times 

that are sent through a 

SpiNNaker SpikeInjector.



Retina as a generic translation mechanism
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This kind of translation is actually generic and in fact it was employed with a more

complex visual cortex model.



In order to translate information coming from inertial sensors, we developed a

neuromorphic model of vestibular afferents that comprises of both regular and

irregular afferents.

Neurophysiological

recordings

NEST

implementation

𝐼 𝑡 = 𝐺𝐻 ∙ 𝐻𝑉 𝑡 − 𝐺𝐴 ∙ 𝑋𝐴 𝑡 + 𝐼𝑏𝑖𝑎𝑠 + 𝜎𝜖(𝑡)

𝑑𝑉

𝑑𝑡
=

𝑉(𝑡) + 𝐼(𝑡)

𝜏𝑉

Neuromorphic model of vestibular afferents
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To test the effectiveness of the model, a complete spiking network implementing the

VOR circuit was for the iCub robot.

30X

Neuromorphic model of vestibular afferents

Neuromorphic Computing

Lorenzo Vannucci



Robot-brain connection through a spinal cord model
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In most animals, motor commands from the brain cortex are not directly sent to the

muscles, but they are transmitted through a series of hierarchically organized neural

circuits. At the lowest level of this hierarchy lies the spinal cord.

Therefore, we can think of implementing a spinal cord model that performs the 

translation of proprioceptive feedback and the generation of motor commands.



Robot-brain connection through a spinal cord model
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The spinal cord contains α-motoneurons that directly activate the muscle fibres, as well

as sensory feedback endings such as Ia and II afferents from muscle spindles.



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

The spinal cord is not only responsible for the activation of muscles and for the

forwarding of proprioceptive information, but it also includes many local circuits for the

generation of reflexes.



Robot-brain connection through a spinal cord model
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We started by implementing in NEST (and on SpiNNaker) a bioinspired model of

muscle spindle that simulates Ia and II afferent activities during a muscle stretch.

Vannucci, Lorenzo, Egidio Falotico, and Cecilia Laschi. "Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model." Frontiers in 
Neuroscience 11 (2017): 341.

𝑑𝑇

𝑑𝑡
= f L,

𝑑𝐿

𝑑𝑡
, 𝛾𝑠𝑡, 𝛾𝑑𝑦𝑛

𝑟𝑎𝑡𝑒 ∝ 𝑇



Robot-brain connection through a spinal cord model
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We then implemented in NEST a muscle activation model that includes motoneurons

recruitment and twitches integration.

• motoneurons are activated from the weakest to

the strongest

• each activation produces a twitch of some fibres

• all the twitches are summed up to compute the

total muscle activation

• output can be normalized between 0 and 1



Robot-brain connection through a spinal cord model
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Once we have the basic components we can assemble a fairly complete spinal cord

model.

But we don’t know yet how to connect it to a robot…



Robot-brain connection through a spinal cord model
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In order to connect it to a robot, the more natural way is to add musculoskeletal system

to the robot. Let’s consider a single joint of the robot (elbow joint).



Robot-brain connection through a spinal cord model
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In order to connect it to a robot, the more natural way is to add musculoskeletal system

to the robot, via a simulation. Let’s consider a single joint of the robot (elbow joint).

• joint torque

from muscle

forces

• muscle lengths

from joint angle

• muscle forces

computed from

activations via

a Hill model

• muscle lengths

sent to spindles



Robot-brain connection through a spinal cord model
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If the robot has already muscle like-actuators, we do not need to employ the

musculoskeletal simulation.



Spinal cord control example

The same muscular model, with adapted kinematic parameters, was

employed to control, in a feedforward manner, the iCub elbow joint.

Neuromorphic Computing
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Spinal cord model as a general translation mechanism
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The spinal cord model has been employed for (partially) reproducing real

neuroscientific experiments.

Motor rehabilitation experiment

Reaching experiment→



Learning of a forelimb pulling task, then

study of motor task re-training in rodent

model after induction of photothrombotic

stroke with simultaneous intracranial

recording.

Reproduction in silico:

Recorded cortical 
activity

Post-stroke rehabilitation simulation

Neuromorphic Computing

Lorenzo Vannucci



The Neurorobotics Platform

The Neurorobotics Platform is a simulation toolkit that aims at providing synchronized 

neural and robotic simulations, and data transfer from robot sensors/actors to brain areas 

and vice versa.

A REALISTIC ENVIRONMENT

SP 10 

NEUROROBOTICS PLATFORM
 

 

 

INSTITUTIONS SPONSORS

REALTIME SIMULATION

In a neurorobot ic experiment  a brain model is connected to a body or robot  w hich is embedded in a dynamic 

environment . Thus, it  is possib le to observe the dynamics of the brain model in a closed act ion-percept ion 

loop. 

The Neurorobot ics Plat form w ill allow  non-robot icists to design and run virtual neurorobot ics experiments, 

w here the robot  as well as it s environment  are simulated w ith high f idelit y.

Here we present  the current  state of the Neurorobot ics Plat form: a simulat ion of a virtual room that  w ill soon 

become the virtual laboratory. 

THE VIRTUAL LABORATORY

The Neurorobot ics Plat form is used in three 

phases. First , the design phase, w hith 

d ifferent  designers to help the user in 

modelling the parts of a neurorobot ics 

experiment . Second, the run phase w hich 

comprizes the lock-stepped simulat ion of 

the brain, robot  and environment  models. 

Finally, the visualizat ion phase during w hich 

the user can visualize the experiment . The 

visualizat ion phase has tw o modes. In the 

online mode, the simulat ion runs in realt ime 

and the user has the possib ilit y to interact  

w ith the simulat ion (user-in the loop). In the 

off line mode, the user replays the result s of 

OVERVIEW

The Neurorobot ics Plat form uses GAZEBO 

as it s w orld simulat ion engine. The brain 

models are simulated by any PyNN com -

pat ib le simulator.

The f irst  realt ime simulat ion of the virtual 

room w as done one the Display W all  in 

the BBP off ices in Lausanne.

The Display W all has 12 Full HD monitors 

w hich are connected to tw o high-end 

computers w ith 3 graphics cards each.

By target ing the Display W all f irst , the 

Neurorobot ics Plat form team direckt ly 

rackled one of the b iggest  challenges: 

high-f idelit y rendering on large d isp lays.

The f igures on the right  show  the desktop 

rendering of the virtual room, using 

GAZEBO (top) and the high-f idelit y ren -

dering on the Display W all (bot tom).

a simulat ion an. In this mode, the user can 

change the camera posit ion and change 

the type of informat ion d isp layed.

The user can interact  w ith the simulat ion 

via a w eb interface that  can run on a desk -

top computer or a mobile device, such as 

a tablet  computer.

The Neurorobot ics Plat form w ill be seem -

lessly integrated into the HBP Unif ied 

Portal.

SP6 just  released a beta version of the 

portal and the development  of the neuro -

robot ics component  of the portal w ill start  

in the follow ing months.

The f irst  virtual environment  of the 

neurorobot ics p lat form is a to-scale model 

of the EPFL off ice environment .

The virtual room also contains the 

accurately modelled items found in the 

off ice, such as lamps, p lants, and computer 

screens. W ithin this off ice, a mobile robot  

(husky) moves and reacts to simple visual 

st imuli show n on the computer sceens. 

The art ist ic renderings on the right  show  

the ind ividual assets of the virtual room as 

w ell as the ent ire room as it  should appear 

to the user w ho is standing in front  of the 

d isp lay w all.

 Using an exist ing off ice as b lueprint  for 

our f irst  virtual environment  has the 

advantage that  w e can easily check the 

f idelit y of the simulat ion.

In later versions, the off ice w ill t urn 

into a virtual laboratory that  allow s 

to simulate behavioral experiments 

in w hich a virtual mouse or robot  

body is cont roled by a simulated 

brain model.
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The Neurorobotics Platform

• transfer functions connect the neural and 
physical simulators

• neural simulation is provided by NEST, 
through the PyNN interface

• physical and robotic simulations are 

provided by Gazebo, via the ROS 

middleware

• web-based frontend for visualization 

and environment creation

gazebosim.org ros.org
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Neuromorphic computing resources
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Neurology:

• “Principles of Neural Science” by Kandel et al.

Computational neuroscience:

• “Theoretical Neuroscience: computational and 

mathematical modeling of neural systems” by Peter Dayan 

and Larry Abbott

• Computational Neuroscience on Coursera

NEST:

• www.nest-simulator.org

SpiNNaker:

• spinnakermanchester.github.io

• apt.cs.manchester.ac.uk/projects/SpiNNaker

Neurorobotics Platform:

• neurorobotics.net
Contacts:

lorenzo.vannucci@santannapisa.it


