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Human and Animal Models for BioRobotics



Lessons from Nature
Bioinspiration in robotics



Nevertheless... …natural selection is not engineering

They need to survive long enough to reproduce.
Models are never complete or correct: need to interpret with caution.

“Simply copying a biological system is either not feasible (even
a single neuron is too complicated to be synthesized artificially
in every detail) or is of little interest (animals have to satisfy
multiple constraints that do not apply to robots, such as
keeping their metabolism running and getting rid of parasites),
or the technological solution is superior to the one found in
nature (for example, the biological equivalent of the wheel has
yet to be discovered).

Rather, the goal is to work out principles of biological
systems and transfer those to robot design.” Rolf Pfeifer

Extract key
principles

R. Pfeifer, M. Lungarella, F. Iida, "Self-Organization, Embodiment, and Biologically Inspired Robotics", 
Science 318, 1088 (2007)

Organisms that are capable of surviving are not necessarily optimal for 
their performance. 

Bioinspiration



Lessons from Nature: 
simplifying principles

In robotics, we need simplifying principles for control and behavior

Too complex?
Rather too simple?

Studying living organisms and 
understanding what makes their 
behavior so smart and efficient 



Simplexity

Simplexity comprises a collection of solutions that can be observed in living
organisms which, despite the complexity of the world in which they live, allows
them to act and project the consequences of their actions into the future.
It is not a matter of simplified model adoption, but rather an approach to
using simplifying principles.
Biological systems can use:

Multiple reference frames
Anticipation and prediction
Inhibition to select and adapt
Redundancy
Biomechanics and internal models
Synergies
Laws of motion
Emotion

A. Berthoz (2012), Simplexity: Simplifying principles for a Complex World. Yale 

University Press. 

U. Alon (2207), “Simplicity in Biology”, Nature, 446(7135):497

In robots, the concept of a unified 
inertial reference frame, together 
with gaze control, can represent one 
of the basic design principles for 
simplifying the control of complex 
kinematic (human



Model of fast gaze-shift control Collicular
mapping

(red point: 
stimulus

coordinates)

Mapping from the retina to the 
Superior Colliculus (SC)

C. Laschi, F. Patanè, E.S. Maini, L. Manfredi, G. Teti, L. Zollo, E. Guglielmelli, P. Dario, “An Anthropomorphic 
Robotic Head for Investigating Gaze Control”, Advanced Robotics, Vol.22, No.1, 2008, pp.57-89.

A. Berthoz (2012), Simplexity: Simplifying principles for a Complex World. Yale University Press. 
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Summary of bioinspired approaches to 
robotics (in this course…)

Robot mechanics
and kinematics

Robot control

Robot vision

Robot behaviour

Robot sensors

Embodied Intelligence, 
Soft Robotics

Neurocontrollers

Predictive behaviour

Vestibular system

Robot navigation Bioinspired navigation, 
Soft locomotion

Bioinspired vision
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Embodied Intelligence: the modern 
view of Artificial Intelligence

Classical approach
The focus is on the brain and 

central processing

Modern approach
The focus is on interaction with the 

environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of 
intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. They are subject to the laws of physics (energy dissipation, 
friction, gravity).

2. They generate sensory stimulation through motion and 
generally through interaction with the real world.

3. They affect the environment through behavior.
4. They are complex dynamical systems which, when they 

interact with the environment, have attractor states.
5. They perform morphological computation.
These properties are simply unavoidable consequences of 
embodiment. 
These are also the properties that can be exploited for 
generating behavior, and how this can be done is specified in the 
design principles. 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. A complete agent is subject to the laws of physics. 
Walking requires energy, friction, and gravity in order to work. 
Because the agent is embodied, it is a physical system (biological 
or not) and thus subject to the laws of physics from which it 
cannot possibly escape; it must comply with them. If an agent 
jumps up in the air, gravity will inevitably pull it back to the 
ground.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

2. A complete agent generates sensory stimulation. 
When we walk, we generate sensory stimulation, whether we 
like it or not: when we move, objects seem to flow past us (this is 
known as optic flow); 
by moving we induce wind that we then sense with our skin and 
our hair; 
walking also produces pressure patterns on our feet; 
and we can feel the regular flexing and relaxing of our muscles as 
our legs move.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

3. A complete agent affects its environment. 
When we walk across a lawn, the grass is crushed underfoot; 
when we breathe, we blow air into the environment; 
when we walk and burn energy, we heat the environment; 
when we drink from a cup, we reduce the amount of liquid in the 
glass; 
when we drop a cup it breaks; 
when we talk we put pressure waves out into the air; 
when we sit down in a chair it squeaks and the cushion is 
squashed.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

4. Agents tend to settle into attractor states. 
Agents are dynamical systems, and as such they 
have a tendency to settle into so-called attractor 
states. Horses, for example, can walk, trot, 
canter, and gallop, and we—or at least experts—
can clearly identify when the horse is in one of 
these walking modes, or gaits, the more technical 
word for these behaviors.
These gaits can be viewed as attractor states. The 
horse is always in one of these states, except for 
short periods of time when it transitions between 
two of them, for example from canter to gallop. 
We should point out here that the attractor 
states into which an agent settles are always the 
result of the interaction of three systems: the 
agent’s body, its brain (or control system), and its 
environment. 
Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

5. Complete agents perform morphological computation. 
By “morphological computation” we mean that certain processes are performed 
by the body that otherwise would have to be performed by the brain. 
An example is the fact that the human leg’s muscles and tendons are elastic so 
that the knee, when the leg impacts the ground while running, performs small 
adaptive movements without neural control.
The control is supplied by the muscle-tendon system itself, which is part of the 
morphology of the agent. 
It is interesting to note that systems that are not complete, in the sense of the 
word used here, hardly ever possess all of these properties. For example, a vision 
system consisting of a fixed camera and a desktop computer does not generate 
sensory stimulation because it cannot produce behavior, and it influences the 
environment only by emitting heat and light from the computer screen. Moreover, 
it does not perform morphological computation and does not have physical 
attractor states that could be useful to the system.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological computation

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological Computation

The shape
as body structure, specifies the 
behavioral response of the agent

The arrangement
of the motor, perceptive and processing 
units 

The mechanical properties
allow emergent behaviors and highly 
adaptive interaction with the environment

As any transformation of information can be named as computing, Morphological 
Computation endows all those behaviours where computing is mediated by the 
mechanical properties of the physical body

Zambrano D, Cianchetti M, Laschi C (2014) “The Morphological Computation Principles as a 
New Paradigm for Robotic Design” in Opinions and Outlooks on Morphological Computation, 
H. Hauser, R. M. Füchslin, R. Pfeifer (Ed.s), pp. 214-225.



Agent Design Principle 1

The three-costituents principle:
• define the ecological niche ENVIRONMENT
• define the desired behaviour and tasks TASK
• design the agent BODY

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 2

The complete-agent principle:
• think about the complete agent behaving in the real

world

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 3

Cheap design:
• If agents are built to 

exploit the properties of 
the ecological niche and 
the characteristics of the 
interaction with the 
environment, their 
design and construction 
will be much easier, or 
‘cheaper’

Passive 
walker

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid


Agent Design Principle 4

Redundancy:
• Intelligent agents must be designed in such a way 

that 
(a) their different sub-systems function on the basis 

of different physical processes, and 
(b) there is partial overlap of functionality between 

the different sub-systems

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 5

Sensory-Motor Coordination:
• through sensory-motor 

coordination, structured 
sensory stimulation is 
induced.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 6

Ecological balance:
1. given a certain task 

environment, there has to 
be a match between the 
complexities of the agent’s 
sensory, motor, and neural 
systems

2. there is a certain balance or 
task distribution between 
morphology, materials, 
control, and environment.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 7

Parallel, loosely coupled processes:
intelligence is emergent from a large number of parallel 
processes that are often coordinated through 
embodiment, in particular via the embodied interaction 
with the environment 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

Reactive architectures



Agent Design Principle 8

Value:
agents are equipped with a value system which 
constitutes a basic set of assumptions about what is 
good for the agent

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



The octopus arm embodied intelligence

Simplifying principles in reaching

• stiffening wave from base to distal part, that can start from any part of the arm;
• movement executed in about 1 second, velocities in the range of 20–60 cm/s;
• control divided between central and peripheral: from brain: 3 parameters (yaw and pitch 

of arm base and peak velocity of bend-point); locally: propagation of stiffness

I. Zelman, M. Galun, A. Akselrod-Ballin, Y. Yekutieli, B. Hochner, and T. Flash (2009) Nearly automatic motion capture
system for tracking octopus arm movements in 3D space, Journal of Neuroscience Methods, Volume 182: 97-109
L. Zullo, G. Sumbre, C. Agnisola, T. Flash, B. Hochner (2009) Nonsomatotopic Organization of the Higher Motor Centers
in Octopus, Current Biology, 19:1632-1636. 



Simplifying principles in reaching

• Soft robot
• Passive distal part
• Water
• Neural controller 

(not octopus-like!)
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TANGENTIAL BEND PROPAGATION VELOCITY 
OF THE OCTOPUS ARM

Morphological and environmental properties are the factors that affect the invariant velocity profile observed 

Unpublished

TANGENTIAL BEND PROPAGATION VELOCITY 
OF THE SOFT ROBOT

Morphological properties

Environmental properties

T. G. Thuruthel, E. Falotico, F. Renda, T. Flash, C. Laschi, Emergence of Behavior from
Morphology: A Case study on an Octopus Inspired Manipulator, Royal Society Open
Science , under review



Pulsed-jet swimming in cephalopods

Simplifying principles in swimming

Ejection of a discontinuos stream of fluid through a nozzle
that produces ring vortexes.
The generation of ring vortexes provides an additional
thrust to the one generated by a continuous jet, by 
generating an additional pressure at the nozzle orifice

REFILL PHASE
• mantle expansion
• refilling of the mantle
cavity through water  
inlets

JET PHASE
•mantle contraction
• expulsion of a fluid
slug through the 
funnel (siphon)

The mantle and siphon morphology and the pulsed jet frequency optimize propulsion, 
producing ring vortexes

Giorgio Serchi F., Arienti A. and Laschi C. (2013) “Biomimetic Vortex Propulsion: Toward the New 
Paradigm of Soft Unmanned Underwater Vehicles”, IEEE/ASME Transactions on Mechatronics, 
18(2), pp. 484-493



The mantle and siphon morphology and the pulsed jet frequency optimize propulsion, 
producing ring vortexes (in green)

Giorgio-Serchi F., Arienti A., Laschi C. (2016 ), "Underwater Soft-bodied Pulsed-Jet Thrusters: actuator, 
modelling and performance profiling", International Journal of Robotics Research, 35 (11), 1308-1329 

Silicone and cables, 1 DOF PoseiDrone

Pulsed-jet swimming soft robot

Simplifying principles in swimming



U-SLIP model
Water drag, added mass, buoyancy and pushing 
propulsion have been added to the SLIP model

2 control parameters 4 design parameters

Punting
gait model

Morphology-Induced Stability

New concept of soft 
underwater robots

C=0.1 a=1
Streamlined
body

C=0.8

a=7

Bulky body

MIS

Body shape

Body matters: compliant legs or a soft body directly influence stability and speed 

Simplifying principles in underwater locomotion

Octopus crawling

Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario, “An octopus-bioinspired solution to movement and manipulation for 
soft robots”, Bioinspiration and Biomimetics Vol.6, No.3, 2011, 10 pp.
Calisti, M., Corucci, F., Arienti, A., & Laschi, C. (2015). Dynamics of underwater legged locomotion: modeling and experiments on an 
octopus-inspired robot. Bioinspiration & biomimetics, 10(4), 046012.
Calisti, M., G. Picardi, and C. Laschi. "Fundamentals of soft robot locomotion." Journal of The Royal Society Interface 14.130

Locomotion is based on cyclic control of two back 
arms, while the body is raised thanks to neutral 
buoyance. Locomotion consists of 4 phases:
1.Arm shortening
2.Attaching to the floor
3.Elongation (pushing the body forward)
4.Detaching 



Symplifying principles in squeezing

Compliant articulate exoskeleton
Cockroaches intrude everywhere by exploiting their soft-bodied, 
shape-changing ability. They traversed horizontal crevices smaller 
than 25% of their height in less than 1s by compressing their bodies’ 
compliant exoskeletons in half. 

Once inside vertically confined spaces, cockroaches still locomoted rapidly at 
20 body lengths per second using an unexplored mode of locomotion “body-
friction legged crawling”.

K Jayaram and RJ Full (2016) “Cockroaches traverse crevices, crawl rapidly in confined spaces, 
and inspire a soft, legged robot” PNAS 2016 113 (8) E950-E957

Soft, legged search-and-rescue robot that 
may penetrate rubble generated by 
tornados, earthquakes, or explosions.

• Mechanical adaptation to available space
• 1 DOF



Embodied Intelligence and 
soft robotics

Classical approach
• The focus is on the brain and 

central processing

Modern approach
The focus is on interaction with the 

environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of 
intelligence, The MIT Press, Cambridge, MA, 2007

Any cognitive activity arises from the interaction

between the body, the brain and the 

environment. 

Adaptive behaviour is not just control and 

computation, but it emerges from the complex 

and dynamic interaction between the 

morphology of the body, sensory-motor control, 

and environment.

Many tasks become much easier if 

morphological computation is taken into 

account. 

=> A new soft bodyware is needed



Defining Soft Robotics: 
a first broad classification

Variable impedance actuators and 
stiffness control

• mechanically (or passively) compliant 
joints with variable stiffness 

• compliance or impedance control 

Use of soft materials in robotics

• Robots made of soft materials or 
structures that undergo high 
deformations in interaction

• Soft actuators and soft components

IEEE Robotics and Automation Magazine, 
Special Issue on Soft Robotics, 2008

Laschi C. and Cianchetti M. (2014) “Soft Robotics: new 
perspectives for robot bodyware and control” Frontiers in 

Bioengineering & Biotechnology, 2(3)



A ‘soft’ animal world

• The vast majority of animals are soft-
bodied

• Animals with stiff exoskeletons such 
as insects have long-lived life stages 
wherein they are almost entirely soft 
(maggots, grubs, and caterpillars).

• Animals with stiff endoskeletons are 
mainly composed of soft tissues and 
liquids. 

the human skeleton typically 
contributes only 11% of the body 
mass of an adult male

skeletal muscle contributes an 
average 42% of body mass

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired 
evolution in robotics, Trends in Biotechnology, April 2013.



A ‘soft’ animal world

• Soft animals tend to be small because 
it is difficult for them to support their 
own body weight without a skeleton. 

• All of the extremely large soft 
invertebrates are found either 
• in water (squid and jellyfish) or 
• underground (giant earthworms), 

where their body is supported by the 
surrounding medium. 

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution in 
robotics, Trends in Biotechnology, April 2013.



Defining Soft Robotics

D. Trivedi, C. D. Rahn, W. M. Kier, I. D. Walker, “Soft robotics: Biological inspiration, state of the art, and future research”, 
Applied Bionics and Biomechanics, 5, 99-117 (2008)

Shift from robots with rigid links to bio-inspired 
continuum robots that are “inherently compliant and 
exhibit large strains in normal operations”

Continuum robots: capable of bending via elastic 
deformation, and differing from traditional robots 
with rigid links and serpentine robots with a large 
number of short rigid links and degrees of freedom

“soft robotic manipulators are continuum robots 
made of soft materials that undergo continuous 
elastic deformation and produce motion through the 
generation of a smooth backbone curve [15]”. 

G. Robinson, J. B. C. Davies, “Continuum robots - a state of 
the art”, IEEE International Conference on Robotics and 
Automation, (Detroit, MI, 1999), pp. 2849-2854.



Defining Soft Robotics

• “Soft-bodied robots”, in analogy with soft-bodied 
animals

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution 
in robotics, Trends in Biotechnology, April 2013.

• “Robots built with soft materials”
Laschi C. and Cianchetti M. (2014) “Soft Robotics: new perspectives for robot 

bodyware and control” Frontiers in Bioengineering & Biotechnology, 2(3)



Defining Soft Robotics

• “systems that are capable of autonomous behavior, and that are 
primarily composed of materials with moduli in the range of that of 
soft biological materials”

D. Rus, M. T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467-475 (2015).

• “soft-matter robotics”, based on the well-known concept of “soft 
matter” used for materials

L. Wang, F. Iida, Deformation in Soft-Matter Robotics: A Categorization and Quantitative 
Characterization. IEEE Robotics & Automation Magazine 22(3), 125-139 (2015).



RoboSoft is a Coordination Action on Soft Robotics funded by the European Commission.
The RoboSoft Community accounts for 34 member institutions for a total of 100+ scientists

Defining Soft Robotics

Definition of Soft Robotics by RoboSoft Community



Low Elastic Modulus

High Elastic Modulus

Soft Robotics may exploit materials which present:

- INHERENT MATERIAL compliance: bulk material properties 
(elastomers, low elastic modulus polymers, gels…)

- STRUCTURAL compliance: geometric features or arrangement can 
allow magnified strains compared with local material deformation

Soft Robotics

Hard Robotics

M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, 
J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for 
entirely soft, autonomous robots, Nature 536, 451–455

C. Laschi, B. Mazzolai, M. Cianchetti, "Soft robotics: technologies and systems
pushing the boundaries of robot abilities", Science Robotics 1(1), 2016
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Motor control: model-based 
closed-loop schemes for 

controlling arm position and 
orientation

• A priori knowledge on the 
geometry, kinematics and 
dynamics of the robot is 
required

• High computational 
complexity

• Little flexibility and 
generalization

• High accuracy

Target  Position

ARM

Sensory

feedback 

(e.g. vision)

{(J0i
, …,J7i

)}

Neuro-

controller

Current End-Effector

Position

Motor 

Commandand Orientation

(Xt, Yt, Zt)

(rollt, pitcht, yawt)

(Xc, Yc, Zc)and Orientation

(rollc, pitchc, yawc)

Controller



Learning motor control: 
neurocontroller for controlling 
arm position and orientation

• No a priori knowledge on 
the geometry, kinematics 
and dynamics of the robot 
is required

• learning capability, to 
develop an internal model 
that builds such 
knowledge 

• low computational 
complexity

• human-like flexibility, 
robustness, generalization

Target  Position

ARM

Sensory

feedback 

(e.g. vision)

{(J0i
, …,J7i

)}

Neuro-

controller

Current End-Effector

Position

Motor 

Commandand Orientation

(Xt, Yt, Zt)

(rollt, pitcht, yawt)

(Xc, Yc, Zc)and Orientation

(rollc, pitchc, yawc)



Application of the same approach to
different robotic systems

G. Asuni, Leoni F., Starita A., Guglielmelli E., Dario P., “A Neuro-controller for Robot Arms
Based on Biologically-Inspired Visuo-Motor Coordination Neural Models”, The 1st
International IEEE EMBS Conference on Neural Engineering, 20 - 22 March, 2003, Capri
Island, Italy.

G. Asuni, G. Teti, C. Laschi, E. Guglielmelli, P. Dario, “A Robotic Head Neuro-controller on 
Biologically-Inspired Neural Models”, IEEE International Conference on Robotics and 
Automation April 18-22, 2005, Barcelona, Spain

E.Guglielmelli G. Asuni, F. Leoni, A. Starita, P. Dario, “A Neuro-controller for Robot Arms 
Based on Biologically-Inspired Visuo-Motor Co-ordination Neural Models”, IEEE Handbook of 
Neural Engineering, M. Akay (Ed.), IEEE Press, 2007. 



Soft robot control

Model–Free  
(learning-based) 

approaches

Model–based 
Approaches 

Joint positions 
(angles)

Joint space Task space

Position, 
orientation, force

FROM:

TO:

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control
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Lumped-Parameter Model

D
is

cr
et

iz
ed

-f
u

n
ct

io
n

s

Constant Curvature Model

Piecewise Constant Curvature

C
o

n
ti

n
u

o
u

s-
fu

n
ct

io
n

s

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control

Based on CC modeling

Closed-loop task space controller

Closed-loop controller in task space

Closed-loop controller in joint space

Camarillo DB, Carlson CR, Salisbury JK. Task-space control of continuum manipulators with coupled tendon drive. In: Experimental Robotics. 
Springer Tracts in Advanced Robotics, vol 54. Khatib O, Kumar V, Pappas GJ (Eds). Berlin, Heidelberg; Springer: 2009, pp. 271–280.

Bajo A, Goldman R, Simaan N. Configuration and joint feedback for enhanced performance of multi-segment continuum robots. 2011 IEEE 
International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011.

PenningR, Jung J, Ferrier N, Zinn M.An evaluation of closedloop control options for continuum manipulators. 2012 IEEE International Conference 
on Robotics and Automation (ICRA), Saint Paul, MN, 2012.

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control

Discussion:
• Most widely used in quasi static conditions
• Mostly relying on CC approximation
• More complex models are computationally expensive

• Need for alternative methods, better addressing the 
complexity of soft robot control, at affordable
computational cost

=> model-free approaches

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-free approaches for soft robot control
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T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-free approaches for soft robot control

Model-free closed-loop task space controller

Cable 
Tension

Learning-based Control, by learning the
inverse model.

Learning by collecting points and
exploiting the approximation capability
of a FNN, as for rigid robots

End effector
position

Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and Jacobian method for solving the inverse statics of a 
cable-driven soft arm with nonconstant curvature. IEEE Trans Robot 2015;31:823–834.
Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Learning the inverse kinetics of an octopus-like manipulator in three-
dimensional space. Bioinspir Biomim 2015; 10:035006.

Rolf M, Steil JJ. Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. IEEE Trans Neural Netw Learn Syst 2014;25:1147–1160.

JOINT SPACETASK SPACE

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-free approaches for soft robot control

Discussion:
• No need for defining the parameters of the 

configuration space or joint space
• Independent from manipulator shape
• Arbitrarily complex kinematic models, 

depending on sample data and sensory noise
• Better performance with highly nonlinear, 

non-uniform, gravity-influenced systems
• Suitable for unstructured environments

where modelling is almost impossible

Better encoding of morphological computation?



Summary of bioinspired approaches to 
robotics (in this course…)

Robot mechanics
and kinematics

Robot control

Robot vision

Robot behaviour

Robot sensors

Embodied Intelligence, 
Soft Robotics

Neurocontrollers

Predictive behaviour

Vestibular system

Robot navigation Bioinspired navigation, 
Soft locomotion

Bioinspired vision



Prediction and anticipation strategies
in the human brain

In humans, perception is not just the interpretation of sensory 
signals, but a prediction of consequences of actions

“Perception can be defined as a simulated action:
perceptual activity is not confined to the
interpretation of sensory information but it
anticipates the consequences of action, so it is an
internal simulation of action.
Each time it is engaged in an action, the brain
constructs hypotheses about the state of a
variegated group of sensory parameters
throughout the movement.”

Berthoz A. (2002), The brain’s sense of movement. Harvard University Press



R. Brooks, Cambrian Intelligence” MIT Press, 2000

From hierarchical to reactive
architectures in robotics



Predictive architectures

If mismatch



Hierarchical architectures

SENSORY 
PROCESSING

BEHAVIOUR 
PLANNING

CONTROLLER

ROBOT

Sensors Actuators



Reactive architectures

SENSORY 
PROCESSING

BEHAVIOUR 
PLANNING

CONTROLLER

ROBOT

Sensors Actuators



Expected Perception (EP) System

Expected Perception:

● Internal Model to predict the 
robot perceptions

● Comparison between actual 
and predicted  perception

● Open loop controller if the 
prediction error is low

● Closed loop controller if the 
prediction error is high

Expected Perception



Sensory prediction proposed by R. Johansson

“Because of the long time delays with feedback control the swift coordination of fingertip forces during 
self-paced everyday manipulation of ordinary ‘passive’ objects must be explained by other mechanisms. 
Indeed, the brain relies on feedforward control mechanisms and takes advantage of the stable and 
predictable physical properties of these objects by parametrically adapting force motor commands 
to the relevant physical properties of the target object.”

Corrections are generated when expected sensory inputs do not match the actual ones

R.S. Johansson, “Sensory input and control of grip”. In Sensory Guidance of 
Movements, John Wiley, Chichester, UK, pp. 45-59, 1998



Learning of grasping module

Learning phase:
About 40000 random  movements



Grasping the bottle

C. Laschi, G. Asuni, E. Guglielmelli, G. Teti, R. Johansson, M.C. Carrozza, P. Dario, “A Bio-
inspired Neural Sensory-Motor Coordination Scheme for Robot Reaching and Preshaping”,
Autonomous Robots, Vol.5, 2008, pp.85-101.



Expected Perception in the visual space
EP architecture applied to 3D reconstruction of the environment

Task: free walking in an unknown 

room with obstacles

Classical approach:

- 3D reconstruction of the 

environment 

- path planning for collision-free 

walking

-> large computational burden

In a Visual EP architecture, after a first 3D reconstruction of the environment,

images can be predicted, based on internal models and on the ongoing

movement.

Predicted images are compared with actual ones and in case of unexpected

obstacles a mismatch occurs and the motor action is re-planned



Visual EP scheme

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



AVP architecture (I)

- Visual Processing module takes as input current images from both robot
cameras to reconstruct the environment producing the relevant feature position.

- The poses of relevant features are sent to a Trajectory Planning module to
generate the walking path

- The Controller module then takes the first robot pose from the sequence of
poses planned by the Trajectory Planning module and produces the
corresponding motor commands

-This cycle continues until the robot reaches the target.

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



- Internal Models of 
the environment and of 

the task to be 
performed are 

necessary to predict
future visual 
perceptions. 

- Images of different 
features relevant to the 

locomotion task are 
captured and 

memorized

AVP architecture (II)

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



Visual EP System (implementation)

The system performs a real time 3D 

reconstruction of the environment (30fps) 

used to generate an expected synthetic  

camera image. The cloud of 3D points is 

updated using an image sensory-motor 

prediction.

At each step:

● the next predicted image (EP) is 

calculated.

● the predicted and actual cameras 

images are compared.

● the 3D reconstruction of the visible 

environment is updated based on the 

prediction error

The system has 2 advantages:

● A faster real-time 3D reconstruction

● Recognition of the unexpected 

objects in the  scene

Moutinho, N.; Cauli, N.; Falotico, E.; Ferreira, R.; Gaspar, J.; Bernardino, A.; Santos-
Victor, J.; Dario, P.; Laschi, C.; 2011. "An expected perception architecture using visual 3D
reconstruction for a humanoid robot,“ IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems - IROS, San Francisco, CA, USA, 25-30 Sept. 2011 , pp.4826-4831.

Left camera image
Right camera image

Predicted image
Prediction error (unexpected 
perception)



This circuit is based on Shibata and Schaal’s model (Shibata 2005) of smooth pursuit and consists of
three subsystems:
1. a recurrent neural network (RNN) mapped onto medial superior temporal area (MST), which

receives the retinal slip with delays and predicts the current target motion,
2. an inverse dynamics controller (IDC) of the oculomotor system, mapped onto the cerebellum and

the brainstem,
3. and a memory block that recognizes the target dynamics and provides the correct weights values

before the RNN.

A predictive model for smooth pursuit

Zambrano D, Falotico E, Manfredi L, and Laschi C. (2010). “A model of the smooth 
pursuit eye movement with prediction and learning”. Applied Bionics and 
Biomechanics



Predictive smooth pursuit on a robot head

Sinusoidal dynamics:
a) angular frequency: 

1 rad/s, amplitude: 
10 rad, phase: π/2

b) angular frequency: 
1 rad/s, amplitude: 
15 rad, phase of ¾ π0.8s 0.8s

The retinal slip (target velocity onto the retina) reaches zero after that the algorithm converges.
When the target is unexpectedly stopped, the system goes on tracking the target for a short time.

iCub platform
head, 6 dof:
3 for the eyes
3 for the neck

In collaboration with Istituto Superior Tecnico, Lisbon, Portugal



Punching a moving target - robot experiments

The prediction is iterated ahead 0.5 seconds 

As the predicted target is inside the arm workspace, the robot executes a 

movement to punch the ball in the predicted position 

N. Cauli, E. Falotico, A. Bernardino, J. Santos-Victor, C. Laschi, “Correcting for Changes: 
Expected Perception-Based Control for Reaching a Moving Target”, IEEE Robotics and 
Automation Magazine, 23 (1), pp.63-70, 2016.



Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Embodied Intelligence & Morphological Computation



Robot low-level control
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Hierarchical
architectures

Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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