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What Is neuromorphic computing?

We can define neuromorphic computing as the act of performing a computation in a
manner similar to the brain.

Our brain elaborates inputs coming from our sensors and produces outputs in term of
generated motions and stored information.
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Classic computing
This kind of computing is very similar to what can be found in a robotic controller.

But the sensors and actuators are completely different, compared to the ones of
humans and animals, thus the brain is substituted by a computer.
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Brain vs machines

Getting to know your Brain

« 1.3 Kg, about 2% of body weight

* 10 neurons

* neuron growth:
250,000 / min (early pregnancy)
-1 neuron/s (adult life)
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Brain vs machines

Getting to know your Brain Getting to know your CPU

« 1.3 Kg, about 2% of body weight * 50¢g

* 10 neurons « 1010 transistors (Ryzen 9)

* neuron growth: * no modification over lifetime

250,000 / min (early pregnancy)
-1 neuron/s (adult life)
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Getting to know your Brain Getting to know your CPU

« 1.3 Kg, about 2% of body weight * 50¢g

* 10 neurons « 1010 transistors (Ryzen 9)

* neuron growth: * no modification over lifetime

250,000 / min (early pregnancy)
-1 neuron/s (adult life)

“Operating mode” of Neurons

« analog computation in the soma
 digital pulses along axons
« 10 stochastic synapses
* typical operating frequency:
< 100Hz, asynchronous
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Brain vs machines

Getting to know your Brain

« 1.3 Kg, about 2% of body weight

« 10 neurons

* neuron growth:
250,000 / min (early pregnancy)
-1 neuron/s (adult life)

“Operating mode” of Neurons

« analog computation in the soma
 digital pulses along axons
« 10%4 stochastic synapses
 typical operating frequency:

< 100Hz, asynchronous
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Getting to know your CPU

* 50¢g
« 1010 transistors (Ryzen 9)
 no modification over lifetime

“Operating mode” of CPUs

 digital Boolean logic processing

 digital signal propagation

 reliable storage of data

 typical operating frequency:
GHz, synchronous




Why neuromorphic computing (in robotics)?

A brain is what defines a living being
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Why neuromorphic computing (in robotics)?

A brain is what defines a living being
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Why neuromorphic computing (in robotics)?
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Why neuromorphic computing (in robotics)?

Today, bio-inspired sensing and actuation technologies are starting to emerge.
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Neuronal physiology

The neuron Is the fundamental structural and functional unit of the brain.
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Neuronal physiology

Many kind of neurons share the same cellular physiology.

Dendrite
Axon Terminal

Node of
Ranvier

Cell body

AXON Schwann cell

Myelin sheath
Nucleus
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Neuronal physiology

Neuronal electrophysiological activity lies on the cell membrane.

Ma* higher Ka' lower Membrane Cell

° L|p|d b||ayer, |mpermeab|e to Charged concentration concentration channel membrane
lons. © o © :

 lonic channels allow ions to flow In or
out, selectively.

« The neuron maintains a potential
difference across it membrane via the

. . . + . - - . o
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Action potentials

The activity of a neuron (its “output”) is the action potential (or spike), generated by
voltage-gated ionic channels.

1. An external electric stimulus reach the Action
membrane, depolarizing it. L0 potential
2. Depolarization of the membrane opens <
Na®* channels (= even more % 0 2
depolarization). g &
: ;
3. If membrane potential exceeds the & | Threshold miFt?ei.Egm\%
threshold potential, an action potential 0 Resting state
OCCuUrs. Stimulust Refractary

period

4. Afterwards, the membrane repolarize by
expelling K* ions and the neuron enters 0 oo s
the refractory period. me (ms
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Action potentials

The action potential is transmitted through the axon towards other neurons.

Each non-myelinated section (node of Ranvier) replicates the spike.

Propagation speed ranges from 1 to 100 m/s.
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the
mean number of spikes per second.

n.spikes

rate = .
time
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the
mean number of spikes per second.

. 1s
n.spikes

rate = .
time

It is not always an easy task!

The instantaneous firing rate cannot be computed real-time, due to causality.
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Action potentials

Usually, we are interested in looking at the spike events, instead of the membrane
potential, and for a high number of neurons (a population).
We can do so with raster plots.
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Synapses

Axons and dendrites are connected through synapses. Each neuron has roughly
1000-10000 synapses.
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Synapses

Synapses can be chemical or electrical, excitatory or inhibitory:

e a chemical excitatory synapse releases : =
Glutamate = opening of ion channels for
Na* influx - membrane depolarization
(membrane potential increases);
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* a chemical inhibitory synapse releases
GABA neurotransmitter = K+ leaves cell
‘fy" : through ion channels -2 membrane

amm'\«.}\ ( hyperpolarization (membrane potential
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Every synapse, once reached by an action potential, generates a postsynaptic current
(PSC) which turns in a postsynaptic potential (PSP).
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Synapses and action potentials

Each spike coming for pre-synaptic neurons and activating excitatory synapses
contributes to the generation of an action potential in the post-synaptic neuron.

pre- .
. excitatory
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synapse
neuron
re- :
P . excitatory
synaptic >
synapse
neuron
post-
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neuron
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P . excitatory
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synapse
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: excitatory
synaptic >
synapse
neuron

Neuromorphic Computing

Lorenzo Vannucci




Synaptic plasticity
Synapses are the basis for memory and learning.

If neuron A repeatedly takes part in making neuron B spike, then the synapse from a to
B is strengthened and vice versa. This leads to two phenomena:
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Synaptic plasticity

This adaptation mechanism depends on the timing of the EPSP and the action
potential. Thus, it is called Spike-Timing Dependent Plasticity (STDP).
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Neural coding

What kind of information can a neuron represent?
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Neural information processing

What kind of information can a neuron process?
None! (by himself)

Information is stored in the network topology and synaptic properties.
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Receptive fields

A simple way of encoding information is the receptive field topology.

Each receptive field is made up of several input neurons 3 l'lnput ,.
and one output neuron that modulates the combination of Input kﬁ\‘ % jmpm
their responses. \ N ]
Receptive fields have been identified in the human brain to R
encode  sensory information  (auditory = system, i G

somatosensory system, visual system).
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Receptive fields

The retinal circuit implements receptive fields to process the image.

. , Preferred stimulus?
Linear receptive field model
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Receptive fields

The retinal circuit implements receptive fields to process the image.

. , Preferred stimulus
Linear receptive field model
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Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

Receptive fields from the retina are in turn used to create oriented receptive fields in
the visual cortex.

Retina V1
receptive receptive ‘Ill’

fields field
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Neural coding

Each sensory input has its own dedicated brain areas that encode the information
received. Different types of encoding are being used in the brain. The most well-
understood are the following three:
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population coding rate coding temporal coding
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Neural coding

In population coding, there is a population of neurons that respond differently to
different values of the same sensory information. E.qg. cricket cercal cells, some visual

areas in the human brain.
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Neural coding

In population coding, there is a population of neurons that respond differently to
different values of the same sensory information. E.qg. cricket cercal cells, some visual

areas in the human brain.
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The resulting value r iIs called the
population vector.

Is the representation efficient?
Aren’t c; and c, enough?




Neural coding

In rate coding, all the information is encoded by directly translating it into firing rates.
Thus, all neurons in the same population respond in the same manner to the same
stimulus. This is common in many sensory afferents, e.g. mammalian muscle spindles.
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Neural coding

A more complex encoding mechanism is temporal coding, where absolute or relative
spike times are used. There are evidence for this kind of encoding in the auditory and
gustative systems.

Pitch and loudness

o Auditory nerve Auditory nerve
Semicircular Acoustic signal  (position 1) (position 2)
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Neuron abstractions

In order to simulate the behaviour of neural circuits we have to model the neuron
dynamics.

Thus, we have to translate neurophysiologic properties into equations that we can
Implement.

Neurotransmitter

Abstract neuron models

 Rate-based

 Point neuron

 Detalled neuron
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Detalled neural abstraction

In these kind of models every aspect of the cell morphology is taken into account:
diameter of the soma, length of the axons, position of synapses on the dendrites,
distribution of ionic channels, neurotransmitter types, etc...

Pros: cons:
e Vvery accurate  much knowledge is needed to model
networks

« can model any aspect of neural
activity « simulation times are high

}J Some detailed neural simulators exist, I.e.
{5 NEURON (www.neuron.yale.edu/neuron). Too little abstraction!
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Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:

L

| | I I I |
100 200 300 400 500 600

time (ms)

spike train id
[

—r
—

[ J—
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Rate-based abstractions
Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:

10 20 10 10 20 40

30 30 60 30 70 70

spike train id
[

30 10 40 0 30 50

0 100 200 300 400 500 600
time (ms)

By doing so, we are:
 discretizing time
 forgetting about single action potential events
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Rate-based abstractions

Activity of a post-synaptic neuron can be computed as a function of the rates of pre-
synaptic neurons.
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Rate-based abstractions

What about synapses? We can add weights on the connections.

- Rosenblatt’s perceptron and
Artificial Neural Networks.
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Point neuron abstractions

Why are these called point-neuron abstractions?

Because we do not take into account the neuron morphology. Each neuron is dimensionless
and currents propagate instantaneously from all the receiving synapses.
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Point neuron abstractions — neuron models

The neuron electrical properties can be described through electrical circuits:
* the lipidic membrane acts as a capacitor (C,,);

 all PSP can be summed up and represented as an external current generator (I.).

We are interested in the voltage between the two termination of the capacitor
(membrane potential, V) and we also add the action potential rule:

If V., >V, then V  resets to
V..t aNnd a spike is emitted.
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

| |

Kirchhoff's law: IC (t) — Iext (t)
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

. |
é lext
Cm ke

Kirchhoff's law: IC (t) — Iext (t)

Q(t) = CpVin (t)
By deriving the law 1

of capacitance: dV. (t)
le(t) = Cn—
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

. |
é lext
Cm ke

Kirchhoff's law: IC (t) — Iext (t)

Q(t) = mem(t)

By deriving the law

of capacitance: dV. (t)
le(t) = Cn—
de(t) _ Iext(t)

Thus, we obtain:

dt C.,
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Point neuron abstractions — simulation loop (I)

We can employ the differential equation to compute the dynamics of the membrane in
a simulation loop, by discretizing time in small intervals.

T =2000.0 // total simulation time, ms

time = 0.0

V=0.0

dt = 1.0 // simulation step, ms de (t) Iext (t)
while (time < T) { dt T Cm

Text = sum _external currents()

dVm = membrane_update(Iext)

V += dVm * dt // discrete integration\\\\\ &
it (V > Vth) emit_spike();

time += dt

Let’s try it out!
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Point neuron abstractions — neuron models

Neurons have the refractory period, that must be taken into account for an accurate
simulation. Otherwise, the firing rate will rise indefinitely.

I
without: 1 ([) = lim r(I) = +oo
Con(Vin — Vieset) 1o+
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Point neuron abstractions — neuron models

Neurons have the refractory period, that must be taken into account for an accurate
simulation. Otherwise, the firing rate will rise indefinitely.

I
without: 1 ([) = lim r(I) = +oo
Con(Vin — Vieset) 1o+

| 1

with: 7"(1) — lim T(I) —
Con (Vin — Viesetr) + trefI [=+o0 Lref
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Point neuron abstractions — neuron models

In the IAF model, the membrane continues to keep the gained potential, even if there
IS no external input current and the spike threshold is not reached. This is not true for

the biological neuron.
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

Kirchhoff's law: [~ (t) + Ip(t) = Iope (t) % \
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

Kirchhoff's law: [~ (t) + Ip(t) = Iope (t) % \

Ohm's law: Io( t) _ (Vm (t) - Vrest) ? ‘

R
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

Kirchhoff's law: IC (t) ~+ IR (t) = Iext (t) % \

Ohm's law: Io( t) _ (V'm (t) - Vrest) ? ‘

R

Thus, we obtain: de (t) — Iext (t) (Vm(t) o VreSt)
dt Co C R
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Point neuron abstractions — neuron models

There are many others neuron models:

Hodgkin—Huxley: each ionic channel is modelled as a resistance-battery parallel circuit, with a
probabilistic conductance.

— |—.
|
-

L |
L AR
]

1
= iU (®) — Ey)

i

V() _ Lexe(£)
dt C..
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Point neuron abstractions — neuron models

There are many others neuron models:

Izhikevich: two differential equations can model many different neuron behaviours.
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Point neuron abstractions — synapses models

Each action potential is transmitted as an event to all postsynaptic neurons connected,
after a transmission delay (travel time on the axon). When such event is received a
proper EPSC or IPSC Is generated and added to the total input current.

Time
Transport delay
t C
Amongst the most common PSC types —T
there is the alpha-shaped one: I(t) - —€ °s
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Point neuron abstractions — synapses models

Each synapse has a weight that has two roles:
1. distinguishing between inhibitory and excitatory synapses by being negative or positive;
2. representing the strength of the connection between the two neurons.

Synaptic weights can be changed via rules implementing STDP, for example:

X

(=)
F n —A_e(_E)forx <0
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Point neuron abstractions — simulation loop (II)

Given the previous equations we could in principle create a network simulation loop
like the following:

while (time < T) {
foreach (n : neurons) {
Iext = n.sum_external_currents(n.received_spikes)
dVm = n.membrane_update(Iext, n.V)

n.V += dVm * dt Send spike through delayed

ight ti
if (n.V > n.Vth) { and weighted connection

n.send_spike()
n.adjust_weights(n.received_spikes)

}

time += dt
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Point neuron simulators - NEST

We don’t have to implement a whole simulator by ourselves, several already exist!
Among these, a popular choice is NEST (NEural Simulation Tool), an open source
spiking neural network simulator developed by the NEST initiative (www.nest-
simulator.org). Among its features, there are:

 over 50 neuron models (including LIAF, Hodgkin-Huxley and Izhikevich)

 over 10 synapse models (including STDP)

* minimal dependencies

e open source (GNU GPLv2)

nest::

* ‘“easily” extendable )
simulated()
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Point neuron simulators - NEST

NEST has a simulation kernel (written in C++) and two layers of interface towards It.

NEST

PYNEST SLI <ernel

The kernel cannot be directly accessed. In fact, the executable launches the

Simulation Language Interpreter to which one can send commands to create the
network.

Why PYyNEST? Because SLI is basically PostScript!

/iaf _neuron Create /n Set n = nest.Create('iaf_neuron')
/poisson_generator Create /pg Set | pg = nest.Create('poisson_generator')
pg << /rate 220.0 Hz >> SetStatus | nest.SetStatus(pg, {'rate': 220.0})

pg n Connect nest.Connect(pg, n)
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Point neuron simulators - NEST

PYyNEST provides an usable interface towards SLI.

— e o mm mm e e = o o e o e o e o mm mm e mm omm mm mm mm mm e mm mm e mm mm mm e mm e e

I |
I I
: SLI Interpreter NestKernel :
| controls |
| r—- I
| class network !
: execute(string sli code ) class iaf neuron :
| o I
: sends :
: status :
! info :
\ }

loads

dynamically simulator independent script

_— e o o o e e o e o o e e o

Python interpreter

@ python

f mysimulation.py

hl_api.py
def create(modelname)

]

|

]

]

|

]

]

| .
| nest.create("iaf_neuron")
|

]

|

]

]

!

]

]
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Point neuron simulators - NEST

A NEST network is a directed weighted graph:

 Nodes
* neurons, devices, sub-networks
« have a dynamic state that changes over
time and can be influenced by events

 Events
« pieces of information of a particular type
(e.g. spike, voltage or current event)

« Connections
« communication channels for the
exchange of events
 directed (pre to post)
« weighted (synaptic weights)
« delayed (delay must be greater than 0!)
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Point neuron simulators - NEST

The simulation is discretized into time steps of a certain duration (At). The simulation
loop works as follows:

1. PSC for all delivered events are computed
2. membrane potential is updated and new events are bufferized
3. new events are sent towards post-synaptic nodes

4. simulation time is increased by At

Neuromorphic Computing

Lorenzo Vannucci




Point neuron simulators - NEST

The simulation is discretized into time steps of a certain duration (At). The simulation
loop works as follows:

1. PSC for all delivered events are computed
2. membrane potential is updated and new events are bufferized
3. new events are sent towards post-synaptic nodes

4. simulation time is increased by At

Notes:
« actually 1 and 2 occur inside an inner loop with a time step < At! A
/
« delay of connections must be >= At /(
« during the time step, the node is isolated from the rest At
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NEST example — cortical microcircuit

We want to simulate (a layer of) the cerebral cortex:

Cerebral —
Cortex \ o ,«',\"'"'? -

7 o<

background input

1mm?

0.3 billion synapses, 80000 neurons

6 layers

thalamo-cortical input

2 population of LIAF neurons per layer

g

Potjans, Tobias C., and Diesmann, Markus. “The cell-type
specific cortical microcircuit: relating structure and activity in a
full-scale spiking network model.” Cerebral Cortex 24.3 (2014):
785-806
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NEST examples — Poisson generators

In order to give inputs to the system, representing activity of brain areas not modelled or
sensory information, we need to generate spikes without actually simulate neurons.

It has been observed that most of the times (excluding when time encoding mechanisms
are in action) the timing of successive action potential is highly irregular, probably
because of stochastic forces.

Thus, when generating spikes, we want to avoid generating uniformly spaced action
potentials.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time (s) time (s)

Bad Good
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NEST examples — Poisson generators

To generate irregular spikes we can assume that every spike is independent from the
previous one and that the generation depends solely on the instantaneous firing rate.

Upon this hypothesis we can generate spikes using a Poisson process:

(rAt)"
n!

—TrAt

P{n spikes during At} = e

P{1 spike during At} = rAt*

* For a sufficiently short At

Neuromorphic Computing

Lorenzo Vannucci




NEST example — STDP

Let's see an example of synaptic plasticity.

 two populations, connected with STDP-enabled
synapses

. . . STDP
« external spike sources that trigger activity pre/ =@

« execution phases and expected results: |

1. only pre stimulation = no post activity
spike spike
2. pre and post stimulation source source

3. only pre stimulation - also post activity

Let’s try it out!
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NEST examples

What did we learn from these example?

using nest is very easy to set up neural simulation

nice syntactic sugar for randomized connection and weights

useful spike recording utilities

start time = time.time()
nest.Simulate(T)

but it can take more than 10 seconds to simulate 1! elapsed time = time.time()

print elapsed time

- start time

11.4397270679

We need to find a way to speed up the simulation.
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NEST — parallel simulations

Let’s recall the kernel simulation loop:

([PSP for all delivered events are computed A \
MPI thread
2.| membrane potential is updated and new events are bufferized
\_ J/
3. new events are sent towards post-synaptic nodes
Q simulation time is increased by A MPI process /

Inside a single time step, each neuron is decoupled from the others, thus the
simulation of a single time step is an embarrassingly parallel problem.

In fact, NEST natively supports MPI and the parallelization of the loop.

Moreover, MPI is supported on High Performance Computing platforms!
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NEST — HPC

How well does nest perform on supercomputers?

m | T T | T
Legend: 10° SO ci
: ,a,‘i.:K‘
108 | ‘-.,v:‘;: --------------
K - RIKEN, Japan 5 kT
- ok
663,552 nodes, 4th Z ’A“*‘ _________________________
JUQUEEN - Julich, Germany 106 _k
229,376, 11th :
10° | | | | | |
{2 Kol 15 o) 2) 2
A\ (LQD‘ %l\Q) {5,7:\6 \%\Q'K ,56‘3
Largest network simulation performed to date (2015): MT

1.86x10° neurons, 6000 synapses each

1.08x10° neurons, 6000 synapses each
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NEST — HPC

How well does nest perform on supercomputers?

10% — T T , | |
Legend: :
K - RIKEN, Japan . .—’. p
663,552 nodes, 4th ) | “‘:x”,

P o
@ . g A =

JUQUEEN - Julich, Germany ™ PEEL RN 35 3
229,376, 11th -

102 I L | | I |

Simulation time of 1 second of real time varies between: MT
between 6 and 42 minutes

between 8 and 41 minutes
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NEST — Final Remarks

Is this a viable solution for physical robotics? Not really.
« even if we would like to simulate smaller networks, simulations will not be real-time
 usually robotics labs do not have supercomputers

e supercomputers work with job systems and as of today no interactive job
mechanism exists

 |atencies between the supercomputer and the robot

power consumption (9.89 MW for K supercomp.)

However, NEST can be coupled with robotics simulations (more on this later).
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Neuromorphic hardware

A new kind of processors, specifically designed to compute neural dynamics, have
been developed in the last few years. This is what is called neuromorphic hardware.

Usually, these kind of processors have these characteristics:
* massively parallel computation

« energy efficiency

« fault tolerance

« self organization of the network

 fast simulation times

* compactness
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Neuromorphic hardware — SpiNNaker

SpiNNaker is a neuromorphic hardware platform developed by the University of
Manchester.

 1W chip

LIS W S S W

« 18 ARM-968 cores  EREED ;f
* 1Gbit DDR-2 SDRAM

 240MHz

* 6 bi-directional links

« optimized for 10million 32-bit packets/s

; Core 10

L S -
g |
| | |
| |
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Neuromorphic hardware — SpiNNaker

SpiNNaker cores are arranged on 48 chips boards.

« 1000 neurons per core (theoretical)

« 18000 neurons per chip

« 864000 neurons per board

« 3.1Gbps SATA connections
connecting to other boards

* two 100Mbps Ethernet for control

 max 70W consumption, low temp
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Neuromorphic hardware — SpiNNaker

Multiple boards can be connected through SATA to allow further parallel processing
exploitation.

= == ——a
- _— ) — -

Current largest setup: =2 - =
+ 120 boards per cabinet 5 ¢ .,
« ~1,000,000 cores

* 50 kW peak consumption

« up to a billion neurons
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Neuromorphic hardware — SpiNNaker

In order to provide fast spike transmission between cores, a proper connectivity
method must be exploited.

"’& : f_j : i Bse g
02 = 12 fe 22 i . e
02 R l Jﬁ) /:.:_-‘.- .. t-__: ;r'. . -. :\.‘
I I 7//'/ I & 4 \ N 'i'_t‘.:'; :::"::} ) ] ‘1
o -- ' . o | f
= /// I r i N T C ) ';_;.:"‘
T B v
N 00 e 10 T 20 [ . : : : -~
3 i 3 oo

Toroidal connectivity ensures fast spike delivery among chips.
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Neuromorphic hardware — SpiNNaker

How do one use these boards? There is a Python library that we can use to set up the
network on the SpiNNaker cores: PyNN.

T User
: Interface
) (Host-side)

#LNALE s ot Yo SpiNNaker
s T o A Node

Application code
e.g. LIF neurons, spike
server, finite element
analysis

Support for application

event management and

PyNN is a frontend for Soving
different neural simulators

( lud k d synchronization
including SpiNNaker an
NEST) v I_
"?’mh", 'j System
management
t software
neuralensemble.org/PyNN ( 5 ) < -

. e G G G S S G NS G NN N G NS W G G S S S - G . — G— — —
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Neuromorphic hardware

SpiNNaker is not the only neuromorphic hardware platform:

Name Developer Features

TrueNorth IBM Custom processor, 4096 cores with 256 neurons each
BrainScaleS Heidelberg Physical model, accelerated simulation time
Brainstorm Stanford Physical model, real time

Zeroth Qualcomm Deep learning on Snapdragon
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Neuromorphic hardware — Final remarks

Pros:. Cons:
« real time neural simulation  cost, availability
* |low power consumption * limited number of neurons and

connections by design
 portable (can be embedded on
robots) « still in development

« can lose spikes if firing rates are too
high

Suitable to be embedded on a physical robotic platform.
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Robotic applications

How can we integrate brain models with robotic platforms?

« spiking neural network can be integrated alongside classic robot controllers,
relieving them of some computation

 bio-inspired brain models works well for processing of data coming from bio-inspired
sensors

* bio-inspired brain models works well for bio-inspired actuators (tendon driven
robots, muscle like actuators)

* |f connected to a robot, the neural simulation must run in real-time

« If real-time neural simulation is not possible we have to simulate also the robot
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The Neurorobotic Closed Loop

One way of integrating neuromorphic computing and robotics is implementing a closed
loop, a complete action-perception mechanism that involves exchanging information
between a robot and a brain model. Information between the two must be properly
processed and converted.

Transfer
/ \ Functions

Brain Model y/\ Robot Model

o —[F] [ [F
Brain Closed Robot X J L3 L3 N .‘
Model Loop CV NN\ /\

\‘/
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The Neurorobotic Closed Loop

Information between the robot and the brain model must be properly converted and
exchanged.

* robot to neuron: translate sensory
Information into spikes and current
amplitudes, performing some encoding

* neuron to robot: take measurements on
the neural network (spike rate,
membrane potential) and transform them
Into robot commands, thus performing
some decoding
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Neurorobotic Closed Loop example

Describe the behaviour of the network below (i.e. what is computed by neuron 5 with
respect to neurons 1 and 2). How can such a network be used to implement a low level
controller for a motor-actuated robot joint?

@ Excitatory synapse

| Inhibitory synapse
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Neurorobotic Closed Loop example

Solution: a PI controller.

Ko ®motor
command

reference @

encoder (2)

@ Excitatory synapse

| Inhibitory synapse
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Neurorobotic Closed Loop example

Solution: a PI controller.

reference

\

rate encoding
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The Neurorobotic Closed Loop

Can we find some general methods to translate information between the two worlds?

Perhaps we could use biological models to do so.
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Retinal visual tracking

In this work we integrated bio-inspired sensing with spiking neural network in order to
perform a visual tracking task.

We used the same setup as before where we also integrated a retina simulation as a
robot to neuron transfer function.

COREM simulator, developed by
University of Granada.

[ Space-Variant ]@t Cell Density ] {

Gaussian Filter { Models of higher
visual areas .
Linear Filter BRVSORONORY) e custom retina models
p . spikes(s)
Single-Compartment g . .
\ Model || Horizonta / sinolar HHM « based on linear/non-linear

. :
( . - e v analysis
_ . cand y=Ynest
Short-Term Synaptic anglion Interface simulatec:(‘;

. Plasticity ) I(t)
(ot Norienn (File Reader | b““:a“’gc’”t””t  produces an output compatible
Static Nonlinearity ] ] .
. B | R retina.Create(‘LinearFilter’) t Wlth NEST, but not Splklng
Retina Script fi-..-. | retina.Create(‘GaussFilter’)

Ambrosano, Alessandro, Lorenzo Vannucci, Ugo Albanese, Murat Kirtay, Egidio Falotico, Georg Hinkel, Jacques Kaiser et al. "Retina color-opponency
based pursuit implemented through spiking neural networks in the neurorobotics platform." In Conference on Biomimetic and Biohybrid Systems, pp.
16-27. Springer International Publishing, 2016.
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Retinal visual tracking

At first we performed a target detection via retinal image processing.

420 nm 498 nm 534 nm 564 nm

o Biueconss ke, Sore ._oes We used a complete retina model, but
only with the pathway coming from M-
cones (more sensitive to green).

50

Analogue output from the ganglion cells
S IS sent to a LIAF neuron layer via current

400 500 600 700 generato rs devices.
Violet Blue Cyan Greerl Red

Normalized absorbance

.. Medium \Long

Wavelength (nm)

~L
-/ -/ -
-/
current generators LIAF neurons
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Retinal visual tracking

Then, we switched to a more sophisticated retina model, based on red-green

opponency.
Robot eye + Camera
@ Camera image ﬁ Motion control
L-cones Mcones Neuron to robot
e transfer function
Horizontal-ON Horizontal-OFF
+ / - - \ +
— M-L+ Bipolar M+L- Bipolar [« Filtered ganglion
4,\ :| E /l— output
Amacrine Amacrine
Color B
—{ M-L+ Ganglion M+L- Ganglion information % RARAR X

embedding retina

Robot to neuron TF :>

K KKK K%
Brain
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The output value of this retina
model is higher for edges of
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Retinal visual tracking

In order to filter out the noise from the ganglion output and retain only the target
Information, a two layer spiking neural network was used.

Z N\
Filtered ganglion

output

Color

information % '\%*E ¥ “ﬁ*‘ * : ,

> ¥ K K ¥ K K ¥
Brain The first layer is a current to spike converter. Neurons
In the second layer receives spikes from a receptive
field of 7 neurons (pixels).

el el el el il el el Bl el el

HEEEH R R R RRRRRRRRHHHHK

-""‘I- - f i“ _'9-' --,. ;:’ -I--Ir ---l- -I--Ir ---l- -I--Ir =
"lhﬁf---qh-ﬁf-- hw"#dbt‘?ﬁ- h*h".‘-" -—*-"-— ht"#dbt‘?ﬁ- h*h".‘-" -—*-"-— ht"#dbt‘?ﬁ- h*h".‘-" -—*-"-— ht"#dbt‘?ﬁ- h*h".‘-" ‘
il"" ""-“" "‘--"-ﬂ" ARl Pl --""-ﬂ" "?-u-"ﬂ" oyl --""-ﬂ" "?-u-"ﬂ" oyl --""-ﬂ" "?-u-"ﬂ" Tl Sl ""-ﬂ" Mgy,

_’.dl l|.. ._dl- -t_..dl- -h.dl- ._dl- -t..dl- -t.dl- -h.dl- ._dl- -t_..dl- -t.dl- -h.dl- - -t..dl- ﬂrﬂ&

| ey | | ey [l | e | e | e [t |l || ey | e e [ | o =

%%%%%%%%%%%%&%&%&%%%

target moves in this direction
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Retinal visual tracking

Using output of the neural network we can estimate the target centroid and use this
Information to generate motor commands for the robot eye.

0.2
— — Target position _ [: "
Target estirr:_::ted position ) . - J{'\-l\
0.1F A fe \\. ﬁ/ | \\ /1
"\ / ‘\ 1 \ J
% "({ \ ":'f \ ;f \ d
© Of ! \ I | f \ \ =
— I{'I, \ i d'.| ) ) f'l[ H. [ -
Q ! Ir'.l' \ i 1‘ I 'lik .' { g
o ) J \ !
{% 0.1 Il:ll\, f"| r,-'f.-' \ ;i"' .R du.r {\'e I.f:'r \\ % 'lll|||i-|:=====|m,...|||llll“'"“I""!“"""""'i"llllq::g;:;,.,..mll".'“""'m"I““""""“""""'.::::::'. ||||||| ||||IIIII|l||I'H||I|.'III|IIIIIIIIllllll!!:IHH llllll II",,!I!!uuiIIIIIIlluuuuu..,,"“
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Visual tracking with SpiNNaker

The same controller was also implemented on the real iCub robotic platform, using
neuromorphic hardware for real-time neural simulation.

[

: Robot eye + camera N Real ICub robot,

\ T accessed via YARP
Motion control

L e e e - e ————
Neuron to robot Same transfer function

Transfer function

Filtered ganglion information

Same PyNN brain
model

|
B !
¥ % % % % % % SpiNNaker |
=
!
|
|

| nspired

Retrieval of spikes from
SpiNNaker receiver
devices

Z FE E B B BB '5

Brain

I Architect
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Visual tracking with SpiNNaker

The same controller was also implemented on the real iICub robotic platform, using
neuromorphic hardware for real-time neural simulation.

r _____________________
[
Robot eye + camera —!- L-cones M-cones
I COREM framework for :
N ' B simulating retinal
Motion control : [
I + horizontal horizontal + com p utatlo n. I
Neuron to robot I i i Processing 320x240 images
Transfer function I _ —k up to 20Hz. |
I M-L+ bipolar M+L- bipolar
Filtered ganglion information [ :
I amacrine amacrine . .
% O S % N N % I Simulation of DC generator + | |
VI ST I IAF neuron dynamics for the | |
4 L5 Whie gangion | | Wit ganghion generation of spikes times |
BTV S that are sent through a |
1\ Robot to neuron TF SpiNNaker Spikelnjector. |
Brain embedding retina L~ [
= —
e e e e e -
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Retina as a generic translation mechanism

This kind of translation is actually generic and in fact it was employed with a more
complex visual cortex model.
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Neuromorphic model of vestibular afferents

In order to translate information coming from inertial sensors, we developed a
neuromorphic model of vestibular afferents that comprises of both regular and
iIrregular afferents. lft afferent spikes
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Neuromorphic model of vestibular afferents

To test the effectiveness of the model, a complete spiking network implementing the
VOR circuit was for the iCub robot.
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Robot-brain connection through a spinal cord model

In most animals, motor commands from the brain cortex are not directly sent to the
muscles, but they are transmitted through a series of hierarchically organized neural
circuits. At the lowest level of this hierarchy lies the spinal cord.

[!'(‘f(")[ neurons 7 “:"‘;,»._\:L’-,\ Ncuron motor
) '/>/" = . z"l 1/ '\"\ p‘thways

— . Spinal nerves
“Q and Peripheral
Afferent neurons nerves
(carry sensory information ‘\‘/
from peripheral nervous o
system to the brain) .
% “
/' 3
i» 4 .
Initiates /A - Spinal
limbd / . 3 segment
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Therefore, we can think of implementing a spinal cord model that performs the
translation of proprioceptive feedback and the generation of motor commands.
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Robot-brain connection through a spinal cord model

The spinal cord contains a-motoneurons that directly activate the muscle fibres, as well
as sensory feedback endings such as la and Il afferents from muscle spindles.
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Robot-brain connection through a spinal cord model

The spinal cord is not only responsible for the activation of muscles and for the
forwarding of proprioceptive information, but it also includes many local circuits for the
generation of reflexes.
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Robot-brain connection through a spinal cord model

We started by implementing in NEST (and on SpiNNaker) a bioinspired model of
muscle spindle that simulates la and Il afferent activities during a muscle stretch.
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Vannucci, Lorenzo, Egidio Falotico, and Cecilia Laschi. "Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model." Frontiers in
Neuroscience 11 (2017): 341.
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Robot-brain connection through a spinal cord model

We then implemented in NEST a muscle activation model that includes motoneurons

recruitment and twitches integration. —
« motoneurons are activated from the weakest to
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« each activation produces a twitch of some fibres |
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Robot-brain connection through a spinal cord model

Once we have the basic components we can assemble a fairly complete spinal cord
model.
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But we don’t know yet how to connect it to a robot...
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Robot-brain connection through a spinal cord model

In order to connect it to a robot, the more natural way is to add musculoskeletal system
to the robot. Let's consider a single joint of the robot (elbow joint).
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Robot-brain connection through a spinal cord model

In order to connect it to a robot, the more natural way is to add musculoskeletal system
to the robot, via a simulation. Let’s consider a single joint of the robot (elbow joint).

. joint torque T « muscle forces
from  muscle computed from
forces [T activations via

/) \ T a Hill model

. muscle lengths

from joint angle | ||+ muscle lengths
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Robot-brain connection through a spinal cord model

If the robot has already muscle like-actuators, we do not need to employ the
musculoskeletal simulation.
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Spinal cord control example

The same muscular model, with adapted kinematic parameters, was
employed to control, in a feedforward manner, the iICub elbow joint.
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Spinal cord model as a general translation mechanism

The spinal cord model has been employed for (partially) reproducing real
neuroscientific experiments.

< Motor rehabllitation experiment
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Post-stroke rehabilitation simulation

Side
Camera
View

Learning of a forelimb pulling task, then
study of motor task re-training in rodent
model after induction of photothrombotic
stroke  with  simultaneous Intracranial
recording.

Position (mm)
oN &0 ® 0

Top Side View

Reproduction in silico:

Recorded cortical
activity

Descending stimulus
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The Neurorobotics Platform = i

Human Brain Project

The Neurorobotics Platform is a simulation toolkit that aims at providing synchronized
neural and robotic simulations, and data transfer from robot sensors/actors to brain areas
and vice versa.

THE BIORDBOTICS
INSTITUTE

,f"'--"' n‘-: H\. . . .
[ o '1'| Scuola Superiore
REE- ;| Sant’ Anna

T|_|T| fortiss M/
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The Neurorobotics Platform “ i

Human Brain Project

 transfer functions connect the neural and
physical simulators

[ Neurorobotics platfo: x @
® | ;

* neural simulation is provided by NEST,
through the PyNN interface

« physical and robotic simulations are
provided by Gazebo, via the ROS
middleware

 web-based frontend for visualization
and environment creation

$ GAZEBO iiROS

gazebosim.org ros.org
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Neuromorphic computing resources

Neurology:
 "Principles of Neural Science” by Kandel et al.

THEORETICAL NEUROSCIENCE

Computational neuroscience:

« “Theoretical Neuroscience: computational and
mathematical modeling of neural systems” by Peter Dayan
and Larry Abbott

« Computational Neuroscience on Coursera

NEST:
e WwWw.nest-simulator.org

SpiNNaker:
« spinnakermanchester.github.io
« apt.cs.manchester.ac.uk/projects/SpiNNaker

Neurorobotics Platform: Contacts:
* neurorobotics.net lorenzo.vannucci@santannapisa.it
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