

University of Pisa

Neuron-Astrocyte models

Gaetano Valenza

Cells in the Central Nervous Systems

Neuron Electrical Activity

Glia Biochemical Activity

Astrocyte
Oligodendrocytes
Schwann Cell

Astrocytes.....most abundant glial cell type

Form anatomical link between neurons and arterioles

Radial astrocytes: surround ventricles Protoplasmic astrocytes: in gray matter Fibrous astrocytes: in white matter

Function

	AMPARs	NMDARs	P2XRs	Dopamine receptors	GABARs	Glycine receptors	MGluRs	P2YRs
Cortex	+	+	+	-	-	-	+	+
Hippocampus								
GluR cells	+	-	-	-	+	-	?	+
GluT cells	-	-	-	-	?	-	+	+
Cerebellum	+	-	-	-	+	-	+	+
Basal ganglia	?	-	-	+	-	-	?	?
Spinal cord	+	+	-	-	-	+	+	+

Development

Structural

BBB

Metabolic support Homeostasis

(Before ~1990) Neurons are the only carriers of information in the brain.

Glia cells exist only for metabolic support

For many years it was thought that process of synaptogenesis, maintenance, and elimination of synaptic contacts was solely neural responsibility

Glutamate-dependent Astrocyte Modulation of Synaptic Transmission Between Cultured Hippocampal Neurons

Before 1990: Structural support for neurons

1990-2000: "housekeeping" cells with active support roles

- Buffering and siphoning of [K⁺]_{out} and [Ca²⁺]_{out} after excessive firing
- Uptake of neurotransmitters
 - glutamate (Pellerin and Magistretti, 1994), GABA,
- Release of gliotransmitters
 - glutamate (Parpura et al., 1994), ATP, D-serine, GABA, growth factors, , Ca²⁺-binding buffers (2013)
- Respond to synaptic activity by increasing [Ca²⁺]i
- Glutamate-mediated modulation of synaptic transmission
 - Concept of tripartite synapse (Araque et al., 1999).

Then...the other half of the brain

GENETIC CODE: EVOLVED TO EVOLVE • CHOICE AND MISERY

SCIENTIFIC AMERICAN

SPACESHIPS, INC. The Race to Build a Low-Cost Launch Industry

APRIL 2004 WWW.SCIAM.COM

HAS SCIENCE MISSED HALF THE BRAIN?

Neglected Cells Hold Keys to Thought and Learning

The First Nanochips Have Arrived

Dusty Clues to Hidden Planets

Tripartate synapse

Ca²⁺ Role in the Intracellular and intercellular communication

Metabolism

Brain represents approx 2% of total body mass, but consumes 20% of total energy -decreases by 40% during sleep -increases by 12% under cognitive stress

Energy for transmembrane ion gradients

Development

Structural

BBB

Metabolic support

Homeostasis

Structure of the grey matter

Maintain contacts with neurons, blood vessels and synapses residing in their anatomical domain

Glutamate

Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain. It is the brain's main excitatory neurotransmitter

The tripartite synapse

IP₃ receptors release Ca²⁺in the endoplasmic reticulum

Ca²⁺ in the endoplasmic reticulum create a gradient of Ca²⁺ concentration between the endoplasmic reticulum and the cell cytoplasm

IP₃ receptors are then re-activated and release Ca²⁺ in the cell cytoplasm

An auto-catalytic process starts

The tripartite synapse

Over a certain threshold, [Ca²⁺] in the cell cytoplasm activates pumps bringing Ca²⁺ in the endoplasmic reticulum and outside cells.

The tripartite synapse

The tripartite synapse

Cerebral Circulation

Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation

Zonta et al., 2003

Ca++ propagation throughout astrocytic syncytium

[Ca++] at endfeet attached to endothelial cells

Vesicular release of prostanoids

Relaxation of capillary walls; decrease in vascular tone

Bloodflow

Synchronous Firing Groups-Astrocytic Regulation of Neural Networks

Onde spirali di calcio

Onde spirali di calcio sono state osservate in fette di tessuto ippocampale

Figure 19.7

Structures in the medial temporal lobe. (a) Lateral and medial views show the location of the hippocampus in the temporal lobe. (b) The brain is sectioned coronally to show the hippocampus and cortex of the medial temporal lobe.

Astrocytes and calcium

- Calcium waves propagate through the syncytium GAP JUNCTIONS, a non-synaptic means of communication within the brain
- Waves can be induced by mechanical stimulation and by glutamate
- Influx of calcium leads to calcium-sensitive release and uptake of ions and neuromodulators

Ca²⁺ Waves (Cornell-Bell et al., M. Sanderson, A. Charles)

Speed: ~20µm/s

Range: a few hundred µm

Time scale: seconds to minutes

Ca²⁺ waves have been observed in the hippocampus

Relative ratios of astrocytes to neurons

A single astrocyte can cover 20 000 – 100 000 synapses in rodents... and possibly up to 2 million in primates and humans.

Astrocytes and Epileptic Seizures

Tian et al.: An astrocytic basis of epilepsy (Nature Medicine, 11 (2005)

Epileptic discharges through local paroxysmal depolarization shift (PDS) driving groups pf neurons into synchronous bursting activity.

-- Ca2+ increased in Astrocyte

- PDS like epileptiform responses in neighboring neurons
- PDS in nearby neurons in in-vitro epilepsy models with blocked synaptic transmission
 - Anti-epileptics reduced Ca2+ signal in astrocyte

Astrocytes and Calcium Waves

intra-inter-cellular communications

Biological Model of tripartite synapse

Modelling neuron-astrocyte interactions

The intracellular IP3 production can be modelled by:

$$\frac{d[IP_3]}{dt} = \frac{1}{\tau_{IP_3}}([IP_3]^* - [IP_3]) + (r_{IP_3}\Theta(v - 50 mV))$$

where [IP3]* is the equilibrium concentration. τ is the IP3 degradation time constant and *r* is the production rate of IP3 in response to an action potential

Wang S.S.H., Alousi A.A. and Thompson S.H. The life time of inositol 1,4,5-triphosphate Page • 35 in single cells. J. Gen. Physiol., 105:149-171, 1995

Modelling astrocyte-astrocyte interactions

The flux of IP3 can be modelled by:

$$J_G = \sum_{\langle i \rangle} \kappa \left([IP_3]_j - [IP_3]_i \right)$$

Where *i* indicate the *ith* astrocyte, *k* is the diffusion coupling coefficient through the gap-junction and *<j>* is the contribution of the neighbouring astrocytes

Robb-Gaspers L.D. and Thomas A.P. Coordination of calcium signaling by intercellular propagation of calcium waves in the intact liver. J. Biol. Chem., 270, 8102-8107, 1995.

Ullah G., Jung P. and Cornell-Bell A.H. Anti-phase calcium oscillations in astrocytes via initosl (1, 4, 5)-triphosphate regeneration. Cell Calcium, 39, 197-208, 2006

The Li-Rinzel model of Astrocyte

Extrasynaptic, NR2B-containing, NMDA receptors
Metabotropic glutamate receptors

$$\frac{d[Ca^{2+}]}{dt} = -J_{channel}(q) - J_{pump} - J_{leak}$$

$$\frac{dq}{dt} = \alpha_q (1-q) - \beta_q q$$

$$J_{channel} = c_1 v_1 m_{\infty}^3 n_{\infty}^3 q^3 ([Ca^{2+}] - [Ca^{2+}]_{ER})$$

$$J_{pump} = \frac{v_3 [Ca^{2+}]^2}{k_3^2 + [Ca^{2+}]^2}$$

$$J_{leak} = c_1 v_2 ([Ca^{2+}] - [Ca^{2+}]_{ER})$$

$$m_{\infty} = \frac{[IP_3]}{[IP_3] + d_1}$$

$$n_{\infty} = \frac{[Ca^{2+}]}{[Ca^{2+}] + d_5}$$

$$\alpha_q = a_2 d_2 \frac{[IP_3] + d_1}{[IP_3] + d_3}$$

$$\beta_q = a_2 [Ca^{2+}]$$

Experimental model for astrocyte-neuron interaction

Experimental data can be useful to model the correlation of the Ca²⁺ concentration into the astrocyte environment with the weak additional synaptic currents coming from the neighbouring astrocytes

$$I_{astro} = 2.11\Theta(\ln y) \ln y$$

$$y = \frac{[Ca^{2+}]}{nM} - 196.69$$

$$\int_{0}^{300} \frac{0}{\sqrt{9}} + \frac{100}{\sqrt{9}} + \frac{100}{\sqrt$$

Nadkarni S. and Jung P., Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101(4), 2003

Neuro-Astrocyte using Hodgkin Huxley

$$C_{m}\frac{dv}{dt} = -g_{K}n^{4}(v - v_{K}) - g_{Na}m^{3}h(v - v_{Na}) - g_{l}(v - v_{l}) + I_{ext} + I_{astro}$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m$$
$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n$$
$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h$$

A modified Izhikevich neuronal model

$$then \begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$$

$$v' = 0.04 v^{2} + 5v + 140 - u + I + I_{astro}$$

 $u' = a (bv - u)$

Dressed Neuron

Astrocyte feedback self-sustains Neural activity!

Nadkarni and Jung Phys. Rev. Letters 2003

Neuron-Astrocyte interaction

Biological Model of tripartite synapse

Page • 48

Our model: toward a transistor-based approach

$$I_{astro} = I_{neuron} \cdot h_{fe}$$

$$\stackrel{\text{Pre-Synaptic } I_n \in S_n}{\underset{\text{Neuron}}{} h_{fe}}$$

$$\stackrel{\text{Pre-Synaptic } I_n \in S_n(rIP3)}{\underset{\text{Neuron}}{} f}$$

$$h_{fe} = \begin{cases} 0 & \text{if } I_n \leq S_n(rIP3) \\ \phi(t - d_1(A_1))A_1(rIP3, In, S_1)\sin(h(A_1)) & \text{if } S_1(rIP3) < I_n \leq S_2(rIP3) \\ \phi(t - d_2(I_{fin})) \underbrace{I_{fin} + (A_2e^{-\frac{t}{\tau}}\sin(2\pi ft))}_{I_n} & \text{if } I_n > S_2(rIP3) \end{cases}$$

where s_1 and s_2 are the threshold for the zone 0,1,2

Page ■ 50

Valenza & De Rossi et al. Neural Networks 2011

The Neuron-Astrocyte IS a non-linear transistor

The role of Astrocytes: Tripartite Synapses

Are SNAN possible?

Develop a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN)

Policronization in SNN

Policronization

Izhikevich⁴2006

How to define a SNAN

Two learning rules:

Neural weight are updated according to the Spike-Timing-Dependent Plasticity (STDP).

rIP3 values are updated according to the following rule:

 $r_{IP3}(n+1) = r_{IP3}(n) + 0.05(r_{IP3}(n) - r_{IP3}(n-1))$

Biologically Inspired Astrocyte-Neuron ratio of 1.5

How to define a SNAN: Timing

Experimental results

Network dimension

Neurons	1000
Astrocytes	1500

Experimental Results

Experimental results

Comparison, in terms of number of polychronous groups, of the network implementations.

